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Fast light in unbalanced low-loss Mach-Zehnder interferometers
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An analytical approach is reported that describes previously observed fast-light regimes in linear and passive
Mach-Zehnder interferometers (MZI) where the optical path difference is due to a different length of the branches.
Approximate expressions are developed for the transmission coefficient and group delay spectral functions valid
for frequencies close to the transmission minima ωmin, where these regimes occur. It is found that the group
delay at ωmin verifies a simple scaling law. We demonstrate that slow light cannot arise in this system, and that
tunneling and superluminal regimes appear only for low-loss devices, where the attenuation drives the change in
the propagation regimes. The propagation of a sinusoidally modulated pulse train through the MZI is described,
and relevant figures of merit, which are intrinsic to the system and universal for any operative spectral range,
are determined. The theoretical approach is illustrated by simulations of a silicon-based interferometer designed
for advancing pulses at 1.55 μm. Also, previously reported experimental results in the radiofrequency range are
interpreted in the framework of the model.
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I. INTRODUCTION

Slow and fast light (SFL) technologies are currently
receiving much attention because of their interesting appli-
cations, ranging from optical information processing, with the
realization of optical buffers, quantum memories, switches and
synchronizers [1–3], to enhanced precision sensing [4,5] and
interferometry [6].

These technologies are based on systems that exhibit steep
positive dispersion to propagate a light pulse at unusually
low group velocity (slow light, vg � c) or steep negative
dispersion to achieve pulse propagation at unusually fast
group velocity (fast light, vg > c or negative) [7]. This is
the case of materials with gain or absorption resonances
[8,9] and of materials where a dip in the gain or in the
absorption feature is induced by nonlinear optical processes,
like electromagnetic [10] or photo-isomerization-induced [11]
transparency, coherent population oscillations [12] or stimu-
lated scattering [13–15]. SFL effects thus arise in a myriad
of materials (atomic vapors, solid crystals, dye-doped liquid
crystals, semiconductors, and optical fibers) because an abrupt
variation of the real part of the complex refractive index
(hereafter, simply the refractive index) n occurs in the narrow
band around the resonance or dip due to the Kramers-Kronig
relations that link the real and imaginary parts of the dielectric
function.

Exotic pulse propagation regimes also occur in engineered
media without substantial material dispersion, like photonic
crystals [16,17] and Bragg gratings [18]. These systems consist
of a periodic refractive index distribution and exhibit structural
dispersion due to coupling between the incident wavelength
and the characteristic length of the structure. The transmission
spectrum has a forbidden region for certain directions and
polarizations (photonic band gap), which sustains fast light,
while slow light is generated at the photonic band edge and at
the inside-gap resonance of doped photonic crystals or Bragg
gratings. Contrary to the aforementioned systems with material
resonances, SFL occurs here in entirely linear and passive
structures. Because of the scaling properties of photonic

band-gap (PBG) systems, structural SFL has been detected not
only in the optical range but also for lower frequencies, like
microwave [19–21], radiofrequency (RF) [22,23], and even
acoustic wave packets [24].

As an alternative to PBG systems, we recently demonstrated
that structural SFL can be generated in multiple-beam inter-
ferometers of three or more branches [25,26], which are linear
and passive systems not exhibiting photonic band gaps. The
simplest interferometer of this kind, with only two branches, is
the Mach-Zehnder interferometer. It is a common and versatile
device in actual communication systems, widely used to build
optical switches [27], modulators for optical signal multiplex-
ing [28], sensors [29], and fractional optical differentiators for
pulse-shaping applications and information processing [30].
Its typical interference pattern presents transmission peaks
and valleys as a consequence of the phase shift between the
two interfering beams, caused by either a difference in the
length of the branches (unbalanced or asymmetric MZI), or
by a refractive index difference between the branches of equal
length (symmetric MZI).

This two-path interferometer has been shown to sustain
fast-light propagation for frequencies close to the transmission
minima [31–33]. In [31], frequency-domain characterization
of an asymmetric loop structure (asymmetric MZI) built with
coaxial cables showed negative phase jumps around the trans-
mission minima. This led the authors to point out this structure
as a good candidate for obtaining negative group velocity.
Time domain experiments performed with Gaussian acoustic
pulses [32] and sinusoidally modulated RF wave packets
[33] corroborated these findings. By tuning the pulse carrier
frequency slightly off the transmission minima, superluminal
propagation was also detected [33]. No slow-light regimes
were observed. Slow light in an MZI has only been obtained
when the medium in one of the branches is microstructured
[34] or exhibits a material-resonant feature [35].

The experimental results in [33] were interpreted in the
framework of the effective index approach [36]. Within this
picture, the scattering loss of the pulse spectral components is
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SÁNCHEZ-MEROÑO, SÁNCHEZ-LÓPEZ, AND ARIAS PHYSICAL REVIEW A 89, 043828 (2014)

ascribed to an effective complex refractive index whose real
part is obtained from the overall phase shift on transmission
φt (ω) through the structure. The abrupt negative slope of
φt (ω) at the transmission minima [31–33] causes an anomalous
effective dispersion whose origin is structural, i.e., it is not due
to dispersion of the medium in the branches (which was, in
fact, neglected), but to the features in the spectral transmission.
This is also the situation in PBG systems.

In this work we bring these ideas further and develop a
theoretical model that fully describes the arising of structural
fast light in MZIs and its performance in terms of both the
device parameters and the pulse characteristics. The medium
in the branches is assumed to be linear and dispersionless in the
frequency range of interest, which is a reasonable assumption
for a medium exhibiting no gain or absorption peaks. To
simplify the analysis, a constant attenuation coefficient is con-
sidered, and exact expressions for the complex transmission
coefficient and group delay as a function of frequency are
obtained. The conditions necessary to obtain appreciable fast
light effects are discussed in terms of the fringe visibility,
and the allowed propagation regimes are determined as a
function of the device characteristics (size, refractive index,
and attenuation coefficient of the medium in the branches). We
show that the total attenuation is the mechanism that drives the
change in the propagation regime for a given refractive index.
A substantial difference regarding fast light effects is found
between asymmetric and symmetric MZI.

The behavior of a pulse travelling through an SFL system
depends not only on the characteristics of the system itself,
but also on the pulse shape and duration. As a consequence,
the group delay spectral function of the MZI will only
be an estimation of the actual pulse delay measured in
a time-domain experiment. This issue is addressed in this
work by obtaining an approximate expression of the complex
transmission coefficient, valid for frequencies close to the
transmission minima, that is used to model the propagation
of a sinusoidally modulated pulse train through the MZI.
An analytic expression of the pulse delay, along with rel-
evant figures of merit that quantify fast-light propagation,
is determined. A comparison is made to recently reported
SFL effects in three-beam interferometers [25]. The model
predictions are illustrated with numerical simulations of a
silicon-based MZI designed to operate at optical frequencies.
Finally, the previously mentioned experimental results in the
RF range [33] are revisited and interpreted in the framework
of this model.

II. ANALYTICAL MODEL

We consider a plane wave of a unit complex ampli-
tude impinging on a Mach-Zehnder interferometer. A 1 × 2
splitter divides the wave into two equal components that
travel along each arm and then recombine by a 2 × 1
coupler. The transmitted complex amplitude at the end of the
interferometer is

t̂ = 1

2

2∑
i=1

ejφ̂i , (1)

where φi is the phase of the wave propagating along the ith
branch, which, in turn, can be expressed as

φi = ω

υ
Li + jαLi. (2)

In Eq. (2) ω is the angular frequency, υ is the phase velocity
in the medium, Li is the ith arm length, and α is the
attenuation coefficient of the medium. We define the length of
each arm as

L1 = L − �

2
and L2 = L + �

2
, (3)

where � is the length difference between arms. The effective
length of the MZI is the average length of the branches since
the input field amplitude is equally split between the two arms

L = (L1 + L2)

2
. (4)

Let us define β as the phase shift associated to the length
difference �, i.e., β = ω�/υ, and introduce the following
quantities:

R = cosh(α�/2)cos(β/2), (5a)

I = −sinh(α�/2)sin(β/2), (5b)

which are related to the transmission coefficient according to
t̂ = ej (ω/υ+jα)L(R + jI).

Therefore, the magnitude and phase of the transmission
coefficient can be expressed as

|t̂ | = e−αL
√
R2 + I2, (6a)

φt = βL

�
+ arctan

( I
R

)
. (6b)

The propagation of an electromagnetic pulse through
the interferometer is often described in terms of the group
delay, which is the time taken by the pulse envelope to
propagate through the system [7]. Following the standard
stationary phase approach for the plane waves constituting the
pulse [19,20], the group delay is obtained from the frequency
derivative of the transmission coefficient phase

τg = ∂φt

∂ω
= L

υ
+ R ∂I

∂ω
− I ∂R

∂ω

R2 + I2
. (7)

Assuming that both the refractive index and attenuation
coefficient of the medium in the branches are constant over
the whole frequency range of interest, the following expression
of the group delay as a function of frequency (through β) is
retrieved

τg = τp

(
1 − �

2L

sinh(α �/2)cosh(α �/2)

cos2(β/2) + sinh2(α �/2)

)
, (8)

where τp(= L/υ) is the phase delay over the system’s
effective length. The previous expressions are exact within
the assumptions for the medium in the branches. In the
following sections, easier to handle approximate equations
will be derived with the aim of demonstrating anomalous
propagation regimes as well as modeling the propagation of
pulses through the MZI. The conditions considered for such a
derivation are now discussed.

First, the analysis will be centered in a narrow frequency
region around the transmission minima since it is where
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FIG. 1. (Color online) (a) Schematic of an unbalanced MZI and
(b) its typical transmission spectrum with (dashed line) and without
(solid line) attenuation.

fast light was experimentally observed [31–33]. An MZI
has one minimum between two adjacent principal peaks on
transmission. The extrema of the transmission function |t̂(β)|
of Eq. (6a) lie at phase values βmin = (2m + 1)π (for minima)
and βmax = 2πm (for maxima), where m is an integer number.
The position of the minima does not change with attenuation, in
contrast to the situation in a three-beam interferometer [25]. A
schematic of the two-beam interferometer and its transmission
spectrum with and without attenuation are displayed in Fig. 1.

Second, our analytical approach will be performed within
the condition of high fringe contrast of the interference pattern
(i.e., weak attenuation), which is necessary for the arising
of anomalous pulse propagation regimes. In the absence of
attenuation (α = 0), Eq. (8) yields τg = τp, as it is expected in
a linear and lossless system, where the phase relation between
the pulse components remains unchanged and consequently
the pulse peak travels at the phase velocity. On the opposite
case, for very high attenuation, no anomalous pulse propaga-
tion regimes are observed. Since a high attenuation reduces the
contrast of the interference pattern (as it can be appreciated
in Fig. 1), the present analytical study will be performed
within the condition of good visibility of the fringes. Such
a condition corresponds to considering small α� values, as it
is demonstrated below.

The visibility of the interference pattern (or fringe contrast)
is defined as [35]

ν ≡ Tmax − Tmin

Tmax + Tmin

, (9)

where T = |t̂ |2 is the transmittance and the subscript indicates
its maximum or minimum value. Considering the phase values
of the transmittance extrema (βmax and βmin) into Eqs. (5)
and (6), the fringe contrast of the MZI is found to depend
solely on the attenuation along the length difference between
branches (α�)

ν ≡ 2e−α�

1 + e−2α�
, (10)

For a lossless interferometer (α = 0) one gets ν = 1, whereas
the losses decrease the fringe visibility; the higher α�, the
smaller is the fringe contrast. Since fast-light effects requires
sharp spectral features, a visibility of at least ν = 0.65 is
required [35], and this requires that the amplitude ratio of the
combining waves at the end of the MZI, e−α�, should be less
than 1/e, that is, α� < 1. The analytical approximation in the
next section will consider α� < 0.5 values, which assures
a very good fringe visibility (ν � 0.9) along with excellent
agreement with the exact model developed above.

A. Transmission coefficient and group delay
around the transmission minima

Let us derive approximate equations of the magnitude |t̂(ω)|
and phase φt (ω) of the transmission coefficient, and the group
delay τg(ω), valid for frequencies close to a transmission
minimum ωmin. These expressions will be used in Sec. II C to
study the propagation of narrowband sinusoidally modulated
pulses through the MZI.

The transmission coefficient in Eq. (6) can be written in
the terms of (β − βmin). After some algebraic operations, the
following expressions are obtained:

|t̂ | = e−αL

√
sin2

(
β − βmin

2

)
+ sinh2

(
α�

2

)

≈ e−αL

√(
β − βmin

2

)2

+
(

α�

2

)2

, (11a)

I
R = tanh (α�/2)

tan (β − βmin/2)
≈ α�

β − βmin
, (11b)

where the approximation valid for small angles (β − βmin)
and small α� was considered. Recalling that β = ω�/υ and
defining a new parameter γ = −αυ, this leads to the following
approximate equations for the magnitude and phase of the
transmission coefficient around the minima ωmin

∣∣t̂(ω)
∣∣ ≈ e−αL α�

2

√
1 +

(
ω − ωmin

γ

)2

, (12a)

φt (ω) ≈ ωτp + arctan

(
ω − ωmin

γ

)
+ π

2
. (12b)

Note that the result of null transmission at the minima is
recovered for the lossless case (α = 0). Finally, the approxi-
mate expression for the group delay around each transmission
minimum is retrieved through a ω derivation of the phase
function in Eq. (12b)

τ g (ω) ≈ τp + γ

(ω − ωmin)2 + γ 2
. (13)

Equation (13) shows that the excess group delay (τg − τp)
around the minima is a Lorentzian function, with |γ | the
half-width at half maximum (HWHM) and 1/γ the excess
group delay at the transmission minima. Since γ is directly
proportional to the attenuation coefficient for a given refractive
index, one concludes that the larger the losses, the wider will
be the group delay Lorentzian curve and the smaller will be
the group delay absolute value at ωmin. Hence, the softening
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of the anomalous propagation regimes when the losses in the
system are notable is proved.

B. Pulse propagation regimes at the transmission minima

In this section we provide theoretical proof that tunneling
and superluminal regimes can arise at the transmission minima
by properly choosing the interferometer’s effective length for a
given attenuation coefficient and refractive index. From Eq. (8)
the exact group delay at the transmission minima βmin reads

τg = τp

[
1 − �

2L
coth

(
α�

2

)]
, (14a)

which can be approximated for small values of α� as

τg ≈ τp

(
1 − 1

αL

)
= τp + 1

γ
. (14b)

Alternatively, the above expression could also be obtained by
evaluating Eq. (13) at ωmin.

Interestingly, if we now apply the relationship between the
attenuation coefficient and the imaginary part of the complex
refractive index ni (α = niω/c) into Eq. (14b), the group delay
at ωmin can also be approximated as

τg ≈ τp − n

ni

1

ωmin
. (14c)

The above expression brings two interesting points into
attention. First, it sets a scaling law for the group delay
since it indicates that the product ωmin × (τg − τp) does not
depend on the interferometer’s operative frequency range, but
only on the ratio between the real and imaginary parts of the
complex refractive index of the medium in the branches (n/ni ).
Second, equivalent expressions were obtained for the group
delay at the reflection minima of a weakly absorbing dielectric
slab [21,37], which is indeed a multibeam interferometer.
Therefore, it shows the resemblance between pulse transmis-
sion through an MZI and pulse reflection on a dielectric slab.
This should not be unexpected since the MZI transmission
spectrum is, in fact, very similar to the dielectric slab reflection
spectrum.

Following the discussion, we now focus on a system with
a given refractive index and take Eq. (14b) to analyze the
possible propagation regimes at the minima. Equation (14b)
shows that a lossy MZI cannot sustain slow light (τg cannot
be larger than τp) because α is positive by definition. Only in
the hypothetical case of an interferometer with gain (α < 0)
would the subluminal regime arise. Practical situations, like
considering an MZI with a medium in one of the branches
that exhibits a narrow gain resonance, are discussed in the
literature [35].

The interferometer will sustain tunneling at the minima
(τg < 0) if the attenuation coefficient and the effective length
are chosen so that

αL < 1. (15)

For larger αL, the superluminal regime will arise (0 < τg <

L/c) if the following condition is satisfied:

1 < αL <
n

n − 1
. (16)

TABLE I. Possible propagation regimes at the transmission
minima for a lossy MZI.

Condition αL < 1 1 < αL < n

n−1 αL > n

n−1

α > 0 Tunneling Superluminal Normal

Therefore, the change in the pulse propagation regime is
driven by the total attenuation of the interferometer αL,
which can be modified by either changing the medium in the
branches (i.e., α) and/or the interferometer’s effective length
L. The length difference between branches � plays no role
in this issue, it only determines the frequency position of the
minima, namely ωmin = (2m + 1)πυ/�. Table I summarizes
the possible propagation regimes at the minima as a function
of αL.

The above analysis is illustrated by performing numerical
simulations on a silicon-based MZI with refractive index n =
3.48. Figure 2 shows, for two attenuation values and � = L/10
the magnitude of the transmission coefficient calculated using
Eq. (6a) and the group delay as a function of β according
to Eq. (8). As it was discussed, no anomalous propagation
regimes occur in the lossless interferometer, while if losses
with α� = 0.015 are considered, tunneling arises at each
minimum with negative group delays close to −6τp.

Figure 3 shows how the system’s total attenuation drives the
change in the pulse propagation regime. The group delay at the
minima (normalized to the phase delay) is plotted as a function
of αL for an interferometer with α� = 0.015. Together with
the τg values obtained from Eq. (14a), the straight line 1/n

corresponding to propagation over length L in a vacuum
is represented. The system exhibits negative group delays
for small-enough attenuation (αL < 1). For values of αL

ranging between 1 and 1.4, the propagation is superluminal,

FIG. 2. (Color online) (a) Transmission coefficient magnitude
and (b) group delay in units of phase delay through an Si-based
MZI with length difference between arms � = L/10 and refractive
index n = 3.48 for two values of the attenuation coefficient α.
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FIG. 3. (Color online) Pulse propagation regimes at the transmis-
sion minima of an Si-Based MZI with α� = 0.015 as a function of
the total attenuation αL. Group delay plotted from Eq. (14a) (solid
line) and phase delay through a vacuum (dashed line). The delays are
given in units of the phase delay over the system’s effective length.

in agreement with Eq. (16), while for too high attenuation
αL > 1.4 normal propagation is obtained. Therefore, fast light
is achieved for weak-enough attenuation, while it disappears
if it is either zero or too high (> n

n−1 ).
The fast-light conditions summarized in Table I and the

impossibility of getting slow light coincide with those obtained
for a three-beam interferometer with constant length difference
� between adjacent arms [25]. In fact, the exact expression
of the group delay at the transmission minima of this latter
system is the same as the one derived here if � in Eq. (14a)
is substituted by 2�, i.e., the length difference between the
shortest and the longest arms of the three-beam interferometer.
Therefore, a three-beam interferometer with constant �

behaves, as far as SFL effects are concerned, as an MZI.

C. Propagation of sinusoidally modulated pulses

The propagation of a pulse train through the MZI is now
modeled. A sinusoidally modulated wave packet with carrier
frequency ωc and modulation frequency ωm is considered,
Ein(t) = Ecsin(ωct)[1 + Mincos(ωmt)], where the modulation
index Min is the amplitude ratio of the modulating and
carrier signals. Together with the carrier component, this kind
of modulation generates two side components of amplitude
E±s = MinEc/2 and frequencies ω±s = ωc ± ωm. By setting
the carrier frequency at one of the minima (ωc = ωmin) and
using Eq. (12), the amplitude and phase of each spectral
component after propagating through the system are obtained.
Using Fourier theory, the envelope of the pulse transmitted
through the interferometer reads

Eout(t) ∝ 1 + Moutcos[ωm(t − τpulse)], (17)

with modulation index (Mout) and delay (τpulse) of the output
pulse given by

Mout = Min

√
1 +

(
ωm

γ

)2

, (18)

τpulse = τp + 1

ωm

arctan

(
ωm

γ

)
, (19)

keeping in mind that τp = L/υ and γ = −αυ.

The pulse delay in Eq. (19) is the time that a sinusoidally
modulated pulse train of modulation frequency ωm and a
carrier frequency tuned at ωmin takes in travelling through
the MZI. In the limit of extremely narrow pulse bandwidth
ωm → 0, τpulse → τp + 1/γ , thus recovering the group delay
value at ωmin which was discussed in Sec. II B. In other
words, this analysis shows that the narrower the spectral pulse
width, the more the pulse delay measured in a time-domain
propagation experiment approaches the value of the group
delay given by Eq. (14a).

An important figure of merit in SFL systems is the fractional
delay [38], D

f
, defined as the ratio between the excess pulse

delay and the duration of the incident pulse Tin:

Df = τpulse − τp

T in
. (20)

This quantity is equal to the excess number of pulses that can
be contained at any time within the system with respect to the
number that would be contained if the pulses travelled at the
phase velocity. It is hence a measure of how much the infor-
mation storage capacity of the system is enhanced due to SFL
effects. A common definition when dealing with optical pulses
is to take the pulse duration as the FWHM of the pulse power.
For sinusoidally modulated pulses of modulation index M ,
the pulse duration is T = 2/ωm arccos((1 − √

2 + M)/
√

2M)
and consequently, D

f
reads

Df =
arctan

(
ωm

γ

)
2 arccos

( 1−√
2+Min√

2Min

) . (21)

Figure 4(a) shows that the fractional advancement |D
f
| (solid

line) increases with modulation frequency. Also, Eq. (21)
predicts |D

f
| = 34% if modulation is performed with Min =

1 and ωm = |γ |, i.e., the pulse spectral components lie within
the FWHM of the group delay function in Eq. (13). For higher
modulation frequencies, however, the pulse will undergo a
certain degree of distortion, which is larger as ωm increases.
According to Eq. (18), the modulation index of the transmitted
pulse is always larger than that of the input pulse, and
consequently, the duration of the output pulse (Tout) will always
be smaller, leading to a pulse compression b, whose value can
be calculated by

b = 1 − Tout

Tin
= 1 −

arccos
( 1−√

2+Mout√
2Mout

)
arccos

( 1−√
2+Min√

2Min

) . (22)

Figure 4(a) shows (dashed line) the relation between pulse
compression and modulation frequency (normalized to |γ |). It
is found that for not too high values of ωm the compression
factor goes roughly quadratic with the fractional delay b ≈
KD2

f . Considering Min = 1, the proportionality constant K

is 0.74 if ωm → 0 and it is 0.71 if ωm = |γ |. This relation
is illustrated in Fig. 4(b); it implies that, to keep the pulse
compression below 5%, the fractional delay may not exceed
27%, and to keep it below 10% the fractional delay may not
exceed 38%.

In addition to pulse compression, distortion of the pulse am-
plitude also appears, similarly to what is observed for fast light
in systems with material resonances [39]. In the case of Min =
1, this amplitude distortion acts as a pulse breakup, giving
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FIG. 4. (Color online) (a) Fractional advancement (solid line)
and pulse compression (dashed line) versus normalized modulation
frequency, and (b) pulse compression (dashed line) and secondary to
main peak amplitude ratio (short-dashed line) as a function of the
fractional advancement, for a 100% sinusoidally modulated pulse
train with carrier frequency tuned at one of the transmission minima.

rise to a main peak (lying at t = τpulse) and a secondary peak
(lying at t = τpulse + π/ωm). The secondary-to-main power
amplitude ratio is given by (1 − Mout)2/(1 + Mout)2, which in-
creases with increasing modulation frequency, or equivalently,
with increasing fractional advancement, as shown in Fig. 4(b).
Thus, to maintain the secondary peak amplitude below 10% of
the main peak amplitude, the fractional delay may not exceed
45%.

Another relevant figure of merit of SFL systems is the
delay-bandwidth product (DBP) [38], defined as the product
of the delay and bandwidth of the signal transmitted through
the system. This quantity can be estimated in various units
depending on which magnitude the bandwidth is given.
Choosing a modulation frequency fm = |γ |/2π so that the
spectral components of the signal here considered lie within
the FWHM of the Lorentzian group delay curve in Eq. (13),
the expected DBP is (τpulse − τp) × 2fm = 25%.

It is worth noticing that the above features and figures of
merit are entirely applicable to MZIs operating at any fre-
quency range. In this context, we shall recall the simple scaling
law for the excess group delay at ωmin that was previously
obtained [see Eq. (14c)], which is useful to transform a device
originally designed to operate at a specific frequency range into
another operative range. Finally, let us point out that the pulse
propagation characteristics described above are equivalent to
those derived for a three-beam interferometer [25].

III. RESULTS AND DISCUSSION

In this section, the model predictions are applied to Mach-
Zehnder interferometers operative at two different spectral
regions. First, a numerical simulation of the propagation of
optical pulses centered at 1.55 μm is performed and second,
our previous experimental results obtained in the RF range are
revisited and interpreted in the framework of the model.

A. Simulation results in the optical range

A silicon-based MZI with an attenuation coefficient of
6.5 dB/cm and a refractive index of n = 3.48 is considered.
It is designed to have a fixed branch length difference of
� = 200μm that sets the minima 430 GHz apart. Therefore,
the model parameters take the values α� = 0.015 and γ −1 =
−155 ps. The conditions summarized in Table I yield the
range of values that the system’s effective length L must take
to sustain tunneling, superluminal, or normal group delay at
the minima. Consequently, three such MZIs of the following
lengths are considered: L = 2 mm (tunneling), L = 1.5 cm
(superluminal), and L = 2 cm (normal).

The transmission magnitude |t̂ | and group delay τg of the
three MZIs are calculated according to Eqs. (6a) and (8) in
a frequency range of 450 GHz centered at the transmission
minimum located at fmin ≈ 193 THz; the results are plotted in
Fig. 5(a). As L increases, the attenuation of the transmission

FIG. 5. (Color online) Numerical simulation of an Si-based MZI
with parameters � = 200 μm, α = 6.5 dB/cm, and n = 3.48 for
three values of the effective length: L = 2 mm (solid line), L =
1.5 cm (dashed line), and L = 2 cm (dotted line). (a) Magnitude of
the transmission coefficient and group delay. (b) Normalized traces
of pulses with carrier frequency tuned at fmin and transmitted through
each interferometer. The incident pulse has its peak at t = 0.
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spectrum becomes stronger and the group delay curve shifts
upwards because of the positive contribution of a larger phase
delay. The group delay value at fmin, namely τg ≈ −131,19,

and 77 ps, corresponds to the tunneling, superluminal, and
normal regimes, respectively, in agreement with the model
predictions. For each interferometer, the excess group delay
curve τg(f ) − τp fits excellently to a Lorentzian function of
HWHM |γ |/2π ≈ 1 GHz and −155 ps excess delay at the
minimum.

Now, an optical pulse train travelling through each in-
terferometer is numerically simulated. The optical carrier
is tuned at fmin ≈ 193 THz (λ = 1.55 μm) and it is 100%
sinusoidally modulated at frequency fm = |γ |/2π to generate
a train of pulses of width Tin = 364 ps at a repetition rate
of 1 GHz. Figure 5(b) shows the pulse traces corresponding
to a propagation through the interferometers of L = 2 mm
(pulse 1), L = 1.5 cm (pulse 2), and L = 2 cm (pulse 3).
All traces were normalized to its peak value for an easier
comparison. The peak position of each envelope is the time
that the pulse takes in travelling through the system, i.e., the
pulse delay. These delays are, respectively, ≈ −98,52, and
110 ps and they agree very well with the values predicted by
Eq. (19). Since the incident pulse (not depicted) has its peak
at t = 0, pulse 1 clearly tunnels through the system, pulse
2 propagates almost superluminally (the superluminal delay
should be less than L/c = 50 ps), whereas pulse 3 corresponds
to a normal propagation. For the three pulses shown in the
figure, a fractional advancement of |Df | = 34% was observed,
in agreement with Eq. (21).

The case of pulse 2 is a neat example that Table I provides
an estimation of the propagation regime for narrowband pulses
tuned at the minima. The pulse spectral width has indeed
influence on the actual propagation regime, as it is reflected
in Eq. (19) for τ pulse. It was checked that by decreasing the
modulation frequency slightly below 1 GHz, the resulting
pulse does propagate superluminally through the MZI of
L = 1.5 cm.

Figure 6 shows the normalized traces of two pulses trans-
mitted through the shortest MZI (L = 2 mm, and phase delay
τp = 23 ps) and tuned at two frequencies: fmin ≈ 193 THz

FIG. 6. (Color online) Normalized traces of pulses transmitted
through the interferometer of L = 2 mm for two carrier frequencies:
tuned at fmin (solid line) and tuned at fmax (dashed line). The incident
pulse has its peak at t = 0.

(pulse 1) and the next transmission maximum fmax = fmin +
215 GHz. Since the pulse with carrier frequency at fmax travels
at the phase velocity, pulse 1 (main peak) is advanced 121 ps
with respect to it. A slight compression of pulse 1 is revealed
by measuring the widths of both pulses. Such a compression
also occurs for pulse 2 and pulse 3 shown in the previous
figure. In the three cases a compression factor of b = 8%
is observed, in agreement with Eq. (22). In physical terms,
this behavior can be ascribed to spectral reshaping of the input
pulse due to the transmission feature at the minimum. Namely,
the center pulse frequency is transmitted with less intensity that
its side components, thus causing spectral broadening, and
consequently, pulse shrinking in time. This situation has also
been reported for fast light based on material resonances [39].

Figure 6 also shows the pulse 1 breakup, with a discernible
secondary peak at 388 ps and power amplitude of 2.9% of the
main peak power amplitude, in excellent agreement with the
predicted values given that Mout = √

2.
It is worth emphasizing that the above numerical simu-

lations regard an ideal waveguide silicon-based MZI. Real
waveguide-integrated interferometers usually have power im-
balance on the nominal 3 dB couplers [27]. Interestingly, power
imbalance can play the role of total losses αL in changing the
propagation regime, as it can be deduced from the results found
in [30]. In that work, the author analyzed the performance of an
MZI with variable power splitting ratios. The softening of the
phase jump in the phase spectral function for splitting ratios
detuning from 3 dB is similar to the effect of total losses.

For practical purposes, one might consider the possibility of
inducing the optical path difference in the MZI not by means
of a physical length difference �, but through a difference
in the refractive index of the branches �n. We could then
envisage an MZI with equal branch lengths and fabricated
using an electro-optic material such as LiNbO3, where �n is
tuned upon the application of voltage [27]. It must be pointed
out though that SFL effects cannot occur in such a device.
More specifically, in an MZI with branches of equal length
(and equal attenuation coefficient), the transmission is exactly
zero at the minima for whatever attenuation coefficient. The
plane-wave amplitude at the end of each branch is the same,
and �n makes the phase shift between each plane wave an
odd multiple of π for certain frequencies, thus completely
cancelling the transmission at those frequencies. No degree of
freedom is left to yield an anomalous propagation regime. This
situation is equivalent to that of the asymmetric and lossless
MZI shown in Sec. II, which displays zero transmission at the
minima and τg = τp. This physical discussion can be readily
corroborated by a simple calculation for this hypothetical
symmetric interferometer; it leads to a group delay that
corresponds to a propagation at the average phase velocity,
namely τg = n̄L/c, with n̄ being the average refractive index
of the branches.

B. Revisiting experimental results in the RF range

The experimental results reported in our previous work [33]
are now analyzed within the framework of the present model.
The interferometer consists of two coaxial cables (50 �,
RG-58C/U) of 2 and 14 m length, connected by a 1 × 2 RF
power splitter and a 2 × 1 RF coupler (PE2000 Pasternack).
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FIG. 7. (Color online) Experimental and model results of an RF
MZI with the indicated parameters around a transmission minimum.
(a) Magnitude and phase of the transmission coefficient and (b) group
delay.

Hence, the system’s effective length is L = 8 m and � = 12 m
is the length difference between branches. The phase velocity
in the cables (υ = 2c/3) corresponds to a refractive index of
n = 1.5. The phase delay of the system is thus τp = 40 ns. The
cable attenuation coefficient was characterized as a function
of frequency in the 20–100 MHz range yielding an average
value of α = 0.014 Np/m, which is considered as the constant
coefficient loss in the model equations. Therefore, the model
parameters take the values α� = 0.168 and γ −1 = −1/αυ =
−357.14 ns. Considering Table I and the fact that αL =
0.112 < 1, tunneling is the predicted group delay regime at the
transmission minima. This regime should be clearly noticeable
since the fringe visibility is ν = 99%.

The transmission magnitude, |t̂ |, the phase on transmission,
φt , and the group delay τg of this MZI were calculated using
Eqs. (6a), (6b), and (8). They are plotted in Fig. 7 together
with previous experimental results [33] for comparison. The
experimental |t̂ | and φt curves correspond to the magnitude
and phase of the S21 scattering parameter, which was recorded
with a two-port vector network analyzer (Agilent E8363B)
in the 20–100 MHz range every 112.5 kHz. The experi-
mental τg curve was retrieved by numerical derivative of
the experimental phase data with respect to the frequency.
It should be remarked that in the experimental data shown
here, the effects of the splitters (an overall attenuation of 1dB
and a delay of 2 ns) were subtracted since the splitters are
not included in the model. As Fig. 7(a) shows, the constant
loss coefficient α = 0.014 Np/m considered in the model fits
very well the experimental |t̂ | and φt curves in the displayed
frequency range. The experimental transmission minimum lies

at 58.3625 MHz, i.e., 62.5 kHz above the theoretical fmin. The
agreement was found to be also good in a broader spectral
range (20–100 MHz), with the only effect of a lowering of the
measured transmission peaks for larger frequencies because
of the frequency dependence of the actual coefficient loss.

As shown in Fig. 7(b), the experimental group delay
function is reasonably well accounted for by the theoret-
ical model. The experimental and theoretical group delay
at the minimum takes the values τ

expt
g (fmin) = −292.81 ns

and τ theor
g (fmin) = −316.46 ns, respectively. The error in the

experimental value is estimated to be ±30 ns, considering the
data experimental dispersion and the frequency discretization.
Let us note that the frequency derivative of the phase data
amplifies the small amount of noise that is contained in
the measured S21 parameter; this is why the experimental
τ

expt
g curve exhibits significant data dispersion. The theoretical

prediction of −316.46 ns lies within the experimental range
τ

expt
g (fmin) = −292.81 ± 30 ns. It is worth mentioning that the

Lorentzian approximation of Eq. (13) with model parameter
γ −1 = −357.14 ns almost perfectly fits the experimental
function τ

expt
g (f ).

The above results are now used to interpret the time-
domain experiments reported in [33], where a train of
sinusoidally modulated wave packets with carrier frequency in
the megahertz range and 500 kHz modulation frequency was
transmitted through the system. This modulation frequency
is only by ≈50 kHz larger than |γ |/2π . Consequently, the
side spectral components of the pulse lie only slightly beyond
the FWHM of the Lorentzian group delay curve. Figure 8
shows the experimental pulse power traces (normalized to their
maximum value) and their fitted envelopes for two different
carrier frequencies fc. A pulse delay of −250 ± 40 ns was
reported for the wave packet with carrier frequency tuned
at 58.3 MHz; i.e., it tunnels through the system since t =
0 is the peak position of the incident pulse. The pulse with

FIG. 8. Experimental pulse power traces and their fitted en-
velopes for two different carrier frequencies: (a) 58.3 MHz (tunneling)
and (b) 50 MHz (normal regime). Each trace is normalized to its
maximum amplitude. The fitted envelopes have modulation index
(a) M = 0.95 and (b) M = 0.65.
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TABLE II. Comparison between experimental and theoretical
predictions for a tunnelled pulse in the RF MZI under analysis. The
experimental data of Ref. [33] were used.

Results Mout τpulse(ns) |Df | b%

Experiment 0.95 ± 0.05 −250 ± 40 0.35 ± 0.05 11.4 ± 1.3
Theory 0.98 −228 0.32 12.2

fc = 50 MHz is delayed by 40 ns and undergoes neither
distortion nor compression. This allows us to take the features
of this pulse as those of the input pulse in our model. It also
serves as the reference pulse for estimating the phase delay τp

(40 ns) since its propagation is equivalent to that of a pulse
traversing a single coaxial cable of 8 m (the MZI effective
length). The envelopes that fit the experimental captures have
modulation index Mout = 0.95 ± 0.05 [Fig. 8(a)] and Min =
0.65 [Fig. 8(b)]. Let us remark that because of the higher
distortion of the tunnelled pulse (due to the sharp decrease
of the transmitted signal at the minima) a rough error of
±0.05 was estimated in its modulation index. Using the above
values of the modulation index, the pulse duration (FWHM)
for the tunnelled and input pulses is Tout = 739.5 ± 11.5 ns
and Tin = 835 ns.

Table II summarizes the comparison between the model
predictions and the experimental results for the following
quantities of the tunnelled pulse: output modulation index
Mout, pulse delay τpulse, fractional delay Df , and compression
factor b. The theoretical predictions were obtained using ωm =
2π × 500 kHz and the model parameter γ −1 = −357.14 ns
into Eqs. (18), (19), (21), and (22). The experimental value of
Df was obtained from Eq. (20) using τ

expt
pulse = −250 ± 40 ns.

The experimental figures of merit bear a good agreement with
the model predictions. Since the output modulation index is
Mout � 1 (as a consequence of having Min = 0.65) no peak
breakup is observed, in accordance to the theory.

IV. CONCLUSION

We have theoretically proved the arising of structural fast
light in a linear, passive, weakly attenuating, unbalanced
MZI. The interferometer is characterized by its branch length
difference (�), its effective length (L), and the refractive
index (n) and attenuation coefficient (α) of the medium in
the branches, which are both considered constant.

An approximate analysis is performed within the condition
of good fringe visibility (small α�) and in a narrow spectral
region around the transmission minima, where anomalous
regimes are observed. The intensity of fast-light regimes
depends on how much the group delay differs from the phase
delay, i.e., the excess group delay. It is highlighted that the
magnitude of the excess group delay at the transmission
minima scales with frequency by a proportionality constant,
which is the ratio between the real and the imaginary parts
of the complex refractive index of the branch media, in
the same way as it has been reported for other interfer-
ometric systems; namely for pulses reflected on weakly
absorbing slabs.

Keeping constant the refractive index, it is demonstrated
that the total attenuation of the system αL drives the change
in the group delay regimes at the minima, which range from
tunneling, to superluminal, and finally, into normal regime
as αL increases. Similar to other structural SFL systems,
the obtained group delay spectral function is very well
approximated by a Lorentzian curve in the frequency region
around the transmission minima.

The propagation of amplitude-modulated sinusoidal pulses
through an MZI is modeled and typical figures of merit
intrinsic to the system have been obtained. Pulse advancement
comes at the expense of pulse compression, and under
certain modulation conditions, also peak-breakup. For a 100%
modulated pulse with its entire spectrum within the Lorentzian
group delay function the delay-bandwidth product is 25% and
the fractional advancement 34%, with a pulse compression
of 8% and a secondary-to-main peak amplitude ratio of
about 3%.

The theoretical model here presented is valid for MZI
operative at any frequency range. As an example, it has been
applied to both the optical and RF ranges. In the first case, exact
numerical simulations were performed in an MZI designed to
advance a pulse centered at 1.55 μm. In the second case,
previously reported experimental results on a coaxial cable
MZI have been successfully interpreted.
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