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A scheme is presented for generating unitarily multimode field squeezing, cluster entanglement, and
Greenberger-Horne-Zeilinger (GHZ) entanglement via cavity quantum electrodynamics. Through a suitable
laser system, we are able to engineer a squeeze field operator decoupled from the atomic degrees of freedom,
yielding a large squeeze parameter proportional to the number of atoms. The physical mechanism is attributed to
the multiple four-photon processes and the dispersive atom-cavity-field interaction in large detuning systems.
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I. INTRODUCTION

The nonclassical states of light are an amazing topic in
quantum optics both theoretically and experimentally [1–3].
They are crucial resources for precision measurements [4]
and quantum information processing [5]. Additionally, some
squeezed states are simultaneously entangled states [6–8]. It
is well known that Lloyd and Braunstein introduced the use
of continuous variables (CV) in quantum information [9]. In
recent years, increasing attention has been devoted to Gaussian
states, as they play a major role in quantum information with
CV [5,10–15].

Graph states are multiparty entangled states that correspond
to mathematical graphs, where the vertices of the graph take
the role of quantum systems and edges represent interactions
[16,17]. CV graph states have also been well studied [18,19].
These states include CV Greenberger-Horne-Zeilinger (GHZ)
states with applications in quantum communication and CV
cluster states, which may serve as a universal resource for
quantum computation in the one-way quantum computer
[20,21]. There are standard methods of generating continuous-
variable cluster states using continuous-variable linear optics
[22,23]. Su et al. have experimentally produced CV quadri-
partite cluster and GHZ entangled states [24].

On the other hand, cavity quantum electrodynamics (QED)
has been proven to be a promising framework to investigate
the foundations of quantum mechanics. For example, Guzmán
et al. proposed a method to implement single-mode and
two-mode field squeeze operators from an atomic cloud in
an optical cavity, and they found robust output entanglement
can be achieved outside the cavity [25]. However, to our
knowledge, effective and tunable multimode squeeze operators
are less studied.

In this paper, we present a scheme to realize effective multi-
mode squeezed operators. The resulting multimode squeezed
states are highly correlated states of all the cavity modes,
exhibiting reduced quadrature noises in linear combinations
of variables of all the modes. Meanwhile, they are also CV
multipartite entangled states (CV cluster and GHZ entangled
states). This provides a possibility to use the QED systems for
the one-way quantum computing research.
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Here we concentrate on the dispersion interaction. At large
detunings, the driving fields and cavity fields are far away
from the bare-state atom resonance, and Kerr interaction
(dispersion interaction) occurs in the system. The atoms stay
in the ground state, and there are only four-photon processes,
with no single-photon processes. Using the expression of the
dressed atomic state, the cavity modes are far away from the
dressed-state resonance, but they are still in the two-photon
resonance. This is different from our previous work [26],
which addresses the near-resonance system. Both absorption
and dispersion are present (both single-photon processes
and four-photon processes). Physically, our scheme is based
on the quantum interference between multiple wave-mixing
interaction channels (Fig. 1). In each channel, two photons are
absorbed from the classical driving field, and then two new
photons of different frequencies are emitted into the sideband
modes [27,28]. Due to parametric conversion, entanglement
can arise between the two sidebands [29,30]. Once multiple
channels are involved and all the excited states are coupled
to the common ground state, quantum interference will take
effect. Quantum beats occur between all channels [31–34] and
have their effects on both the lower and higher sidebands.
This makes the lower and higher sidebands behave as different
collective modes and makes them interact with the atoms.
As a result, these two collective modes are in a parametric
interaction. This determines parametric interactions between
any two lower and higher sidebands.

This paper is organized as follows. In Sec. II we obtain
multimode squeeze operators in the multiple-channel system.
In Sec. III we calculate the variances of the output collective
modes to show the two-mode and multimode squeezed states.
In Sec. IV we demonstrate that the squeezed states are cluster
entangled states. In Sec. V we prove that the squeezed states
are GHZ entangled states. Our results are summarized in
Sec. VI.

II. MULTIMODE SQUEEZE OPERATORS

We consider an ensemble of N independent atoms in an
optical cavity, as shown in Fig. 2. Our model consists of
multiple transitions from one common ground state |0〉 to n

excited states |j 〉, j = 1,2, . . . ,n, n � 1 (Fig. 1). The transi-
tion |0〉 − |j 〉 is driven by a laser field of circular frequency
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FIG. 1. (Color online) The multichannel scheme. Each driving
field (Rabi frequency �j , j = 1,2, . . . ,n, n � 1) drives one tran-
sition. In each channel, two photons from the driving field �j are
absorbed, and two sideband photons (annihilation operators a2j−1

and a2j ) are generated.

ω̄j , with complex Rabi frequency �j . The cavity modes
are generated from the lower sidebands with annihilation
operators a2i−1 (i = 1,2, . . . ,m, m � n) and from the higher
sidebands with annihilation operators a2j . The noisy effect of
spontaneous emission is negligible here for typical values of
individual atomic emission rate and in the presence of a large
number of atoms. In the rotating-wave approximation and in
an appropriate rotating frame, the Hamiltonians involving the
driving fields and the cavity fields are, respectively,

H0 =
n∑

j=1

N∑
μ=1

�

[
�σ

μ

jj + �j

2

(
σ

μ

j0 + σ
μ

0j

)]
,

HI =
m∑

i=1

n∑
j=1

N∑
μ=1

�
(
g2i−1a2i−1e

−iδ1t σ
μ

i0 + g2j a2j e
−iδ2t σ

μ

j0

)

+ H.c. (1)

FIG. 2. (Color online) The possible setup for the creation of
cluster entanglement and GHZ entanglement of six cavity fields
(denoted by the annihilation operators a1−6).

Here H.c. denotes the Hermitian conjugate. In the Hamil-
tonians, we have assumed that the wave-vector matching
is satisfied and the atomic states contain the phase factors
due to the randomly orientated moments. For the μ atom,
σ

μ
αβ ≡ |α〉μ〈β| (α,β = 0,1,2, . . . ,n) are the atomic spin-flip

operators for α �= β and the projection operators for α = β.
δ1 = ω2i−1 − ω̄i and δ2 = ω2j − ω̄j denote the detunings
between the sidebands and the corresponding driving fields,
where ω2i−1 and ω2j are the circular frequencies of fields
a2i−1 and a2j , respectively. We assume equal atom-driving-
field detuning � = ωj0 − ω̄j , with ωj0 being the transition
frequencies between levels |0〉 and |j 〉. g2i−1 (g2j ) denote the
complex coupling strengths of cavity fields a2i−1 (a2j ) with
the atoms.

(i) Quantum beats. First, we introduce the superposition
states of the atomic excited states as follows:

|j̃〉 =
n∑

k=1

Un
jk|k〉, j,k = 1,2, . . . ,n, (2)

where Un
jk = (Un)jk ,

U 2 =
(

c1 s1

−s1 c1

)
, U 3 =

⎛
⎜⎝

c1c2 s1c2 s2

−s1 c1 0

−c1s2 −s1s2 c2

⎞
⎟⎠ ,

(3)

U 4 =

⎛
⎜⎜⎜⎝

c1c2c3 s1c2c3 s2c3 s3

−s1 c1 0 0

−c1s2 −s1s2 c2 0

−c1c2s3 −s1c2s3 −s2s3 c3

⎞
⎟⎟⎟⎠ , . . . ,

with sl = �l+1e
−iφ1

�
, cl =

√
1 − |sl|2, l = 1,2, . . . ,n − 1, φ1 =

arg �1, and � =
√∑n

j=1 |�j |2. Then the Hamiltonian H0 can

be rewritten as

H0 =
N∑

μ=1

�

[
�σ

μ

1̃1̃
+ �

2

(
σ

μ

1̃0
eiφ1 + σ

μ

01̃
e−iφ1

)]
. (4)

Equation (4) shows that only superposition state |1̃〉 is coupled
to the driving fields with Rabi frequency �, while the other
superposition states |j̃ 〉 (j = 2,3,4, . . . ) are decoupled and not
excited. This results from the multiple quantum interference.

(ii) Dressed atomic states. We introduce the basis of the
dressed atomic states. This is preferable when the driving fields
are strong (�̄ = √

�2 + �2 � γ ). The Hamiltonian H0 can
be easily diagonalized to show the interactions of the sidebands
with the atoms. The eigenvectors |±〉 are mixtures of the bare
atomic state |0〉 and superposition state |1̃〉 and are known as
dressed states [35]:

|+〉 = c|1̃〉 + s|0〉, |−〉 = −s|1̃〉 + c|0〉, (5)

with s = eiφ1
√

(1 − �/�̄)/2 and c =
√

1 − |s|2; the corre-
sponding eigenvalues are λ± = (� ± �̄)/2, respectively. Then
we can rewrite H0 as H0 = ∑N

μ=1 �(λ+σ
μ
++ + λ−σ

μ
−−). We

assume the atoms stay initially in the ground state |0〉. In terms
of the dressed states, the atoms remain in |−〉 for � � |�| or
in |+〉 for −� � |�|.
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(iii) Collective fields. The collective modes are [33]

A2i−1 =
m∑

k=1

Ũm
ik a2k−1, A2j =

n∑
k′=1

Ūn
jk′a2k′ , (6)

where we use the index m to allow the number of the odd
modes to be less than that of the even modes, m � n. The
unitary transform matrix Ũm (Ūn) takes exactly the same form
as Um (Un) except for the substitutions of s̃l and c̃l for sl

and cl , respectively, l = 1,2, . . . ,m − 1 (n − 1). Here s̃l =
g2l+1sle

−iθ1/|g̃1| (s̃l = g2l+2sle
−iθ2/|g̃2|), c̃l =

√
1 − |s̃l|2, and

the effective coupling strengths are

g̃1 = eiθ1

√√√√ m∑
i=1

∣∣g2i−1U
m
1i

∣∣2
, g̃2 = eiθ2

√√√√ n∑
j=1

∣∣g2jU
n
1j

∣∣2
,

(7)

with θ1,2 = arg g1,2, respectively. Only collective modes A1

and A2 interact with the dressed transition |+〉 ↔ |−〉, while
the other collective modes, A2i−1 and A2j (i,j � 2), are
decoupled. These are the very effects of the quantum beats
[33]. The uncoupled collective modes A2i−1 and A2j (i,j � 2)
remain at their vacuum states. Hence, the Hamiltonian only
relates to the atomic transition |+〉 ↔ |−〉 and the collective
fields A1,2.

(iv) Effective Hamiltonian. At large detunings (�̄ ≈ |�|),
we derive the effective Hamiltonian as in [36]. For definiteness
we adjust the cavity fields |δ1 + δ2| � |δ1,2|, (|�|,|δ1,2|) �
||δ1,2| − |�|| � (|g̃l〈Al〉|,γ ) (l = 1,2). The equation for the
density matrix is

ρ̇ = − i

�
[HI ,ρ], (8)

and we have its formal solution ρ(t) = ρ(0) −
i
�

∫ t

0 dt ′[HI (t ′),ρ(t ′)]. Substituting this solution back
into Eq. (8), we obtain

ρ̇ = − i

�
[HI (t),ρ(0)] − 1

�2

∫ t

0
[HI (t),[HI (t ′),ρ(t ′)]]dt ′.

(9)

When ||δ1,2| − |�|| � (|g̃l〈Al〉|,γ ) (l = 1,2), the first term is
fast oscillating compared with the second one and is negligible
to a good approximation. Then we can employ a Markovian
approximation for the latter. Approximately, the evolution of
the density operator is

ρ̇ = − i

�
[Heff,ρ(t)], (10)

with

Heff = − i

�
HI (t)

∫
HI (t ′)dt ′, (11)

where the indefinite integral is evaluated at time t without
integral constant. We assume t � |δl ± |�||−1 and make the
secular approximation again. Taking the cavity detunings |δ1 +
δ2| = N |g̃n|2

||δ1|−|�|| , we can remove the dynamical Stark shift and
obtain the effective Hamiltonian as

Heff = �(ξ ∗A1A2 + ξA
†
1A

†
2), (12)

where we have defined the coupling coefficient

ξ = |g̃1g̃2|N�2e−i(2φ1+θ1+θ2)

4�2(|�| − |δ1|) . (13)

Then we get the unitary two-mode squeeze operator

S(z) = exp(z∗A1A2 − zA
†
1A

†
2), (14)

where z = iξτ is a squeeze parameter that is proportional to
the number of atoms N , with τ being the interaction time.
This squeeze operator is independent of the atomic degrees
of freedom and produces two-mode squeezing on any initial
field state. Using Eqs. (6) and (14), we obtain the multimode
squeezed operator

Sm+n = exp
m∑

i=1

n∑
j=1

(z∗
ij a2i−1a2j − zij a

†
2i−1a

†
2j ), (15)

with m,n � 1,n � m, and z∗
ij = z∗Ũm

1i Ū
n
1j .

III. VARIANCES, FLUCTUATIONS, AND SQUEEZING

Now we examine the squeezing properties of the outgoing
collective modes. Collective modes A1 and A2 are driven by
the effective nonlinear interaction in Eq. (14) and by external
(axial) laser fields with strengths ε1 and ε2, respectively. We
assume that each collective mode interacts with an independent
heat bath. In the Markov approximation, we can obtain the
following coupled Langevin equations:

Ȧ1 = −iε∗
1 − κ1

2
A1 + ξ

2
A

†
2 − √

κ1A
in
1 (t),

(16)

Ȧ2 = −iε∗
2 − κ2

2
A2 + ξ

2
A

†
1 − √

κ2A
in
2 (t),

where Ain
l (t) (l = 1,2) are annihilation operators of the input

fields and κl are the cavity decay rates of modes Al . We have
taken ξ → iξ/2 (with ξ being real) to match standard notation
[37]. Then we get the following equations:

δȦ1 = −κ1

2
δA1 + ξ

2
δA

†
2 − √

κ1A
in
1 (t),

(17)

δȦ2 = −κ2

2
δA2 + ξ

2
δA

†
1 − √

κ2A
in
2 (t),

where we have used the transforms Al = δAl + αl (l =
1,2). α1 = 2i(κ2ε

∗
1 − ξε2)/(ξ 2 − κ1κ2) and α2 = 2i(κ1ε

∗
2 −

ξε1)/(ξ 2 − κ1κ2) are the steady-state solutions for the col-
lective modes. Now we calculate the solutions of Eq. (17) in
the frequency domain:

δA1(ω) = 2
√

κ1α2

ξ 2 − α1α2
Ain

1 (ω) + 2
√

κ2ξ

ξ 2 − α1α2
A

in†
2 (−ω),

(18)

δA2(ω) = 2
√

κ2α1

ξ 2 − α1α2
Ain

2 (ω) + 2
√

κ1ξ

ξ 2 − α1α2
A

in†
1 (−ω),

where A (ω) = 1√
2π

∫ ∞
−∞ dτe−iωτA (t) is the Fourier transform

of A(t), with αl = κl − 2iω (l = 1,2).
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We can express the output fields in terms of the input fields
[37]:

Aout
1 (ω) = −√

κ1α1δ(ω) + ξ 2 + α∗
1α2

ξ 2 − α1α2
Ain

1 (ω)

+ 2ξ
√

κ1κ2

ξ 2 − α1α2
A

in†
2 (−ω),

Aout
2 (ω) = −√

κ2α2δ(ω) + ξ 2 + α1α
∗
2

ξ 2 − α1α2
Ain

2 (ω)

+ 2ξ
√

κ1κ2

ξ 2 − α1α2
A

in†
1 (−ω). (19)

Then we define the two-mode quadrature operators [1,38]
as X = (X1 + X2)/2 and P = (P1 + P2)/2, where Xl =
(Aout

l + A
out†
l )/2 and Pl = (Aout

l − A
out†
l )/2i are the quadrature

operators for the output collective modes Aout
l (l = 1,2). The

fluctuations of X and P satisfy the uncertainty relation

〈δX〉〈δP 〉 � 1
8 . (20)

Next, to see the squeezing property explicitly, we compute
the variances for the quadrature amplitudes at zero frequency.
Using Eq. (19), we can obtain

〈(δX)2〉 = 1

8

∣∣∣∣x + 1

x − 1

∣∣∣∣
2

, 〈(δP )2〉 = 1

8

∣∣∣∣x − 1

x + 1

∣∣∣∣
2

, (21)

with 〈(δO)2〉 ≡ 〈O2〉 − 〈O〉2, O = X, P , and x = ξ√
κ1κ2

being

real. Note that 〈(δX)2〉〈(δP )2〉 = 1/64; it should be a minimum
uncertainty field state. If there is no nonlinear coupling, we
have 〈(δX)2〉 = 〈(δP )2〉 = 1/8, which demonstrates that it is
a coherent state (including the vacuum state). In general, Eq.
(21) indicates that 1/8 � 〈(δX)2〉 < ∞ and 0 � 〈(δP )2〉 �
1/8. Assuming 〈(δP )2〉 = e−2r/8, we then obtain the reduction
parameter r ≡ 2|z| as

r = ln

∣∣∣∣x + 1

x − 1

∣∣∣∣ . (22)

In principle, if x = 1 (r → ∞), the output quadrature P

may achieve perfect squeezing 〈(δP )2〉 = 0 at the expense of
large fluctuations in the output quadrature X. This two-mode
squeezed state is a highly correlated state of the output col-
lective modes Aout

l (l = 1,2) that exhibits reduced quadrature
noise in linear combinations of variables of both modes [39];
however, squeezing is not observed in the fluctuations of each
collective mode as follows:

〈(δX1,2)2〉 = 〈(δP1,2)2〉 = 1

4
+ 2x2

(x2 − 1)2
,

(23)

〈δXiδXj 〉 = −〈δPiδPj 〉 = x(x2 + 1)

(x2 − 1)2
,

where i,j = 1,2 and i �= j .

Then we recall the relations

A1 =
m∑

i=1

Ũm
1i a2i−1, A2 =

n∑
j=1

Ūn
1j a2j (24)

and define the quadrature operators xl = (aout
l + a

out†
l )/2

and pl = (aout
l − a

out†
l )/2i for the output modes aout

l (l =
1,2, . . . ,2m − 1, and l = 2m,2m + 2, . . . ,2n). After doing
some calculations, we can obtain the multimode quadrature
operators and the multimode squeezed state. The resulting
multimode squeezed state is the common eigenvector of a set
of quadrature combinations. Now we will show it is the cluster
state.

IV. CLUSTER ENTANGLEMENT

The cluster-type states are those multimode Gaussian states
for which certain quadrature correlations become perfect in the
limit of infinite squeezing [22,40],

B − MQ → 0, (25)

where Q and B denote column vectors of the amplitude and
phase quadratures, respectively, for each output mode aout

l

(l = 1,2, . . . ,2m − 1, and l = 2m,2m + 2, . . . ,2n). M is the
adjacency matrix for the graph of a given Gaussian state, which
indicates the interactions between different vertices on the
graph.

Our cluster states are two-colorable graph states [41,42].
The corresponding two-colorable graphs are given by a set
of vertices connected in a specific way by edges: There are
two groups of vertices, {a2i−1} and {a2j } (i = 1,2, . . . ,m, j =
1,2, . . . ,n), and there are no edges inside either of the groups.
The former group is colored red, while the latter is colored
blue (Fig. 3). In the ideal case of infinite squeezing, the two-
colorable cluster state is a simultaneous zero eigenstate of a
set of positions and momenta,

x2i−1 −
n∑

k′=1

x2k′ → 0,

(26)

p2j +
m∑

k=1

p2k−1 → 0.

We use a set of sufficient conditions for the full inseparability
of a multimode state [43]. The following inequalities are the
criteria for the two-colorable cluster entangled state [22,23]:

YC = V C
2i−1,2j

=
˝⎛
⎝δx2i−1 − δx2j −

n∑
k′=1;k′ �=j

η2k′δx2k′

⎞
⎠

2˛

+
˝⎛
⎝δp2j + δp2i−1 +

m∑
k=1;k �=i

η2k−1δp2k−1

⎞
⎠

2˛
< 1.

(27)

The subscript (superscript) C designates the cluster state, i,k =
1,2, . . . ,m, j,k′ = 1,2, . . . ,n, and η2k′ (η2k−1) are arbitrary
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(i) (ii) (iii)

(iv) (v) (vi)

FIG. 3. (Color online) Possible cluster states for different numbers of red sidebands a2i−1 and blue sidebands a2j , i = 1 ∼ m and j = 1 ∼ n.
For m = 1, (i) n = 2, (ii) n = 4, and (iii) n = 8. For m = 2, (iv) n = 2, (v) n = 3, and (vi) n = 4. Each vertex takes the role of one mode, and
edges represent the interactions between the connected vertices. {a2i−1} and {a2j } are in two different families.

real parameters that are used to optimize the above inequalities. Calculating the minimum values of the expressions in Eq. (27),
we obtain the following linear equations that the optimization parameters should satisfy:

0 = 〈δx2i−1δx2l′ 〉 − 〈δx2j δx2l′ 〉 −
n∑

k′=1;k′ �=j

η2k′ 〈δx2k′δx2l′ 〉,
(28)

0 = 〈δp2j δp2l−1〉 + 〈δp2i−1δp2l−1〉 +
m∑

k=1;k �=i

η2k−1〈δp2k−1δp2l−1〉,

where l′ = 1,2, . . . ,n and l′ �= j (l = 1,2, . . . ,m and l �= i) for the former (latter) equation. The correlation spectra are
written as

YC(ω)δ(ω + ω′) =
˝⎡
⎣δx2i−1(ω) − δx2j (ω) −

n∑
k′=1;k′ �=j

η2k′δx2k′ (ω)

⎤
⎦

⎡
⎣δx2i−1(ω′) − δx2j (ω′) −

n∑
k′=1;k′ �=j

η2k′δx2k′ (ω′)

⎤
⎦
˛

+
˝⎡
⎣δp2j (ω) + δp2i−1(ω) +

m∑
k=1;k �=i

η2k−1δp2k−1(ω)

⎤
⎦

⎡
⎣δp2j (ω′) + δp2i−1(ω′) +

m∑
k=1;k �=i

η2k−1δp2k−1(ω′)

⎤
⎦
˛
.

(29)

To illustrate the above relation, we consider the particular case

Ũm
1i = 1√

m
, Ūn

1j = 1√
n
, (30)

with i = 1,2, . . . ,m and j = 1,2, . . . ,n. This corresponds to the following matching conditions:

g1�1e
i(φ1+θ1) = g2l+1�l+1 (l = 1,2, . . . ,m − 1),

(31)
g2�1e

i(φ2+θ2) = g2l+2�l+1 (l = 1,2, . . . ,n − 1).
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FIG. 4. (Color online) The (dimensionless) output zero-
frequency spectra YC(0) as functions of x (dimensionless) for
different mode numbers m,n.

When m � 2, we have

η2k−1 = η1 = 4
√

m
n
x(x2 + 1) − 8x2

mx4 + (6m − 8)x2 + m
. (32)

Similarly, for n � 2,

η2k′ = η2 = 4
√

n
m

x(x2 + 1) − 8x2

nx4 + (6n − 8)x2 + n
. (33)

Letting h1 = 1 + (m − 1) η1 and h2 = 1 + (n − 1) η2, we
obtain

YC (0) = 1 + m − 1

4
η2

1 + n − 1

4
η2

2

+
(

1 + h2
1

m
+ 1 + h2

2

n

)
2x2

(x2 − 1)2

− 2(h1 + h2)√
mn

x(x2 + 1)

(x2 − 1)2
. (34)

When m = 1 (n = 1), there is no η2k−1 (η2k′), i.e., no η1

(η2), and we can also use the above equation to calculate the
correlation YC(0).

Figure 4 shows numerical results for detecting multimode
cluster entanglement. For different mode numbers m and n, we
present the output zero-frequency spectra YC(0) as functions
of x. First, we examine the case of m = 1 in Fig. 4(a). If n = 1,
there is a two-mode state. We should notice that at x = 1, the
correlation takes the minimum value of zero; that is, this two-
mode state exhibits perfect entanglement (Einstein-Podolsky-
Rosen entanglement). For n � 2, the spectra bifurcate close
to x = 1. However, all of them are smaller than 1 over a wide
region of x �= 1, which indicates cluster entanglement occurs.
With increasing n, YC(0) also show an increasing trend.

Next, we plot YC(0) for m = 2, 4, and 8 to show the
scalability of the present scheme. In these cases, the correlation
spectra are below unity for x > 0. This indicates that the

criteria for the (m + n)-mode cluster entangled state are well
satisfied. Fixing the value of m and increasing the number of
n, YC(0) increases successively. When m = n, the system is
symmetric, and each output zero-frequency spectrum YC(0)
takes its minimum at x = 1. The higher the mode number
(m + n) is, the higher the correlation is. But even for the largest
mode number (m = 8 and n = 14), cluster entanglement can
exist.

V. GHZ ENTANGLEMENT

Now we examine whether there is CV GHZ entanglement.
We consider three types of correlations: each odd mode with
each even mode (Y1), each odd mode with another odd mode
(Y2), and each even mode with another even mode (Y3). The
following inequalities are sufficient to demonstrate CV GHZ
entanglement [43]:

Y1 = V G
2i−1,2j = 〈(δx2i−1 − δx2j )2〉 +

˝⎛
⎝δp2i−1 + δp2j

+
m∑

k=1;k �=i

f2k−1δp2k−1 +
n∑

k′=1;k′ �=j

f2k′δp2k′

⎞
⎠

2˛

< 1, (35)

Y2 = V G
2i1−1,2i2−1 = 〈(

δx2i1−1 − δx2i2−1
)2〉 +

˝⎛
⎝δp2i1−1

+ δp2i2−1 +
m∑

k=1;k �=i1,i2

�2k−1δp2k−1 +
n∑

k′=1

�2k′δp2k′

⎞
⎠

2˛

< 1, (36)

Y3 = V G
2j1,2j2

= 〈(
δx2j1 − δx2j2

)2〉 +
˝⎛
⎝δp2j1 + δp2j2

+
m∑

k=1

χ2k−1δp2k−1 +
n∑

k′=1;k′ �=j1,j2

χ2k′δp2k′

⎞
⎠

2˛

< 1. (37)

The superscript G designates the GHZ state, i,i1,i2,k =
1,2, . . . ,m (i1 �= i2), and j,j1,j2,k

′ = 1,2, . . . ,n (j1 �= j2).
f2k′(2k−1), �2k′(2k−1), and χ2k′(2k−1) are arbitrary real parameters
that are used to optimize the above inequalities, respectively.
We consider the same case as in the preceding section
[Eq. (30)]. When m � 2 and n � 2, calculating the minimum
values of the expressions in Eq. (35), we obtain the following
optimization parameters:

f1 = f2k−1 = u1/u, f2 = f2k′ = u2/u, (38)

with

u = mn(x2 − 1)2 + 8(m + n − 2)x2,

u1 = 16(n − 1)x2 − 8nx2 + 4
√

mn(x3 + x), (39)

u2 = 16(m − 1)x2 − 8mx2 + 4
√

mn(x3 + x).
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In the same way, for Eq. (36), we have

�1 = �2k−1 = b1/b, �2 = �2k′ = b2/b, (40)

with

b = x2/m + (x2 − 1)2/16,
(41)

b1 = x2/m, b2 = x(x2 + 1)/
√

4mn,

and for Eq. (37), we have

χ1 = χ2k−1 = d1/d, χ2 = χ2k′ = d2/d, (42)

with

d = x2/n + (x2 − 1)2/16,
(43)

d1 = x(x2 + 1)/
√

4mn, d2 = x2/n.

Letting

ϑ1 = 1 + (m − 1)f1, ϑ2 = 1 + (n − 1) f2,

�1 = 2 + (m − 2)�1, �2 = n�2, (44)

j1 = mχ1, j2 = 2 + (n − 2)χ2,

we obtain

Y1 (0) = 1 + m − 1

4
f 2

1 + n − 1

4
f 2

2

+
(

1 + ϑ2
1

m
+ 1 + ϑ2

2

n

)
2x2

(x2 − 1)2

− 2 (1 + ϑ1ϑ2)√
mn

x(x2 + 1)

(x2 − 1)2
, (45)

Y2(0) = 1 + m − 2

4
�2

1 + n

4
�2

2 +
(

�2
1

m
+ �2

2

n

)
2x2

(x2 − 1)2

− 2�1�2√
mn

x(x2 + 1)

(x2 − 1)2
, (46)

Y3(0) = 1 + m

4
χ2

1 + n − 2

4
χ2

2 +
(

j 2
1

m
+ j 2

2

n

)
2x2

(x2 − 1)2

− 2j1j2√
mn

x(x2 + 1)

(x2 − 1)2
. (47)

When m = 1 (n = 1), there is no f2k−1 (f2k′), i.e., no f1 (f2),
and we can also use Eq. (45) to calculate the correlation Y1(0).
When m = 2 (n = 2), there is no �2k−1 (χ2k′), i.e., no �1

(χ2), and we can also use Eq. (46) [Eq. (47)] to calculate
the correlation Y2(0) [Y3(0)]. Next, we show numerical results
of Y1,2,3(0) for detecting CV GHZ entanglement.

In Fig. 5, we present the output zero-frequency spectra Y1(0)
as functions of x for different mode numbers m and n. It is
easy to see that each curve of m = n has one deep valley and
is less than 1 for x > 0. When m < n, the spectra bifurcate
close to x = 1, but all of them are smaller than 1 over a wide
region of x �= 1.

Recall that up to local Fourier transforms, the cluster state
of m = 1 is equivalent to a GHZ-type state [23,44]. Also we
can see that Figs. 4(a) and 5(a) are exactly the same, i.e.,
for m = 1, YC(0) = Y1(0). When m = 1 and n � 2, there are
GHZ-type clusters [23,44]: linear three-mode, cross-shaped,

FIG. 5. (Color online) The (dimensionless) output zero-
frequency spectra Y1(0) as functions of x (dimensionless) for
different mode numbers m,n.

and star-shaped clusters, as shown in Figs. 3(i)–3(iii), respec-
tively. When m � 2, cluster entanglement is different from
GHZ entanglement, as demonstrated in Figs. 4(b)–4(d) and
Figs. 5(b)–5(d).

Figure 6 depicts the correlations Y2(0) and Y3(0). First,
we examine the case of m = n and find Y2(0) = Y3(0), as
indicated in Fig. 6(a). With the increasing of m and n,
the curves arise. As for m < n, we have Y2(0) < Y3(0).
Some examples are shown in Figs. 6(b)–6(d). We can see
that all the curves are below 1 except x = 0. Thus all
the inequalities in Eqs. (35)–(37) can be simultaneously
satisfied, and hence the full inseparability of the created GHZ
entangled states is verified [43]. Possible GHZ states are

FIG. 6. (Color online) The (dimensionless) output zero-
frequency spectra Y2,3(0) as functions of x (dimensionless) for
different mode numbers m,n.
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(i)
(ii)

(iii)

(iv) (v) (vi)

FIG. 7. (Color online) Possible GHZ states for different numbers of red sidebands a2i−1 and blue sidebands a2j , i = 1 ∼ m and j = 1 ∼ n.
For m = 1, (i) n = 2, (ii) n = 4, and (iii) n = 8. For m = 2, (iv) n = 2, (v) n = 3, (vi) n = 4. Each vertex takes the role of one mode, and
edges represent the interactions between the connected vertices.

exemplified in Fig. 7. Note that the star graphs for different
central vertices as well as the complete graph are local
Clifford (LC) equivalent representations of the GHZ state [17].
Thus Figs. 3(i)–3(iii) are LC equivalent to Figs. 7(i)–7(iii),
respectively [45].

These results are due to the multiple four-photon processes
in the large detuning limit (Fig. 1): In every transition channel,
two photons are absorbed from the corresponding driving field,
and then two sideband photons are emitted into the cavity
fields. The sideband photons are simultaneously generated
and highly correlated. The driving fields not only induce
the above process but also create the coherence between
the excited states. Due to the coherence, the atom-driving-
field interactions are reduced to the |0〉 − |1̃〉 transition. The
atomic superposition states |j̃ 〉 are empty, i.e., 〈σj̃ j̃ 〉 = 0,
j = 2,3, . . . ,n. The cavity fields as collective fields A1 and A2

interact with the dressed transition of the |0〉 − |1̃〉 transition. In
the mean time, the collective modes A2i−1 and A2j (i,j � 2)
remain at the vacuum states. This establishes the quantum
beats between the cavity fields [31–34]. Taking the inverse
of the transformations in Eq. (6), we obtain the beat signals
as 〈a†

2k−1a2l−1〉 = Ũm
1kŨ

m
1l 〈A†

1A1〉 (k,l = 1,2, . . . ,m, k �= l)

and 〈a†
2ka2l〉 = Ūn

1kŪ
n
1l〈A†

2A2〉 (k,l = 1,2, . . . ,n, k �= l). In the
presence of the quantum beats, all the higher sidebands behave
collectively, and so do the lower sidebands. It is through
collective modes A1 and A2 that all the cavity modes interact
with the dressed atoms. By such a mechanism, the two-photon
correlations are established. In a word, the quantum beats

and the wave-mixing interactions combine to induce the
multipartite inseparability.

Alkali atomic systems fit in this scheme. We use an
ensemble of cold atoms to avoid the Doppler effect and
resolve the fine levels. We give two examples for the
experimental realization of the present scheme. The first
example is for the m = n = 3 case. We can use the Zeeman
sublevels (mj = 0,±1) of the excited state 1P1. The transition
1P1 →1S0 is split into three by using a magnetic field.
The corresponding resonance frequencies are far from each
other when the magnetic field is relatively strong. The other
example is for the m = n = 4 scheme. We can use the D1

(794.8 nm) and D2 (780.0 nm) transitions of the rubidium
atom. The corresponding states are |0〉 = |5S1/2,F = 2〉, |1〉 =
|5P1/2,F

′ = 1〉, |2〉 = |5P1/2,F
′ = 2〉, |3〉 = |5P3/2,F

′′ = 2〉,
and |4〉 = |5P3/2,F

′′ = 3〉, respectively. The adjacent excited
state |5P3/2,F

′′ = 1〉 is below |3〉 by 157 MHz. So the
nonresonant hyperfine interactions of the applied fields with
adjacent transitions can be avoided. Since |5S1/2,F = 1〉 is
below |5S1/2,F = 2〉 by 6.8 GHz, we can use the transition
|5S1/2,F = 1〉 − |5P3/2,F = 0〉 as a repumping transition.

VI. CONCLUSION

In this paper, we have presented an approach to generating
unitarily multimode squeeze operators and CV multipartite
cluster and GHZ entangled states. Through a suitable laser
system, we are able to engineer a squeeze field operator
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decoupled from the atomic degrees of freedom, yielding a
large squeeze parameter that is proportional to the number of
atoms. The physical mechanism is attributed to the multiple
four-photon processes and the dispersive atom-cavity-field
interaction in large detuning systems.
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