
PHYSICAL REVIEW A 89, 043822 (2014)

One-way propagation of light in Born-Infeld-like metamaterials
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We propose and investigate a family of nonlinear metamaterials in which light rays propagate just in one
direction—one-way propagation. Furthermore, we argue how such nonlinear media could provide an analog
model for investigating the Born-Infeld Lagrangian in the realm of fields larger than its scale field.
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I. INTRODUCTION

In order to circumvent the point-charge singularity ap-
pearing in the Maxwell theory, alternative Lagrangians to
the electromagnetism have been proposed or emerged (as
effective theories) by other more fundamental theories. The
common property of these Lagrangians is that they are built
up just in terms of the two local Lorentz invariants of the
electromagnetism [1,2] in a nonlinear way. We cite, for
example, the Born-Infeld Lagrangian [3]. Under the theoretical
point of view, such a Lagrangian is interesting in the sense it
renders a finite self-energy to the electron [3], it leads to an
exact solution in general relativity [4,5], and a similar form to
it appears as an effective Lagrangian to the low-energy limit in
string theory [6,7]. Another important example is the one loop
effective Euler-Heisenberg Lagrangian [8,9]. This Lagrangian
has been applied, for instance, in the astrophysical scenario
by attempting to enhance the description of pulsars [10], black
holes [11], gravitational lensing [12], etc. For a review on these
effective Lagrangians, see Ref. [13] and references therein.

For any Lagrangian, the effective-medium interpretation
can be applied [3,13]. The converse is not necessarily true,
as the dielectric tensors must satisfy certain differentiability
constraints in order to assure the existence of a Lagrangian. It
would be true, for instance, for a medium whose permittivity
and permeability are just dependent upon the electric and
magnetic fields, respectively. Hence the aforesaid map could
be useful for testing analogously nonlinear theories proposed
in the literature (e.g., Refs. [14–16]) by means of engineering
adequate metamaterials [17], as in general they are unlikely to
be found in nature. The rudiments of this new area of research
came from Veselago [18], with his studies on media endowed
with negative dielectric coefficients. Metamaterials display
very unusual effects [19–23], which can lead to potential
applications, as well as to analogous tests of miscellaneous
areas of physics [24]. Concerning nonlinear metamaterials,
advances are also on their way [25]. Trirefringence [26], for
instance, would be an effect such media may display. For
further effects, see Ref. [25] and references therein.
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By one-way propagation, we signify a complete asymmetry
of light propagation such that if light propagates forwards
(in an arbitrary direction) it cannot propagate backwards. It
requires breaking time-reversal and parity symmetries of the
system [27,28]. It is possible to tailor some metamaterials
to present asymmetry in light propagation [29]. Conditions
have already been reached to obtain one-way propagation in
terms of both phase and group velocities in some photonic
crystals [28]. In this paper we address the issue of one-way
propagation of light in another context, namely, the nonlinear
media described by dielectric coefficients, by proposing a
model where such an effect is expected to take place. For
doing so, we rely on the method of field disturbances applied
to nonlinear media in the limit of geometric optics [1,30,31].
For a limiting case, we show that the proposed medium can
be mapped onto the Born-Infeld Lagrangian such that the
one-way effect can be used to assess such theory. Thus this
investigation would also be useful as an analog model, once
the Born-Infeld scale field (as large as 1015 esu � 1019 V/m) is
unlikely to be reached on terrestrial laboratories at the present
time.

In the next section we elaborate on the general problem of
propagation of disturbances in the limit of geometric optics
by making use of the formalism developed by Hadamard and
Papapetrou [32]. Section III is devoted to a thorough study of a
family of nonlinear media exhibiting one-way propagation in
terms of rays, whose speed and direction are governed by the
group velocity [1], in the form of birefringence. We close this
paper with Sec. IV, where some points will be elaborated. We
work in Cartesian coordinates. Units are set such that c = 1.

II. GENERAL DESCRIPTION OF DISTURBANCES
IN MATERIAL MEDIA

Maxwell’s equations in material media with sources can be
summarized as

3∑
i=1

∂iDi = ρ,

3∑
j,k=1

εijk∂jEk = −∂tBi, (1)

3∑
i=1

∂iBi = 0,

3∑
k,l=1

εikl∂kHl = ∂tDi + ji, (2)
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where Di and Hi are the ith components of the induced fields,
whilst Ej and Bj are the j th components of the strength
ones, and ρ and ji are the free charge density and the ith
free current component density in the medium, respectively.
Besides, the totally antisymmetric quantity εijk was defined [1]
such that ε123 = +1, ∂i

.= ∂/∂xi , and ∂t
.= ∂/∂t . For making

the equations of electrodynamics in material media complete,
the constitutive relations

Di =
3∑

j=1

εij ( �E, �B)Ej , Hi =
3∑

j=1

μ−1
ij ( �E, �B)Bj , (3)

must be assumed; we call εij the permittivity tensor of the
material medium and μ−1

ij its inverse permeability tensor. For
the vacuum, for instance, the aforementioned dielectric tensors
are given by εij = ε0δij and μ−1

ij = (1/μ0)δij , δij such that it
is 1 iff i = j ; otherwise, it is zero. These tensors encompass
all the electromagnetic properties of a material medium and in
general are dependent upon the strength fields.

For investigating the propagation of electromagnetic waves
in material media in the limit of geometric optics, the method
of field disturbances [32] can be used. This can be succinctly
enunciated as follows. Assume an at least C2 hypersurface
�(t,�x) = 0, named �, that splits the space-time into two
disjointed regions. These regions are formed by the space-time
points P − such that � < 0 and P + where � > 0. The
discontinuity of an arbitrary function dependent upon the
space-time coordinates at an arbitrary point P belonging to
� is defined as

[f (P )]�
.= lim

ε→0+
[f (P + ε) − f (P − ε)]. (4)

Assuming that the electromagnetic fields are continuous on
�, and that the latter is the eikonal of the disturbances under
interest, following Hadamard and Papapetrou [32], the first
derivatives of the resultant fields are not continuous on � and
behave as [26]

[∂tEi]� = ωei, [∂tBi]� = ωβi, (5)

[∂iEj ]
�

= −qiej , [∂iBj ]
�

= −qiβj , (6)

where ej and βj are related to the derivatives of the electric and
magnetic fields on � and correspond to the j th components
of the electric and magnetic polarization vectors of the
propagating waves [26], �e and �β, respectively. The angular
frequency and the ith component of the wave vector are
defined by ω and qi , respectively. Besides, in the present
case of � as the eikonal of the disturbances, its orthogonal
four-vector is the wave-four-vector kμ = (ω, − �q). Physically,
one can understand Eqs. (5) and (6) as the possibility of
having plane waves in a small region around any point
on the eikonal in the limit of geometric optics and of a
linearization of the field equations in this limit. Furthermore,
since the eikonal was assumed to be an equipotential and
well-defined hypersurface, the field discontinuities must be
just in a direction perpendicular to it, as evidenced by the
frequency and components of the wave vector in Eqs. (5)
and (6).

By substituting Eqs. (5) and (6) in Eqs. (1) and (2) and
assuming that free charge densities and currents have a zero
discontinuity across �, after some simplifications, one has the

following equations for the polarization vectors �β and �e:

�β = 1

ω
(�q × �e) (7)

and
3∑

j=1

Zij ej = 0, (8)

where

Zij = 1

ω

3∑
k,l,m=1

(
∂εik

∂Bl

εlmjEk + ∂μ−1
lk

∂Ej

εimlBk

)
qm

+ 1

ω2

3∑
k,l,m,p=1

εilmεpkjHmpqlqk + Cij , (9)

with

Cij
.= εij +

3∑
k=1

∂εik

∂Ej

Ek, (10)

Hij
.= μ−1

ij +
3∑

k=1

∂μ−1
ik

∂Bj

Bk. (11)

In addition, we have defined X2 = ∑3
i=1 XiXi as the square

modulus of the field �X with Cartesian components Xi , and
the j th component of the unit wave vector q̂ is defined as
q̂j

.= qj/|�q|. For a tensorial description of the propagation of
disturbances in material media, see, for instance, Refs. [33,34].

In order to have nontrivial solutions to Eq. (9) concerning
the electric polarization, one has to impose det(Zij ) = 0, that
is [35]

(Z1)3 − 3Z1Z2 + 2Z3 = 0, (12)

where we defined

Z1
.=

3∑
i=1

Zii, (13)

Z2
.=

3∑
i,j=1

ZijZji, (14)

Z3
.=

3∑
i,j,l=1

ZijZjlZli . (15)

Equation (12) is called Fresnel’s equation and it gives the
dispersion relation of the medium under interest.

III. MODEL FOR MEDIA PRESENTING ONE-WAY
PROPAGATION OF LIGHT

In this work, we shall be interested in the propagation
of weak electromagnetic disturbances in symmetric media
described by

εij = ε√
1 + B2−E2

b2 − ( �E· �B)2

b4

[
δij + BiBj

b2

]
(16)
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and

μ−1
ij = 1

μ

1√
1 + B2−E2

b2 − ( �E· �B)2

b4

[
δij − EiEj

b2

]
, (17)

with b a parameter characterizing each medium, and ε and μ

its (isotropic) permittivity and permeability in the absence of
fields. The motivations for the investigation of media described
by Eqs. (16) and (17) will be given later. As it is reasonable,
we shall consider hereafter that the fields of the propagating
waves are much smaller than their controllable counterparts,
�Ec and �Bc, obtained either by means of prescribed sources in
the material media or by convenient pumping fields. Hence, in
Eqs. (8)–(11), one should rightfully assume �E ≈ �Ec and �B ≈
�Bc. In order to simplify our reasoning, evidencing the physical
nature of the effect under interest, we shall assume that the
controllable fields are constant and are written as �Ec

.= Ex̂

and �Bc
.= Bŷ. Besides, we shall assume that the wave vector

can just lie in the xz plane defined by the above coordinate
system. Hence the unit wave vector can be decomposed as
q̂x = sin θ and q̂z = cos θ , where θ is the angle �q makes
with the z axis. For these configurations, it can be easily
seen from Eqs. (16) and (17) that the dielectric tensors are
diagonal. The same happens with the quantities Cij and Hij ,
as defined by Eqs. (10) and (11), respectively. Subtleties are
present just concerning the first term on the right-hand side of
Eq. (9). Specialized to the aforementioned conditions, trivial
but tedious calculations for Eqs. (13)–(15), taking into account
the dielectric coefficients given by Eqs. (16) and (17), allows
one to cast the Fresnel equation, Eq. (12), as

(Bω − Eq cos θ )(Bω − Eαq cos θ ) − b2(αq2 − ω2) = 0,

(18)
where α

.= 1/(με). The solution to the above equation can be
presented as

v± = EB(1 + α) cos θ

2(b2 + B2)
± b

√
α(sin2 θ + J cos2 θ )

b2 + B2
, (19)

where we have defined the phase velocity as v2 .= ω2/q2 and

J .= 1 − E2

b2 + B2
+ E2B2(1 − α)2

4b2α(b2 + B2)
. (20)

For the case b → ∞, from Eq. (19), the phase velocities tend
to ±√

α, as we already expected from the definition of α.
One also sees from the same equation that the family of
media under interest is such that no ordinary waves (isotropic
waves [1,30]) propagate. The above equations show us that
the birefringence effect (defined here as the presence of two
waves in a same wave vector direction, which implies that
upon refraction two rays will propagate in the medium under
interest; see Eqs. (23)–(25) and Refs. [1,26,30]) will take place
only in the region of the xz plane defined by

− arccos

(
b

E

)
< θ < arccos

(
b

E

)
. (21)

Hence this region will exist iff E > b. From now on, we shall
consider this to be the case. It implies that the underlying
medium (picking out a particular b, ε, and μ) must present
some negative dielectric tensor components, since in principle

0.2 0.2 0.4 0.6 0.8vz

0.6

0.4

0.2

0.2

0.4

0.6

vx

FIG. 1. (Color online) Normal surfaces [1,30] for the media with
dielectric coefficients given by Eqs. (16) and (17) for E = 1.5b,
B = 1.2b, and α = 0.5. Such surfaces are symmetric about the z axis,
as clearly seen by Eq. (19). The aforementioned media do not generate
ordinary solutions to the Fresnel equation but two extraordinary ones,
denoted by “+” and “−” and depicted by the thick and dot-dashed
curves, respectively. If E > b, then a region will always exist where
the birefringence effect takes place, as clearly shown by Eq. (21) and,
for the particular example, encompassed by the two thick straight
lines. This region increases when one increases the value of the
controllable electric field, as expressed again by Eq. (21). In the
complementary region, one refraction and no wave propagation are
also present, as depicted between the thick and dashed straight lines
and between the two dashed straight lines, respectively.

μ and ε could also be negative, for allowing the birefringence
effect. Notice that no condition is imposed on the controllable
magnetic field for having the aforesaid optical effect. This
will be in sharp contrast with the group-velocity analysis, as
we shall show later. Once the limit of geometric optics is just
meaningful for media where losses are negligible [31], we will
assume that

b2 + B2 − E2 > 0. (22)

A case where the controllable fields lead to the phenomenon of
birefringence in depicted in Fig. 1. For the selected set of the
fields, the birefringent region is encompassed by the two thick
straight lines. For the angles limited by the two dashed straight
lines, no waves propagate. For the remaining angles, just an
extraordinary wave is present. Since the deduction of Eq. (18)
has been done in the limit of geometric optics, it follows that
the physically relevant velocities to be analyzed are the group
velocities, that define the speed of the rays [1]. This is the
case once packets could be formed due to the linearization
process brought by this limit when weak disturbances are
present [39]. The group velocities can be easily obtained
from an implicit differentiation of the dispersion relation
[Eq. (18)] [36] by considering that ω = ω(�q) and �q = qq̂.

043822-3



VITORIO A. DE LORENCI AND JONAS P. PEREIRA PHYSICAL REVIEW A 89, 043822 (2014)

From fields and waves satisfying our previous conditions, it is
easy to show that the extraordinary group velocities associated
with the extraordinary phase velocities, here denoted by �u, are
given by

�u .= ∂ω

∂ �q = uxx̂ + uzẑ, (23)

where

ux = 2b2α sin θ

2(B2 + b2)v − EB(1 + α) cos θ
(24)

and

uz = BE(1 + α)v − 2α(E2 − b2) cos θ

2(B2 + b2)v − EB(1 + α) cos θ
, (25)

where v is a shortcut to v±, given by Eq. (19). Hence the
extraordinary group velocities remain in the same plane as the
phase velocities. It is possible to obtain analytically the main
features concerning the group velocities. If one defines ϕ as
the angle between the group velocity and the z axis, then from
Eqs. (24) and (25),

tan ϕ = ux

uz

= 2b2α sin θ

BE(1 + α)v − 2α(E2 − b2) cos θ
. (26)

One sees that when θ −→ −θ , ϕ −→ −ϕ. Then, it follows
from Eqs. (24) and (25) that |�u| is symmetric about the z axis,
or |�u(ϕ)| = |�u(−ϕ)|. Hence it suffices just analyzing the region
0 � ϕ � π .

If one substitutes Eq. (19) into Eq. (26), one obtains

(V tan2 ϕ − 1) tan2 θ + 2J tan ϕ tan θ

+J (V − J ) tan2 ϕ = 0, (27)

where

V .= E2B2(1 + α)2

4αb2(b2 + B2)
. (28)

The solution to Eq. (27) is

tan θ = J tan ϕ

1 − V tan2 ϕ

[
1 ±

√
V
J

(
1 − E2 − b2

b2
tan2 ϕ

)]
,

(29)

for 0 � ϕ < π/2. The above equation gives the relationship
between the directions of the phase velocity and its associated
group velocity. The “±” signs mean that in general for a
group-velocity direction there are two associated wave-vector
directions. The converse is also true, as we commented before.
For the case where Eq. (22) is valid, we already know that
the phase velocity cannot be imaginary by any angle θ and it
implies from Eq. (29) that

− arctan

(
b√

E2 − b2

)
< ϕ < arctan

(
b√

E2 − b2

)
, (30)

once J � 0 by definition. Therefore, the group velocities are
always restricted to a region of the xz plane. Figure 2 depicts
the above discussion for the same set of the parameters used in
Fig. 1. Birefringence is present for any chosen angle inside the
two thick straight lines. In other words, for any angle inside this
region, two extraordinary rays (“+” and “−”) propagate in a
same direction. Outside this region, rays do not propagate.

0.2 0.4 0.6 uz

0.4

0.2

0.2

0.4

ux

FIG. 2. (Color online) Ray surfaces [1,30] for the same medium
and parameters as in Fig. 1. As the phase velocities, the group
velocities solutions are also symmetric about the z axis. Whenever
E > b and Eq. (22) are valid, just a birefringent region exists, as given
by Eq. (30). For the previously chosen parameters, such a birefringent
region is encompassed by the two thick straight lines. Inside this
region, for any direction chosen, just two extraordinary rays are
present (related to two different extraordinary waves), denoted by “+”
and “−” and depicted by the thick and dashed curves, respectively; for
the set of parameters chosen they are depicted by the thick and dashed
curves, respectively. Outside the birefringent region, rays cannot be
found. The size of this region decreases with the increase of the
electric field.

IV. DISCUSSION

Phase and group velocities generally behave differently
whenever the former is dependent upon the wave vector. In this
case, it is easy to show that the group velocity can be cast as

�u = vφq̂ + q̂ ×
(

∂vφ

∂q̂
× q̂

)
, (31)

where vφ stands for any of the extraordinary phase velocity so-
lutions to the Fresnel equation. Hence, whenever vφ = vφ(q̂),
an orthogonal term to the phase velocity appears in the group
velocity. This is precisely what leads in general to a difference
in the aforesaid velocities. Naturally, this is the case in our anal-
ysis, as explicitly given by Eqs. (26) and (19) and depicted in
Figs. 1 and 2 for a particular choice of the strength fields and α.

Whenever one considers E � b, Eq. (22) is trivially
satisfied and one just has one refraction in terms of both
waves and rays. The associated extraordinary waves and rays
tend to

√
α when b goes to infinity, as expected. Nonetheless,

setting E > b and imposing real dielectric coefficients, a much
richer scenario arises. In this configuration, there will always
be a region where the one-way propagation phenomenon takes
place in terms of rays, accompanied by birefringence.

As we stressed previously, under certain conditions, there
exists a correspondence between the Maxwell theory in a
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nonlinear material medium and a nonlinear theory of elec-
tromagnetism. This theory, characterized by a given nonlinear
Lagrangian L, emerges by the identifications [3]

Di = ∂L

∂Ei

=
3∑

j=1

εijEj , Hi = − ∂L

∂Bi

=
3∑

j=1

μ−1
ij Bj . (32)

In our case, the dielectric coefficients given by Eqs. (16)
and (17) do not in general admit a Lagrangian. This is so
once the general condition for guaranteeing the existence of L

in Eq. (32), viz.,

∂Di

∂Bj

= −∂Hj

∂Ei

, (33)

is not satisfied solely due to the fact με �= 1 in general. Nev-
ertheless, for the particular case α = 1

.= 1/(μ0ε0) (vacuum),
we do have

L = b2

μ0

(
1 −

√
1 + F

2 b2
− G2

16 b4

)
, (34)

where F = 2(| �B|2 − | �E|2) and G2 = 16( �E · �B)2 are the two
local invariants of the electromagnetism, and now the afore-
mentioned medium parameter b plays the role of the fun-
damental scale field to the theory. The above Lagrangian is
analogous to the Born-Infeld Lagrangian [3] and naturally
arises from our analysis as a limiting case. It is worth
mentioning that the Born-Infeld theory has recently been
applied to the hydrogen atom [37,38]. It was concluded that
both in the nonrelativistic and relativistic theories of quantum
mechanics, the fundamental scale field to the Born-Infeld
theory must be much larger than 1015 esu � 1019 V/m, which
was determined by Born and Infeld themselves by assuming
the unitarian viewpoint [3]. Notwithstanding, a definite value
for such a scale field was not found. The aforementioned
viewpoint does not influence the derivation of the Born-Infeld
theory and it has been assumed under more philosophical
grounds. Since quantum mechanics is basically founded on
the dualistic viewpoint [3] and due to the success of the
former theory relying on the Maxwell Lagrangian for the
electromagnetic fields, the above-mentioned result is not
surprising. Under the experimental point of view, such a fact
makes the tests of the Born-Infeld Lagrangian even subtler,
since fields as large as the ones mentioned above are at the
present time unrealistic in terrestrial laboratories.

Notice that the denominators of Eqs. (24) and (25) are
proportional to the square-root term in Eq. (19). It means that
whenever J is negative, the group velocities associated with
Eqs. (16) and (17) become superluminal, whilst this is not the
case for the phase velocities. If the dielectric tensors are real
(losses are negligible and geometric optics is meaningful [31]),
it is then guaranteed that J is positive [see Eqs. (20) and (22)]
and hence superluminal group solutions do not rise in our
model. Besides, our reasoning also implies that whenever
Eq. (22) is set, the controllable fields are not independent
in the sense that the electric field must be dependent upon
typically magnetic parameters, such as currents, and magnetic
fields must depend upon charge densities. Indeed this is the
case, once the associated field equations are nonlinear.

It can be shown [39,40] that the dielectric coefficients given
by Eq. (16) and (17) for α = 1 have a notable property: their
associated Fresnel equation is independent of G. Therefore,
the aforementioned media that have dielectric tensors with
α → 1, but without the G dependence, are also expected to
display birefringence and one-way propagation effects. This
could possibly be of experimental importance. Other powers
of G in Eqs. (16) and (17) for α close to unity would lead to
similar optical effects as the ones in the media sketched out
before just in the vicinities of G = 0.

Kruglov [41] has analyzed some wave aspects of a modified
version of the Born-Infeld Lagrangian, where there are two
scale fields. When the scale fields are the same in his
description, birefringence disappears due to the simple fact
it was assumed that the waves propagate just in an external
magnetic field. This result can be immediately seen from our
description when E = 0 [see Eq. (19)].

If the media characterized by Eqs. (16) and (17) could
be tailored and fields inside them could be controlled by
convenient charge densities, then birefringence and one-way
propagation of light are supposed to take place. Besides,
as a quick glance in Eqs. (16), (17), (22), and (30) reveal,
the underlying media must present some negative dielectric
components for allowing the above-mentioned optical effects.
This suggests that birefringence and one-way propagation of
light could be found just in the realm of metamaterials and
probably have not been observed due to the very fine-tuning
of fields and tailored media they require. As a by-product of
the aforementioned investigation, using continuity arguments
for α, one could indirectly assess the Born-Infeld Lagrangian
in the realm of fields larger than its scale parameter. Direct
investigations of such a Lagrangian would be possible just in
the limiting case α tends to one, the case of a medium whose
dielectric properties in the absence of controllable fields are
close to the vacuum.

Anisotropic media could emerge from the so-called layered
media [42]. By a convenient choice of the base layers,
nonlinear media that exhibit negative dielectric coefficients
can always be tailored. We hope this could be the case for the
media proposed in this work, or they could rise by other means,
as the technology of manipulating metamaterials is developing
quickly [24]. Issues connected with losses in metamaterials
are also of importance, since in the limit of geometric optics,
wave and ray propagation are just meaningful in lossless
media [1]. It is known that significant progresses are being
made in this direction [43]. Applications concerning the optical
effects analyzed in this work could be envisaged, for instance,
as optical diodes, due to the controlled unidirectional nature
these metamaterials are expected to display either in terms of
waves or rays. Besides, one could also in principle investigate
analogously phenomena in black hole physics, as one-way
propagation is also supposed to take place in such a scenario.
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