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Generation of a coherent second-harmonic beam from incoherent conical beams
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Second-harmonic generation from incoherent conical beams is investigated. A theoretical description of
an incoherent conical beam is provided. It is demonstrated that in the case of noncollinear phase matching,
the spectrum of the second-harmonic beam narrows with the propagation in a nonlinear crystal. A simplified
experiment with two intersecting fundamental beams is described. Numerical simulations of the nonlinear
coupling equations are performed and good agreement with the theory is obtained.
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I. INTRODUCTION

In recent years the possibilities to generate a coherent wave
from an incoherent one by means of three-wave interaction
in a nonlinear crystal were investigated. Temporal [1–4],
spatial [5], and both [6–8] coherences are under discussion.
Experiments of optical parametric generation [1,3], oscilla-
tion [2], amplification [4,5], and second-harmonic generation
(SHG) [7,8] were proposed and performed.

Here we focus on the improvement of the spatial coherence
by the means of SHG. In Ref. [8] it was demonstrated that
the frequency spectrum of the second-harmonic (SH) wave
narrows with the propagation in a nonlinear crystal due to
the temporal walk off between the fundamental and SH
waves. One could try to make use of the spatial walk off
in the case of the spatial beams. However, there are two
transverse coordinates (x,y), while the walk off can improve
the coherence only in one direction. The solution of the
problem is the implementation of a conical beam, where
wave vectors lie on the cone surface and the spectrum is a
ring. The spatial walk off in all directions is provided by the
noncollinearity. In this article we demonstrate the possibility
to obtain a narrow-band SH beam from incoherent conical
beams.

Coherent conical beams (Bessel beams) were introduced
by Durnin [9]. Nonlinear optics of Bessel beams [10] is an
interesting research area. The experiment of optical parametric
generation by an incoherent conical pump revealed the
possibility to generate a coherent signal when the incoherence
of the pump is carried away by the idler beam [11]. The
theoretical model of the incoherent conical beam was not
provided yet. In this article, we describe the incoherent
conical beam as a superposition of intersecting incoherent
beams.

The rest of the paper is organized as follows. We start
(Sec. II) from the description of the simplified experiment
of noncollinear SHG. In Sec. III, we provide the theoretical
model of incoherent conical beams, and we describe SHG in
the case of an incoherent conical pump. The special case of two
intersecting beams is described too. In Sec. IV, the numerical
simulation of nonlinear coupling equations is performed.
Finally, conclusions are drawn in Sec. V.

*viktorija.pyragaite@ff.vu.lt

II. EXPERIMENTAL

First, we describe the experiment in which two intersecting
fundamental beams generate a SH beam. The first fundamental
beam is spatially incoherent and the second one is a coherent
beam.

The experimental setup is presented in Fig. 1. We used
two temporally coherent laser sources. Each source had the
same characteristics: 2.2 mJ pulse energy, 1 kHz frequency,
1064 nm wavelength, pulse duration approximately 75 ps.
Both sources radiate spatially coherent beams. In order to get
a spatially incoherent beam, in one of the laser beams we
put phase distortion film. The width of the coherent beam at
FWHM was 1.6 mm on the x axis and 1.2 mm on the y axis.
The angle between intersecting beams was 18◦ (approximately
12◦ in crystal). For SH generation we used 2 cm long KDP
Type-I phase matching crystal. The coherent and incoherent
beams were intersected in the yz plane, while the crystal
was positioned in such orientation that the walk off effect
occurred in the perpendicular plane (xz). To separate the
fundamental and second-harmonic output beams we used an
iris aperture. Also in order to register the intensity distribution
and angular spectra of SH beam with CCD we used neutral
filters to reduce radiation intensity. We registered generated
noncollinear SH intensity distribution in the crystal output
plane by using a 2f-2f imaging technique. The lens with
250 mm focal length was used. We put the lens 500 mm from
the crystal output plane and put a CCD camera 500 mm from
lens. To register SH angular spectra we used an f-f imaging
technique. In this case we used a lens with 500 mm focal
length.

The angular spectra of the input fundamental beams as well
as the output second-harmonic beam are depicted in Fig. 2.
Here θout

x,y denotes the angles outside the crystal. The beams
were intersected in the yz plane and the walk off takes place
in the xz plane. As we can see, the second-harmonic spectrum
can be fitted by the theoretical line, Eq. (46). In this case, the
spectral width decreases only in one direction. The direction
of the line depends on the ratio of the intersection angle of
the fundamental beams to the walk-off angle. The line can be
rotated by changing the intersection plane of the fundamental
beams, see bottom right of Fig. 2. The question may arise:
what will be the angular spectrum of the second-harmonic
beam when two conical beams interact, one consisting of the
incoherent beams placed on a ring and the second consisting
of the narrow-band coherent beams? In this case the direction
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FIG. 1. Experimental setup. PDF: phase distortion film; A:
aperture, L: lens; F: neutral filter.

of the line is undefined and as we will see from the below
theoretical consideration, the spectrum of the second harmonic
is a narrow-band central spot. In other words, the conical
configuration forces the decrease of the spectral width in all
directions.

III. THEORETICAL

Now we will describe the model of the incoherent conical
beam. It is generated from a large amount of intersecting
uncorrelated beams. Next, the second-harmonic generation
from two incoherent conical beams will be discussed.

A. Incoherent conical beam model

We assume N incoherent beams, the spectra of which
are placed on the ring. Then the complex amplitude of the
composed conical beam reads

A(x,y) =
N∑

n=1

Bn(x,y) exp[iβ0 cos(ϕn)x + iβ0 sin(ϕn)y],

(1)

FIG. 2. Experimental angular spectra of the first (top left) and
second (top right) fundamental beams as well as generated second-
harmonic beam (bottom left). White line: Eq. (46). Bottom right:
spectral lines for intersection planes rotated by the angle α with
respect to yz plane, Eq. (48).

where ϕn = 2π (n − 1)/N and Bn are the propagation an-
gle and complex amplitude of the nth beam, respectively.
β0 = k0θ0, where k0 and 2θ0 are the wave number of the
fundamental beam and cone angle, respectively. x, y are the
transverse Cartesian coordinates. Further we turn to cylindrical
coordinates r , ϕ: x = r cos ϕ, y = r sin ϕ. Then the complex
amplitude can be written as

A(r,ϕ) =
N∑

n=1

Bn(r,ϕ) exp[iβ0r cos(ϕn − ϕ)]. (2)

Let us define the spectral amplitude as

S(βx,βy) =
∫ ∞

−∞

∫ ∞

−∞
A(x,y) exp(−iβxx − iβyy)dxdy (3)

or in cylindrical coordinates:

S(β,θ ) =
∫ ∞

0

∫ 2π

0
A(r,ϕ) exp[−iβr cos(θ − ϕ)]rdrdϕ. (4)

Here βx = β cos θ , βy = β sin θ . By the use of Jacobi-Anger
expansion:

exp(iq cos θ ) =
∞∑

k=−∞
ikJk(q) exp(ikθ ), (5)

where Jk(q) is a Bessel function, we obtain

S(β,θ ) =
N∑

n=1

∞∑
k=−∞

∞∑
l=−∞

∫ 2π

0

∫ ∞

0
rdrdϕi−k+lBn(r,ϕ)

×Jk(βr)Jl(β0r) exp [−ik(θ − ϕ) + il(ϕn − ϕ)] .

(6)

Further we will calculate the average 〈S∗(β ′,θ ′)S(β,θ )〉. We
need to know the correlation functions 〈B∗

n′(x ′,y ′)Bn(x,y)〉.
We assume that the correlation radius of all intersecting beams
is the same and the correlation functions are Gaussian. The
beams are not correlated with each other. In this theoretical
treatment we assume that the beams are homogeneous. In
Cartesian coordinates, the correlation function can be written
as

〈B∗
n′(x ′,y ′)Bn(x,y)〉

= b2
0δnn′ exp

(
− (x − x ′)2

ρ2
− (y − y ′)2

ρ2

)
, (7)

where b0 is an amplitude and ρ is a correlation radius. δnn′ is
the Kronecker δ. In cylindrical coordinates one obtains

〈B∗
n′(r ′,ϕ′)Bn(r,ϕ)〉

= b2
0δnn′ exp

(
− 1

ρ2
[r2 + r ′2 − 2rr ′ cos(ϕ − ϕ′)]

)
. (8)

Further we make use of the relation [12]

exp [q cos(θ )] =
∞∑

p=−∞
Ip(q) exp(ipθ ), (9)
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where Ip(q) is a modified Bessel function. By the use of Eqs. (6), (8), and (9) we obtain

〈S∗(β ′,θ ′)S(β,θ )〉 = b2
0

N∑
n=1

∞∑
p=−∞

∞∑
k,k′=−∞

∞∑
l,l′=−∞

i−k+l+k′−l′ exp
[−ikθ + ik′θ ′ + i(l − l′)ϕn

] ∫ 2π

0

∫ ∞

0

∫ 2π

0

∫ ∞

0
dϕdrdϕ′dr ′rr ′

× exp
[−i(l − k)ϕ + i(l′ − k′)ϕ′ + ip(ϕ − ϕ′)

]
Jk(βr)Jl(β0r)Jk′(β ′r ′)Jl′(β0r

′)Ip(2rr ′/ρ2)

× exp(−r2/ρ2) exp(−r ′2/ρ2). (10)

Now we are able to integrate over azimuthal angles ϕ and ϕ′. We obtain

〈S∗(β ′,θ ′)S(β,θ )〉 = b2
0(2π )2

N∑
n=1

∞∑
p=−∞

∞∑
k,k′=−∞

exp[−ik(θ − ϕn) + ik′(θ ′ − ϕn)]

×
∫ ∞

0

∫ ∞

0
drdr ′rr ′Jk(βr)Jp+k(β0r)Jk′(β ′r ′)Jk′+p(β0r

′)Ip(2rr ′/ρ2) exp(−r2/ρ2) exp(−r ′2/ρ2). (11)

Further we make use of the summation formula [12]:

exp(ipψ)Jp(Rr) =
∞∑

k=−∞
Jk(βr)Jk+p(β0r) exp[ik(ϕn − θ )], (12)

where

R2 = β2 + β2
0 − 2ββ0 cos(ϕn − θ ) and exp(i2ψ) = β0 − β exp[−i(ϕn − θ )]

β0 − β exp[i(ϕn − θ )]
. (13)

So, the summations over k and k′ give

〈S∗(β ′,θ ′)S(β,θ )〉 = b2
0(2π )2

N∑
n=1

∞∑
p=−∞

exp[ip(ψ − ψ ′)]
∫ ∞

0

∫ ∞

0
drdr ′rr ′

× Jp(Rr)Jp(R′r ′)Ip(2rr ′/ρ2) exp(−r2/ρ2) exp(−r ′2/ρ2), (14)

where R′ and ψ ′ are obtained from Eqs. (13) by replacing β, θ with β ′, θ ′. We integrate over r ′ by use of the relation [12]:∫ ∞

0
v exp(−v2/ρ2)Ip(γ1v)Jp(γ2v)dv = ρ2

2
exp

(
γ 2

1 − γ 2
2

4
ρ2

)
Jp(γ1γ2ρ

2/2). (15)

So,

〈S∗(β ′,θ ′)S(β,θ )〉 = b2
0ρ

2(2π )2 1

2

N∑
n=1

∞∑
p=−∞

exp[ip(ψ − ψ ′)] exp

(
− R′2ρ2

4

) ∫ ∞

0
rJp(Rr)Jp(R′r)dr. (16)

By the use of the relation ∫ ∞

0
rJp(Rr)Jp(R′r)dr = δ(R − R′)

R
(17)

we can integrate over r:

〈S∗(β ′,θ ′)S(β,θ )〉 = b2
0ρ

2(2π )2 1

2

N∑
n=1

∞∑
p=−∞

exp[ip(ψ − ψ ′)] exp

(
−R2ρ2

4

)
δ(R − R′)

R
. (18)

Here δ(. . .) is a Dirac δ function. The sum over p also can be
calculated:

〈S∗(β ′,θ ′)S(β,θ )〉 = b2
0

2
ρ2(2π )3

N∑
n=1

exp

(
−R2ρ2

4

)

× δ(R − R′)
R

δ(ψ − ψ ′). (19)

Since the Jacobian∣∣∣∣∂R

∂β

∂ψ

∂θ
− ∂R

∂θ

∂ψ

∂β

∣∣∣∣ = β

R
, (20)

we can write

〈S∗(β ′,θ ′)S(β,θ )〉 = b2
0

2
ρ2(2π )3 ×

N∑
n=1

exp

(
−R2ρ2

4

)

× δ(β − β ′)
β

δ(θ − θ ′). (21)

Here summation over n is due to R, see Eq. (13). In the case
of a large amount of beams N , the sum over n can be replaced
by the integral:

∑N
n=1 → N

2π

∫ 2π

0 dϕn. By the use of Eqs. (13)
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and (9) we obtain the following spectral intensity:

G(β,θ ) = N

2π
b2

0
4

�β2
2π2 exp

(
− β2 + β2

0

�β2

)
I0

(
2ββ0

�β2

)
,

(22)

where ρ was replaced by 2/�β, �β is a spectral radius. Here
the spectral intensity G is defined as

〈S∗(β ′,θ ′)S(β,θ )〉 = (2π )2G(β,θ )
δ(β − β ′)

β
δ(θ − θ ′) (23)

or in Cartesian coordinates

〈S∗(β ′
x,β

′
y)S(βx,βy)〉 = (2π )2G(βx,βy)δ(βx − β ′

x)δ(βy − β ′
y).

(24)

Finally, Eq. (22) can be simplified by assuming that the cone
angle is much larger than the spectral width: β0 	 �β. Then
I0(ξ ) ≈ exp(ξ )/

√
2πξ and at ξ ≈ 2β2

0/�β2 (β ≈ β0):

G(β,θ ) = Nb2
0

2
√

π

�ββ0
exp

(
− (β − β0)2

�β2

)
. (25)

In the limit �β → 0 we have

G(β,θ ) = Nb2
0

2π

β0
δ(β − β0). (26)

So, we have obtained simple expressions (25) and (26)
for incoherent conical beams, which consist of uncorrelated
incoherent and coherent beams, respectively.

B. Nonlinear coupling equations

Let us discuss the equations of three-wave interaction,
which are given by:

∂A1

∂z
+ i

2k10

(
∂2A1

∂x2
+ ∂2A1

∂y2

)
= −σA∗

2A3 exp(i�kz),

∂A2

∂z
+ i

2k20

(
∂2A2

∂x2
+ ∂2A2

∂y2

)
= −σA∗

1A3 exp(i�kz),

∂A3

∂z
+ i

2k30

(
∂2A3

∂x2
+ ∂2A3

∂y2

)
+ γ

∂A3

∂x

= 2σA1A2 exp(−i�kz). (27)

A Type-I interaction is assumed. Aj are complex amplitudes of
fundamental (j = 1,2) and second-harmonic (j = 3) beams.
kj0, γ , �k, σ are the wave number, a walk-off angle, the phase
mismatch, and the nonlinear coupling coefficient, respectively.
As in the experiment the walk off takes place in the xz plane.
In the case of second-harmonic generation we have k10 =
k20 = k0, k30 = 2k0. Further we assume that pump depletion
is weak and the right-hand terms in the first two equations are
negligible. Then for the spectral amplitudes one obtains

∂S1

∂z
= i

β2
x + β2

y

2k0
S1,

∂S2

∂z
= i

β2
x + β2

y

2k0
S2,

∂S3

∂z
= i

β2
x + β2

y

2k30
S3 − iγβxS3 + 2σ

4π2
exp(−i�kz)

∫ ∞

−∞

∫ ∞

−∞
dβx1dβy1S1(βx − βx1,βy − βy1)S2(βx1,βy1). (28)

Solutions of the equations are the following

S1 = S10(βx,βy) exp

[
i

2k0

(
β2

x + β2
y

)
z

]
,

S2 = S20(βx,βy) exp

[
i

2k0

(
β2

x + β2
y

)
z

]
,

S3(βx,βy,z) = 2σ

4π2
exp

(
i
β2

x + β2
y

2k30
z − iγβxz

)∫ z

0
dz′ exp

(
− i�kz′ − i

β2
x + β2

y

2k30
z′ + iγβxz

′
)

×
∫ ∞

−∞

∫ ∞

−∞
dβx1dβy1S1(βx − βx1,βy − βy1,z

′)S2(βx1,βy1,z
′), (29)

where S10 and S20 are the spectral amplitudes of the input fundamental beams (at z = 0). Insertion of the first two equations of
Eqs. (29) into the third equation and integration over z′ yield

S3(βx,βy,z) = 2σz

4π2
exp

(
i
β2

x + β2
y

2k30
z − iγβxz

) ∫ ∞

−∞

∫ ∞

−∞
dβx1dβy1

× exp

(
ia(βx1,βy1,βx,βy)z

2

)
sinc

a(βx1,βy1,βx,βy)z

2
S10(βx − βx1,βy − βy1)S20(βx1,βy1). (30)

Here

a(βx1,βy1,βx,βy) = −�k − β2
x + β2

y

2k30
+ βxγ + (βx − βx1)2 + (βy − βy1)2

2k0
+ β2

x1 + β2
y1

2k0
. (31)
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Now we will find the expression of the spectral intensity of the second-harmonic beam. The average

〈S3(βx,βy,z)S∗
3 (β ′

x,β
′
y,z)〉 = z24σ 2

16π4

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
dβx1dβy1dβx2dβy2sinc

a1z

2
sinc

a2z

2

×〈S10(βx − βx1,βy − βy1)S20(βx1,βy1)S∗
10(β ′

x − βx2,β
′
y − βy2)S∗

20(βx2,βy2)〉. (32)

Here a1 = a(βx1,βy1,βx,βy) and a2 = a(βx2,βy2,β
′
x,β

′
y). We calculate the average of the fourth-order moment assuming that the

fundamental beams are Gaussian processes. The beams are assumed to be homogeneous and uncorrelated. Then the fourth-order
moment can be factorized into second-order moments and by the use of Eq. (24) we obtain:

〈S10(βx − βx1,βy − βy1)S20(βx1,βy1)S∗
10(β ′

x − βx2,β
′
y − βy2)S∗

20(βx2,βy2)〉
= 16π4G10(βx − βx1,βy − βy1)G20(βx1,βy1)δ(βx − βx1 − β ′

x + βx2)δ(βx1 − βx2)δ(βy − βy1 − β ′
y + βy2)δ(βy1 − βy2).

(33)

Finally, we obtain the spectral intensity of the second-harmonic beam:

4π2G3(βx,βy) = z24σ 2
∫ ∞

−∞

∫ ∞

−∞
dβx1dβy1G10(βx − βx1,βy − βy1)G20(βx1,βy1)sinc2 a1z

2
. (34)

We will use this expression in the further consideration.

C. Second harmonic from two incoherent conical beams

Let us assume two fundamental conical beams, one of
which is incoherent azimuthally and radially, Eq. (25). The
second is assumed to be incoherent only azimuthally, Eq. (26).
We call them the first and the second fundamental beams,
respectively. So, we insert the following expressions of the
spectral intensities of the fundamental beams into Eq. (34):

G10(βx,βy) = Nb2
0

2
√

π

�ββ0
exp

⎛
⎝−

(√
β2

x + β2
y − β0

)2

�β2

⎞
⎠ ,

(35)

G20(βx,βy) = Nb2
0

2π

β0
δ
(√

β2
x + β2

y − β0
)
.

These expressions were derived from Eqs. (25) and (26)
by converting the cylindrical coordinates to Cartesian. The
substitution gives

4π2G3(βx,βy)

= 4σ 2z2N2b4
04π

√
π

1

�ββ0

∫ ∞

−∞

∫ ∞

−∞
dβx1dβy1

× exp

⎛
⎝−

(√
β2 + β2

1 − 2ββ1 cos(θ − θ1) − β0
)2

�β2

⎞
⎠

×
δ

(
β1 − β0)

β1
sinc2

(
z

2

(
− �k − β2

2k30
+ βxγ

+β2 + β2
1 − 2ββ1 cos(θ − θ1)

2k0
+ β2

1

2k0

))
, (36)

where βx1 = β1 cos θ1, βy1 = β1 sin θ1. Further we return to
cylindrical coordinates:

∫ ∫
dβx1dβy1 → ∫ ∫

β1dβ1dθ1. We
make use of the δ function and integrate over β1. We obtain

the following integral over θ1:

G3(β,θ )

= z2

L2
n

N2b2
0

1

�ββ0

4√
π

∫ 2π

0
dθ1

× exp

⎛
⎝−

(√
β2 + β2

0 − 2ββ0 cos(θ − θ1) − β0
)2

�β2

⎞
⎠

×sinc2

[
z

2

(
β2

4k0
+ βγ cos θ − ββ0 cos(θ − θ1)

k0

)]
.

(37)

Here we assumed the noncollinear phase matching:

�k = β2
0/k0 (38)

and used the relation k30 = 2k0. We also introduced a nonlinear
interaction length Ln = 1/σb0.

In Fig. 3 the calculated spectra of the generated second-
harmonic beam are presented. The spectrum narrows during
the propagation in the nonlinear crystal. The cone angle (2θ0 =
62 mrad) was chosen to be comparable with the walk-off angle
(γ = −28 mrad). So, its influence is sufficiently large. In the
right bottom of Fig. 3 we compare the spectral widths in x

and y directions. They are not the same due to the walk off.
The walk off takes place in the x direction, so �θout

x decreases
faster than �θout

y .
We note that the angular structure of the SH beam generated

from the incoherent conical beams differs from the structure,
which was discussed in Ref. [13]. There, the coherent conical
pump beam was investigated and it was shown that the
spectrum of the generated SH beam can be factorized into two
parts: one describing the transverse phase matching (TPM)
and another arising from the longitudinal phase matching
(LPM). TPM yields the spectral width of the SH equal to
2.5/(k1d), where d is the beam radius of the pump beam.
LPM in our notations reads as β2/4k0 + γβx = 0. In our case,
the TPM and LPM parts can not be factorized, see Eq. (37).
The maximum of the expression is obtained at β = 0, so the
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FIG. 3. Theoretically calculated spectra [Eq. (37)] of the second-
harmonic beam. Bottom right: theoretically calculated spectral width
of second-harmonic beam at θ = 0 (�θout

x ) and θ = π/2 (�θout
y ).

Type-I KDP crystal, fundamental wavelength λ1 = 1.064 μm, θout
0 =

2.7◦, �β/k0 = 2 mrad, γ = −28 mrad. z: 200 μm (top left), 2 mm
(top right), 1 cm (bottom left).

spectrum narrows with the propagation in a nonlinear crystal.
We note that spectral width would not decrease if both pump
beams were radially incoherent, Eq. (25). One of the pump
beams has to be radially coherent.

From Eqs. (37) and (35) it follows for the spectral radiance:

G3(0,0)

G10(β0,0)
= 4N

z2

L2
n

. (39)

D. Two intersecting beams

In the experiment there were only two intersecting funda-
mental beams, Fig. 1. In this case, from Eq. (21) we obtain the
following expression for the first beam:

G10(βx,βy) = π
4

�β2
b2

0 exp

(
−β2

x + (βy − β0)2

�β2

)
. (40)

For the second beam we obtain

G20(βx,βy) = 4π2b2
0δ(βx)δ(βy + β0). (41)

The beams are intersected in the yz plane. The insertion of
Eqs. (40) and (41) into Eq. (34) gives

4π2G3(βx,βy,z) = 4π2z24σ 2b2
0G10(βx,βy + β0)sinc2 a0z

2
,

(42)

where

a0 = −�k − β2
x + β2

y

4k0
+ βxγ + β2

x

2k0
+ (βy + β0)2

2k0
+ β2

0

2k0
.

(43)

By the use of Eq. (38) we obtain

a0 = βxγ + βy

β0

k0
+ β2

x + β2
y

4k0
. (44)

So, in the case of two intersecting beams, the spectral intensity
of the second harmonic is

G3(βx,βy,z)

G10(0,β0)
= 4

z2

L2
n

exp

(
−β2

x + β2
y

�β2

)

× sinc2

(
z

2

[
βxγ + βy

β0

k0
+ β2

x + β2
y

4k0

])
.

(45)

At large z the second-harmonic spectrum obeys maximum
condition at the line described by the equation:

βx = −βyβ0/(k0γ ). (46)

This is confirmed by the experiment, Fig. 2. For the spectral
radiance we obtain:

G3(0,0)

G10(β0,0)
= 4

z2

L2
n

. (47)

In the case of conical beams this ratio is N times larger,
Eq. (39). The factor of 4 appears due to the factor of 2 in
the nonlinear term of the third equation of Eqs. (27).

Equation (46) can generalized for the case when the
intersection plane of the fundamental beams is rotated by angle

FIG. 4. Numerically calculated spectra of the first (top left)
and the second (top right) fundamental beams. Bottom: normalized
spectra of the first (1) and the second (2) fundamental beams
at θ out

y = 0. Type-I KDP crystal, fundamental wavelength λ1 =
1.064 μm, θout

0 = 2.7◦, �β/k0 = 2 mrad, d = 700 μm, N = 32. One
simulation.
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FIG. 5. Numerically calculated spectra of the second-harmonic
beam. Type-I KDP crystal, fundamental wavelength λ1 = 1.064 μm,
θ out

0 = 2.7◦, �β/k0 = 2 mrad, γ = −28 mrad. z: 200 μm (top left),
2 mm (top right), 1 cm (bottom left). Bottom right: numerically
(gray lines) and theoretically (black lines and squares) calculated
normalized spectra at θout

y = 0, z = 200 μm (1) and z = 1 cm (2).
d = 700 μm, Ln = 20 cm, N = 32, average of 50 simulations.

α. Then, the line obeys the following equation:

βx = −βy

β0 cos(α)/k0

γ + β0 sin(α)/k0
. (48)

IV. NUMERICAL SIMULATION

In the theoretical description of the second-harmonic
generation we have neglected the depletion of the pump beams
and have assumed that the beams are homogeneous. In the
practical situation the pump depletion could be neglected but
the beams are of finite sizes, so the walk off in long crystals
will play an important role. Here we perform the numerical
simulations of Eqs. (27). In practical situation the Gaussian

Schell model [14] should be used. Then, the amplitude of the
single beam can be written as

Bn(x,y) = b0 exp[−(x2 + y2)/d2]

×
Ns∑
s=1

exp(iKxsx + iKysy + iξs), (49)

where d is a beam envelope radius, Kxs and Kys are the random
number of normal distribution with variance �β/

√
2, where

�β = 2/ρ, and ξs is a uniformly distributed phase. Ns has to
be sufficiently large. The first fundamental beam consists of N

of such Gaussian Schell-model beams, Eq. (1), and the second
beam was constructed from N Gaussian beams of the same
radius d. The phases of the beams were random. Equations (27)
were simulated 50 times for a 1 cm long KTP crystal and the
average values were fixed. The simulations were performed by
the use of the symmetrized split-step Fourier method [15]. The
results are presented in Figs. 4 and 5. The fundamental beams
are depicted in Fig. 4. Good agreement between the numerical
(Fig. 5) and the theoretical (Fig. 3) results was obtained.

V. CONCLUSIONS

In conclusion, we demonstrated the possibility to improve
the coherence in the two-dimensional case. The spectrum of
the second-harmonic beam narrows with the propagation in a
nonlinear crystal when fundamental beams are two incoherent
conical beams. One of these beams is radially coherent and
the other is incoherent both radially and azimuthally. The
simple interpretation of the result follows from the simplified
experiment of two intersecting fundamental beams. In this
case the width of the generated second-harmonic spectrum
decreases in one direction. The spectrum is a line that can
be rotated by changing the intersection plane. In the case
of conical beams the line direction is undefined, so only the
central component of the spectrum remains.
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