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Radial modal dependence of the azimuthal spectrum after parametric down-conversion
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The radial degrees of freedom of the biphoton states that are produced in spontaneous parametric down-
conversion (SPDC) in the Laguerre-Gaussian (LG) basis are investigated, theoretically and experimentally. We
calculated the theoretical azimuthal Schmidt numbers for different combinations of radial indices and found
that a larger azimuthal Schmidt number is obtained for higher radial indices of the signal and idler beams.
Moreover, larger azimuthal Schmidt numbers are also obtained when the difference between the two radial
indices increases. Comparing these theoretical predictions with the azimuthal Schmidt numbers obtained from
experimentally measurements, we found good agreement. Experimentally we demonstrated that it is possible to
obtain a threefold increase in the azimuthal Schmidt number while maintaining a reasonable coincidence count
rate by using LG modes with slightly larger radial indices.
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I. INTRODUCTION

Entanglement is a distinct phenomenon of quantum me-
chanics. A proper understanding and use of entanglement can
lead to significant technological advances in communication,
computing, and cryptography [1]. In recent years there has
been much interest in the entanglement among optical modes
that carry orbital angular momentum (OAM) [2]. These modes
are capable of carrying large amounts of information due to the
infinite-dimensional nature of OAM and thus are of significant
interest for quantum information [3]. Entanglement in the
OAM has also been used to demonstrate the violation of Bell’s
inequality [2,4,5].

Pairs of photons entangled in OAM can be readily produced
through spontaneous parametric down-conversion (SPDC)
[6–8]. The degree of entanglement of a quantum state can
be quantified by the Schmidt number [9,10]. When restricted
to the OAM degrees of freedom (by fixing the radial degrees
of freedom) the equivalent quantity is called the azimuthal
Schmidt number, which is also an indication of the width of
the OAM spectrum, i.e., the spiral bandwidth [10–14]. Hence,
a large spiral bandwidth indicates that an OAM entangled
quantum state contains more OAM degrees of freedom that
can be used to encode quantum information.

The Laguerre-Gaussian (LG) modes are OAM eigenstates
and are a popular basis for photonic quantum information
application. They also carry a radial index p, which governs
their radial dependence. It has been shown [10,15] that both az-
imuthal and radial degrees of freedom are required to saturate
the full Schmidt number of a quantum state produced by SPDC.
A number of techniques have been investigated to increase
the spiral bandwidth of LG modes, including increasing the
pump beam size and manipulating the SPDC phase matching
conditions [13,16–18]. Nevertheless, the radial degrees of
freedom are often neglected, summed over or fix to their
simplest case p = 0 as it is challenging to generate accurate
LG modes with a nonzero radial index as mentioned in [19]. It

*fsroux@csir.co.za

has been shown that the azimuthal Schmidt number depends
on the radial dependence of the chosen basis state and that
the azimuthal Schmidt number obtained from Bessel-Gaussian
(BG) modes, which are also OAM eigenstates, are larger than
for LG modes with p = 0 [20,21].

In this paper we investigate, theoretically and experimen-
tally, how the azimuthal Schmidt number depends on the
chosen radial dependence for an LG basis. For this purpose the
radial indices are fixed to arbitrary values in the signal and idler
beams, respectively. We restrict the analysis here to the case
of degenerate collinear type I SPDC with a Gaussian pump.

II. THEORY

A. Coincidence amplitude

The coincidence counts in a SPDC experiment are propor-
tional to the modulus square of the down-converted probability
amplitude |M|2 = |〈�f |P|�in〉|2, where P represents the
SPDC process and �in and �f are the initial and final
photon states, respectively. For type I phase matching, with
collinear signal and idler beams and degenerate signal and
idler frequencies (ωs = ωi = 1

2ωp), the probability amplitude
in the paraxial limit is

M = �0

∫
M∗

s (q1)M∗
i (q2)

×Mp(q1 + q2)S(q1 − q2)
d2q1

(2π )2

d2q2

(2π )2
, (1)

where �0 is an overall constant that determines the conversion
efficiency, q = qxx̂ + qyŷ is the two-dimensional transverse
part of the three-dimensional wave-vector k, the angular
spectra of the mode profiles of the signal, idler, and pump
beams are given by Ms(q), Mi(q), and Mp(q), respectively,
and S(q1 − q2) is the phase matching function.

The pump beam is a Gaussian beam, so that

Mp(q) =
√

2πwp exp

(
−w2

p

4
|q|2

)
, (2)

where wp is the radius of the pump beam waist.
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The signal and idler beam profiles are LG modes. Here we
represent the angular spectra of these LG modes by

M�,p
s,i (q) = N 1

p!

[
∂p
η ∂ |�|

μ G
]
η,μ=0, (3)

where G is the generating function for the LG modes [22], μ

and η are generating parameters for the azimuthal and radial
indices, respectively, and

N =
[

2π2|�|p!

(p + |�|)!
]1/2

. (4)

The generating function is given by

G = 1

1 + η
exp

[
i(qx ± iqy)wμ

2(1 + η)
−

(
q2

x + q2
y

)
w2(1 − η)

4(1 + η)

]
,

(5)

where w is the radius of the beam waists and the sign in the
exponent is given by the sign of �. For simplicity we assume
that the radii of the beam waists of the signal and idler beams
are equal ws = wi = w.

The phase matching function is given by

S(q1 − q2) = sinc

(
βw2

p

8
|q1 − q2|2

)
, (6)

where we define sinc(a) = sin(a)/a and β is a dimensionless
combination of parameters. The latter is given by

β = noLλp

πw2
p

= noL

zR

, (7)

where no is the ordinary refractive index of the nonlinear
crystal, λp is the wavelength of the pump, L is the crystal
length, and zR is the Rayleigh range of the pump beam.

The expression in Eq. (1) is a more general version of the
integral considered previously [13]. Instead of setting the radial
index to zero (p = 0) for both the signal and idler beams, we
allow their radial indices to have arbitrary values. Using the
generating function for LG modes, we are able to solve the
more general integral analytically.

Evaluating the integral in Eq. (1) with Eqs. (2)–(7), one
finds that, unless the azimuthal indices of the signal and idler
modes have equal magnitudes and opposite signs (OAM is
conserved), the result is zero. One can therefore set �s = −�i =
�. So we express the result of the integration as a generating
function for the probability amplitudes M, in terms of explicit
azimuthal indices, but with the radial indices of the signal and
idler beams implicit in terms of their generating parameters ηs

and ηi, respectively. This generating function is given by

G� = iα|�|+1

B|�|+1β
[Z|�|+1�(−Z,1,|�| + 1)

− (Z∗)|�|+1�(−Z∗,1,|�| + 1)], (8)

where �(z,m,n) is the Lerch transcendent function [23],

Z = (2 − iβ)B
αA + iβB , (9)

A = (1 − ηs)(1 − ηi)α + 2(1 − ηsηi), (10)

B = 2(1 + ηs)(1 + ηi) + (1 − ηsηi)α, (11)

α = w2

w2
p

, (12)

and β is defined in Eq. (7). Note that the generating parameters
for the radial indices of the signal and idler beams are only
found inside A and B. To obtain the probability amplitude for
particular radial indices p and q of the signal and idler beams,
respectively, one performs the following operation

M = �0

wp

Npq

[
∂p
ηs
∂q
ηi
G�

]
ηs,ηi=0, (13)

where

Npq =
[

2(|�|!)2

π (p + |�|)!(q + |�|)!p!q!

]1/2

. (14)

For the p = 0 case, one sets ηs = ηi = 0. As a result A =
B = 2 + α and the expressions simplify to those obtained by
Miatto et al. [14].

B. Thin crystal limit

All the experimental parameters are contained in the
dimensionless parameters α [Eq. (7)] and β [Eq. (7)]. The latter
is the ratio of the nonlinear crystal length L to the Rayleigh
range of the pump beam zR , times the ordinary refractive
index, which is of order 1. In most experiments L � zR . As
a result β � 1. In this limit, the probability amplitude M can
be expressed as

M = �0

wp

Npq

(
2

A

)|�|+1

+ O(β2). (15)

In the case where β = 0, the argument of the phase
matching function in Eq. (6) becomes zero, with the result
that the phase matching function is equal to 1. As a result, one
can Fourier transform Eq. (1) to the coordinate domain. The
result is a three-way overlap integral, given by

M = �0

∫
mp(x)m∗

s (x)m∗
i (x) d2x, (16)

where mp,s,i(x) represents the mode profile of the pump, signal,
or idler beam.

C. Schmidt number

To quantify the bandwidth of the spectrum of OAM modes
we use the azimuthal Schmidt number, which is defined by

κ = 1∑
� P 2

�

, (17)

where P� represents the probability to observe a particular pair
of OAM modes for a given set of p indices. It is proportional
to the modulus square of the probability amplitude. The coin-
cidence counts C� obtained in the experiment are proportional
to the probabilities P�. Hence, the azimuthal Schmidt number
can be computed by

κ =
(∑

� C�

)2

∑
� C2

�

. (18)

III. EXPERIMENT

A. Experimental setup

The experimental setup is shown by the diagram in Fig. 1.
A 350 mW pump laser beam with a wavelength of 355 nm
traversed a 3-mm-thick BBO crystal to produce degenerate,
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FIG. 1. (Color online) Diagram of the experimental setup used to
prepare and measure the OAM entangled photon pairs.

collinear photon pairs with type I phase matching, which
are entangled in their OAM degrees of freedom. The beam
size of the pump mode profile on the plane of the BBO was
1 mm. The signal and idler beams were separated using a
50:50 beam splitter. Each beam was directed onto a spatial
light modulator (SLM) that was used to modulate the beam
by the conjugate of the mode which was to be detected.
Type-3 complex amplitude modulation given in [24] was
used to generate the hologram on the SLMs, the LG mode
size used on the hologram was 0.575 mm. The modulated
beams were coupled into single mode fibres (SMFs), which
extract the Gaussian profile from the beams. The beam size
of the Gaussian mode of the SMF, imaged back onto the BBO
crystal, was 0.575 mm. Avalanche photodiodes (APDs) that
were connected to the other ends of these SMFs, register the
photon pairs via a coincidence counter (CC).

B. Modeling the experiment

Due to the experimental parameters of the setup, β =
0.0023, which means that one can work in the thin crystal
limit and use Eq. (16) to model the experiment. The SLMs
are usually used to implement the functions of ms(x) and
mi(x), using complex amplitude modulation [24]. However,
the coupling of the beams into the SMFs imply that the
integrand must also contain the Gaussian modes of these
SMFs. One can therefore express the actual overlap integral
that is implemented by the experiment as

M = �0

∫
mp(x)m∗

s (x)m∗
i (x)G2(x)d2x, (19)

where

G(x) =
(

2

π

)1/2 1

w0
exp

(
−x2 + y2

w2
0

)
(20)

is the mode of the SMF, with radius w0 when imaged onto the
nonlinear crystal. Since the pump is also a Gaussian function,
the effect of these extra Gaussian functions is to modify the
effective mode size of the pump

exp

(
−x2 + y2

w2
p

)
→ exp

(
−x2 + y2

(w′
p)2

)
, (21)

where
1

(w′
p)2

= 1

w2
p

+ 2

w2
0

. (22)

The effective mode size of the pump is smaller than the
mode size of the original pump beam. To take the effect of
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FIG. 2. (Color online) The azimuthal Schmidt numbers κ , calcu-
lated in the thin crystal limit using Eq. (16), for p and q running from
0 to 10, showing the difference between (a) the azimuthal Schmidt
numbers calculated without taking the SMF modes into account and
(b) the azimuthal Schmidt numbers calculated with the SMF Gaussian
modes. The parameters used for these calculations are the same as the
experimental parameters namely wp = 1 mm, w = 0.575 mm, and
w0 = 0.575 mm giving α = 0.331 for (a) and α = 2.34 for (b).

the SMF Gaussian profiles into account in the theory, one
merely needs to replace wp → w′

p in the expressions in Sec. II.
It was found that if one does not take the effect of these
SMF Gaussian profiles into account, the theoretical results
differ significantly from the experimental results as can be
seen in Fig. 2, which shows the azimuthal Schmidt number
κ calculated theoretically before and after the SMF Gaussian
modes have been taken into account.

One could in principle modify the modes on the SLMs to
compensate for the extra Gaussian profiles coming from the
SMFs. However, in practice this can only work if the radial
functions of the modes on the SLMs are scale invariant, as in
the case of the LG modes with p = 0.

C. Results and discussion

Using the setup in Fig. 1, we measured the azimuthal
Schmidt number κ for all combinations of p and q running
from 0 to 5. The results are shown in Fig. 3. A two-dimensional
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FIG. 3. (Color online) The two-dimensional plot in (a) shows
the azimuthal Schmidt number κ as calculated from experimentally
measured OAM spectra for radial indices p and q running from
0 to 5. The curves in (b) and (c) show the experimental results
(dots) compared to the theoretical results (line) along the diago-
nals indicated by the arrows in (a). We also show the measured
OAM spectra, in terms of normalized coincidence counts (NCC),
at p = q = 0 and p = q = 5 in (c). Error bars represent one
standard deviation of the coincidence counts, assuming a Poisson
distribution.
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FIG. 4. (Color online) (a) Normalized probabilities P� deter-
mined theoretically for p and q running from 0 to 9 with � = 2.
(b) Coincidence count rate C� measured experimentally for p and q

running from 0 to 5 with � = 2.

plot of the values of κ is given in Fig. 3(a). The experimental
results on the diagonals of Fig. 3(a) are shown in quantitative
detail in Figs. 3(b) and 3(c). In Fig. 3(b) we show how the
value of κ increases when the difference between the two radial
indices |p − q| grows larger and in Fig. 3(c) we show how the
value of κ increases for larger radial index p = q. We also
show the OAM spectra, in terms of normalized coincidence
counts (=C�/

∑
C�), for the two end points in Fig. 3(c).

In general, the experimental results agree with the theory.
However, in Fig. 3(b) the errors in the data grow very large
at large |p − q| and in Fig. 3(c) the experimental values of κ

increase at a slower rate as a function of p than the theoretical
values of κ . The larger errors that are obtained for certain
combinations of p and q is a result of smaller coincidence
counts. To demonstrate this, we show the theoretical detection
probabilities and experimental coincidence count rates in
Fig. 4. Figure 4(a) shows the theoretical probabilities P�,p,q

at � = 2 for p and q running from 0 to 9. The experimentally
measured coincidence count rates C�,p,q are shown in Fig. 4(b).
As expected, there is a good agreement between the theoretical
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probabilities and experimental coincidence count rates. One
can see in Fig. 4 that P�,p,q and C�,p,q are small when the
difference |p − q| is large. In fact, when |p − q| = 5 [at the
two corners of Fig. 4(b)] the coincidence count rates never ex-
ceeded 3 counts/s (with background subtracted) for any of the
�’s. Moreover, P�,p,q and C�,p,q decrease toward larger radial
index along the p = q diagonal. The smaller values of C�,p,q

(or P�,p,q ) give larger error bars, as found in Figs. 3(b) and 3(c).
Apart from the increase in the size of the error bars, we also

see a larger disagreement between theory and measured results
at the end points of the curve in Fig. 3(c). This disagreement
is believed to be caused by a reduced fidelity of the modal
function on the SLM when using intensity masking to represent
the mode. Due to the limited resolution of the SLM, modal
functions with larger p and � indices are rendered with less
accuracy, compared to those with smaller p and � indices.

From the above results, we see that, with our experimental
parameters, the combination of radial indices that gives
the optimal spiral bandwidth, while maintaining good beam
quality and acceptable coincidence count rates, are for p and
q equal to 1 and 3 (or 3 and 1). The resulting value of the
azimuthal Schmidt number κ is approximately 3 times that at
p = q = 0.

IV. CONCLUSION

The effect of the radial index of the LG basis on the
spiral (OAM) bandwidth of down-converted photon states is
investigated. It is shown both theoretically and experimentally
that the spiral bandwidth increases with increasing radial
index. Moreover, when the radial index of the signal and

idler beams are different the spiral bandwidth increases
even further. In other words, although the diagonal modes
(those with the same radial indices for the signal and idler
beams) are dominant, the off-diagonal modes give larger spiral
bandwidths. The experimental setup in this case employs type
I SPDC with collinear, degenerate signal and idler beams, and
a Gaussian pump. We use the azimuthal Schmidt number to
quantify the spiral bandwidth.

For the purpose of the theoretical analysis we obtained
analytic expressions for the probability amplitude to detect
photon pairs with arbitrary LG modes. Using generating
functions for the LG modes, we were able to obtain expressions
that apply for any combination of azimuthal and radial indices.
For the case when the radial indices are set to zero, our
expressions agree with those found in previous work [8,13,14].

Using these expressions we calculated the azimuthal
Schmidt number for different combinations of signal and
idler beam radial indices and compared them with the
experimentally measured azimuthal Schmidt numbers. The
agreement between theory and experiment is fairly good
provided the radial indices are not too large (p � 5) and
the difference between the signal and idler radial index
is small (|p − q| � 3). We also demonstrated that it is
possible to obtain up to a threefold increase in the azimuthal
Schmidt number without a significant loss in coincidence count
rate.

When modeling the experimental setup, we found that it
is important to take the effect of the Gaussian modes of the
SMFs into account in the overlap integral. The contribution
from the SMF modes is often overlooked. We showed that the
theoretical results can differ significantly when the modes of
the SMFs are not included in the overlap integral.
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