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Spectrum and entanglement of phonons in quantum fluids of light
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We study the quantum state of phonons propagating on top of a fluid of light coherently generated in a planar
microcavity device by a quasiresonant incident laser beam. In the steady state under a monochromatic pump,
because of the finite radiative lifetime of photons, a sizable incoherent population of low-frequency phonons is
predicted to appear. Their mean occupation number differs from a Planck distribution and is independent of the
photon lifetime. When the photon fluid is subjected to a sudden change of its parameters, additional phonon pairs
are created in the fluid with remarkable two-mode squeezing and entanglement properties. Schemes to assess
the nonseparability of the phonon state from measurements of the correlation functions of the emitted light are
discussed.
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I. INTRODUCTION

Among the rich features of quantum fluids of atoms [1–3]
and of light [4] a remarkable position is held by the intriguing
structure of their vacuum state and by the possibility of
accurately measuring its static and dynamical properties under
various conditions. In particular, when such a fluid is subjected
to some temporal and/or spatial change of its properties, zero-
point fluctuations of its quantum vacuum state are converted
into correlated pairs of propagating quasiparticles. As pointed
out in Ref. [5], this offers the possibility of conceiving ex-
periments aiming to test long-standing predictions concerning
quantum processes related to cosmology and to black holes.
For instance, one may consider observing the emitted pairs
associated with the (analogous) cosmological pair creation
or dynamical Casimir (DCE) effects [6–8], as well as those
produced by the (analogous) Hawking effect [9–15]. Most
remarkably, accurate measurements of the observables are
expected to distinguish quantum (spontaneous) from classical
(stimulated) correlations by looking at the non-separability
of the outgoing state [16–22], or violations of Cauchy-
Schwarz [23,24] or even Bell inequalities [25].

In recent years, many material platforms have been pro-
posed and investigated in this context, in particular ultracold
atomic gases and superfluid liquid helium [26]. Very recently,
quantum fluids of light in planar microcavity devices have been
recognized as most promising candidates for experimental
studies of the quantum vacuum [15,27–30]. In one- or two-
dimensional microcavity devices, photons acquire an effective
mass m because of spatial confinement, while an effective
two-body photon-photon interaction can originate from the
χ (3) optical nonlinearity of the cavity medium. As a result,
assemblies of many photons in the cavity can display the
collective behavior of a Bose-Einstein condensate with a
macroscopic occupation of a single quantum state and a
long-range coherence, as well as superfluid hydrodynamic
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features with the low-frequency elementary excitations having
a collective phonon nature. In order to reinforce the inter-
actions, one often works with microcavities in the so-called
strong light-matter coupling regime, where the photon mode is
coupled to a resonant material excitation, typically of excitonic
nature. For the purpose of the present article, the resulting
polariton excitations can be simply understood as dressed
photons with an enhanced nonlinearity.

In contrast to material systems where the lifetime of
the basic constituents is virtually infinite, cavity photons
are intrinsically subject to losses due, e.g., to the imperfect
reflectivity of the cavity mirrors. On one hand, these losses
are experimentally very useful as they allow continuous
measurement in a nondestructive manner of the photon state.
On the other hand, they introduce new features, for instance
the phonons can acquire a finite mass and the photon fluid
requires a continuous external pumping to compensate losses:
among the different available schemes, here we shall restrict
our attention to the case of a coherent pump quasiresonant
with the cavity mode.

The present work reports a theoretical investigation of the
quantum fluctuations of the quantum fluid of light and, in
particular, of its phonon excitations. Even though the same re-
sults can be derived within a Wigner formalism [12,15,31,32],
our presentation here will be based on a quantum Langevin
description [33–37] of the driven-dissipative photon fluid
because it directly provides reliable predictions for the sep-
arability of the system state [18,21]. In the simplest geometry
with a spatially homogeneous background solution, explicit
expressions for the correlation functions can be obtained
by fully analytical means for both the stationary state and
the temporal response to a sudden jump in the system
parameters.

The article is organized as follows: In Sec. II we present the
physical system under consideration and we quickly review
the equations of motion ruling the quantum fluid of light. The
stationary state is then studied in Sec. III. Inspired by the
analogy to cosmological pair creation and dynamical Casimir
effects, the response of the system to a sudden change of its
parameters is discussed in Sec. IV. Conclusions are drawn in
Sec. V.
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FIG. 1. (Color online) Sketch of the planar microcavity system
under consideration.

II. THE PHYSICAL SYSTEM AND THE MODEL

A. The Hamiltonian of the system

A sketch of the planar microcavity system we are consid-
ering is shown in Fig. 1. A comprehensive review of its rich
physics can be found in Ref. [4]; here we briefly summarize
the main features that are important for our discussion. In the
simplest configuration, light is confined in a cavity material
of refractive index n0 sandwiched between two high-quality
plane-parallel metallic mirrors spaced by a distance �z. Photon
propagation along the z axis is then quantized as qz = πM/�z,
M being a positive integer. For each longitudinal mode M , the
frequency dispersion of the mode as a function of the in-plane
wave vector k has the form

Ecav(k) = �c

n0

√
q2

z + k2 � Ebare
0 + �

2k2

2m
, (1)

where the effective mass m of the photon and the rest energy
Ebare

0 are related by the relativisticlike expression

m = �qz

c/n0
= Ebare

0

c2/n2
0

. (2)

Neglecting for simplicity the polarization degrees of freedom,
we can define the creation and destruction operators â

†
k and

âk for each mode of wave vector k and their real-space
counterparts

�̂(x) =
∫

dk
(2π )d/2

eik·x ak, (3)

which satisfy the usual equal-time commutation (ETC) rules
[�̂(x),�̂†(x′)] = δ(x − x′) of a nonrelativistic quantum field.
In Eq. (3), d is the dimensionality of the fluid along the cavity:
while standard planar cavities such as the one sketched in
Fig. 1 have d = 2, effective one-dimensional d = 1 fluids can
be created with an additional in-plane confinement [4]. In
term of the quantum field operator �̂(x), the isolated cavity
Hamiltonian in units where � = 1 can be written in the form

H0 =
∫

dx
[
Ebare

0 �̂†�̂ + 1

2m
(∇x�̂

†)(∇x�̂) + g

2
�̂†�̂†�̂�̂

]
.

(4)

The first two terms describe the photon rest energy and its
effective (kinetic) mass, respectively. The last term accounts
for a Kerr optical nonlinearity of the cavity medium which

is essential to have sizable photon-photon interactions. The g

coefficient quantifying the interaction strength is proportional
to the material χ (3): explicit expressions can be found in the
quoted review article [4].

In addition to its conservative internal dynamics ruled by
H0, the cavity is coupled to external baths including, e.g., the
radiative coupling to the propagating photon modes outside the
cavity via the (small) transmittivity of the mirrors. A typical
way of modeling the dissipative effects due to this environment
is based on a Hamiltonian formalism where the environment is
described by a phenomenological quantum field �̂ζ . The bath
and interaction Hamiltonians have the forms

Hbath =
∫

dx
∫

dζ ωζ �̂
†
ζ (x)�̂ζ (x), (5a)

Hint =
∫

dx
∫

dζ gζ [�̂†(x) �̂ζ (x) + �̂(x) �̂
†
ζ (x)]. (5b)

Here, the bath operators �̂ζ obey the usual ETC relation
[�̂ζ (x,t),�̂†

ζ ′(x′,t)] = δ(x − x′) δ(ζ − ζ ′) and the index ζ is a

continuous wave number: this ensures that the �̂ field forms
a dense set of degrees of freedom, a condition necessary to
obtain dissipation in Hamiltonian systems [33–35]. In the
case of radiative loss processes from a planar microcavity,
the �̂ζ (x,t) operator corresponds to the destruction operator
of extracavity photons and the ζ quantum number indicates the
value of the normal component of the extracavity wave vector.
While more realistic descriptions of the microcavity device
can be used to obtain first-principle predictions for the gζ

coupling constant [36], in the present work we consider it as a
(real-valued) model parameter to be adjusted so as to reproduce
the experimentally observed photon decay rate 
; see below
Eq. (18). In the quantum optical literature, approaches to
dissipation based on Hamiltonians of the form (5) go under
the name of input-output formalism [35,36,38]. With respect
to equivalent descriptions based on the truncated Wigner
distribution [15,32], this method has the main advantage that
unitarity is manifestly preserved as �̂ and �̂ζ are treated on
an equal footing.

As a last step, we have to include the Hamiltonian term
describing the coherent pumping of the cavity by an incident
laser field of (normalized) amplitude F (x,t),

HF =
∫

dx[�̂(x)F ∗(x,t) + �̂†(x) F (x,t)]. (6)

For a monochromatic pump of frequency ωP , wave vector
kP , and a very wide waist, we can perform a plane-wave
approximation and write

F (x,t) = F0 e−iωP t eik·x, (7)

where k is the projection of kP along the cavity plane. In
the following, we shall restrict our attention to the case
of a monochromatic pump normally incident on the cavity,
which gives a vanishing in-plane k = 0 and therefore a spa-
tially homogeneous and isotropic pump amplitude F (x,t) =
F0(t) e−iωpt : this pump configuration injects into the cavity a
photon fluid that is spatially homogeneous and at rest. Even
though the coherent pump acts on the single k = 0 mode, the
presence of the interaction term causes the field dynamics to
involve the whole continuum of in-plane k modes.
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To summarize, the total Hamiltonian has the form

H =
∫

dx
[
Ebare

0 �̂†�̂ + 1

2m
(∇x�̂

†)(∇x�̂) + g

2
�̂†�̂†�̂�̂

+ �̂F ∗ + �̂†F +
∫

dζωζ �̂
†
ζ �̂ζ + gζ (�̂†�̂ζ + �̂�̂

†
ζ )

]
.

(8)

B. The equations of motion

From Eq. (8), the equations of motion are

i∂t �̂ =
(

Ebare
0 − ∇2

x

2m
+ g�̂†�̂

)
�̂ +

∫
dζ gζ �̂ζ + F,

(9a)

i∂t �̂ζ = ωζ �̂ζ + gζ �̂. (9b)

The solution of Eq. (9b) can be written as

�̂ζ (x,t) = �̂0
ζ (x,t) − i

∫
dt ′θ (t − t ′)e−iωζ (t−t ′)gζ �̂(x,t ′).

(10)

The first term is the homogeneous solution

�̂0
ζ (x,t) = ĉ(x,ζ ) e−iωζ t . (11)

Here ĉ(x,ζ ) is the destruction operator of a environment
quantum of energy ωζ localized at x. It obeys the canonical
commutator

[ĉ(x′,ζ ′),ĉ†(x,ζ )] = δ(x − x′) δ(ζ − ζ ′). (12)

Introducing the right-hand side of Eq. (10) in Eq. (9a) gives
the effective equation of motion for the photon field,

i∂t �̂ =
(

Ebare
0 − ∂2

x

2m
+ g�̂†�̂

)
�̂ − i

∫
dt ′D(t − t ′)�̂(t ′)

+
∫

dζgζ �̂
0
ζ + F = 0. (13)

The non local dissipative kernel is

D(t − t ′) .= θ (t − t ′)
∫

dζg2
ζ e

−iωζ (t−t ′), (14)

and its Fourier transform is

D̃(ω) =
∫

dζg2
ζ

i

ω − ωζ + iε
. (15)

Because of the high frequency of the pump as compared to
the time scale of the hydrodynamic evolution of the fluid, we
shall see below that D(t − t ′) can be well approximated by
a local kernel within a sort of Markov approximation and
correspondingly D̃(ω) can be approximated by a constant
value independent of ω.

Under the weak-interaction assumption, we perform the
usual dilute-gas approximation [1] and we split the field
operator as the sum �̂ = �̄ + δ�̂ of a (large) coherent
component �̄(x,t) corresponding to the condensate and a
(small) quantum fluctuation field δ�̂(x,t). Including the new
terms stemming from pumping and from losses, the mean field

�̄(x,t) can be shown to obey a generalized Gross-Pitaevskii-
Langevin equation of the form

i∂t �̄(x,t) =
(

Ebare
0 − ∂2

x

2m
+ g|�̄|2

)
�̄(x,t)

− i

∫
dt ′D(t − t ′)�̄(x,t ′) + F (x,t). (16)

When assuming that F (x,t) = F0(x,t) e−iωpt and �̄(x,t) =
�̄0(x,t) e−iωpt with �̄0(x,t) and F0(x,t) slowly varying func-
tions of time, it is appropriate to extract the temporally local
part of the dissipative kernel and to rewrite Eq. (16) as

i∂t �̄0(x,t) = F0(x,t)

+
(

Ebare
0 + �E − ωp − ∂2

x

2m
+ g|�̄0|2 − i


)
�̄0(x,t)

− i

∫
dt ′D(t − t ′)eiωp(t−t ′)[�̄0(x,t ′) − �̄0(x,t)], (17)

where the real and imaginary parts of D̃(ωp) = 
 + i�E

defined in Eq. (15) respectively give the decay rate 
 and
a (small) shift �E of the photon frequency; see Ref. [33].
Explicitly, one has

�E = −
∫

dζg2
ζ P

1

(ωζ − ωp)
,


 =
∫

dζ g2
ζ πδ(ωζ − ωp),

(18)

where P is the principal value. In the following, all formulas
will be written in terms of the effective cavity photon
frequency, E0 = Ebare

0 + �E. The ratio ωp/
 = Qp gives the
quality factor of the cavity: in typical microcavity systems one
has Qp � 105. For a given ωp, various choices of gζ giving
the same value for 
 should be considered at this level as
physically equivalent.

III. THE STATIONARY STATE

We begin our discussion of quantum fluctuations in a
stationary state under a spatially homogeneous and monochro-
matic pump at frequency ωp, F (x,t) = F0 e−iωpt with a
constant pump amplitude F0. In this case, we can safely assume
the coherent component �̄ of the photon field to be itself
spatially homogeneous and monochromatically oscillating at
ωp, �̄(x,t) = �0 e−iωpt . Using Eq. (17), it is immediate to see
that �0 obeys the state equation

[ωp − E0 − g|�0|2 + i
]�0 = F0. (19)

In the following, we shall assume that the phase of the pump
F0 is chosen in such a way as to give a real and positive
�0 > 0. As we are interested in a stable configuration where
the phonon mass is the smallest, we will follow previous
work on analogous models based on superfluids of light in
microcavities [15] and concentrate our attention on the case of
a pump frequency blue detuned with respect to the bare photon
frequency ωp > E0, where the dependence of the internal
intensity |�0|2 on the pump intensity |F0|2 shows a bistability
loop [4,39]. More specifically, we shall concentrate on the
upper branch of the bistability loop, where interactions have
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shifted the effective photon frequency E0 + g|�0|2 to the blue
side of the pump laser, E0 + g|�0|2 � ωp. Exact resonance
ωp = E0 + g|�0|2 is found at the end point of the upper branch
of the bistability loop: as we shall see shortly, only this point
corresponds to a vanishing phonon mass. The more complex
physics of quantum fluctuations under a monochromatic pump
in the vicinity of the so-called “magic angle” was discussed
in Ref. [28] for pump intensities spanning across the optical
parametric oscillation threshold [40].

A. The equation of motion

Equations (13) and (16) determine the equation for linear
perturbations δ̂�. Taking into account the spatial homogeneity
of the mean-field solution �̄, we use the relative perturbation
φ̂k = ˆδ�k/�0 at given wave number k. Using a Markovian1

approximation to neglect the nonlocal part of the dissipative
term, one obtains the following quantum Langevin equation
of motion:

i(∂t + 
)φ̂k = �kφ̂k + mc2φ̂
†
−k + Ŝk

|�0| .
(20)

Its conservative part shows interesting differences from the
case of atomic condensates: While the interaction energy has
the same form

mc2 .= g|�0|2, (21)

the detuning coefficient multiplying φ̂k in Eq. (20) keeps track
of the pump frequency ωp. It is given by

�k
.= k2

2m
− ωp + E0 + 2mc2, (22)

and allows for a larger variety of Bogoliubov disper-
sions [4,39]. The eigenmodes of the deterministic part of the
linear problem described by Eq. (20) are in fact characterized
by the dispersion

ω2
k

.= �2
k − m2c4, (23)

and a collective phonon destruction operator of the form

ϕ̂k
.= �0(ukφ̂k + vkφ̂

†
−k),

uk
.=

√
�k + mc2 +

√
�k − mc2

2
√

ωk

,

vk
.=

√
�k + mc2 −

√
�k − mc2

2
√

ωk

.

(24)

Using Eq. (22), we get to the explicit expression

ω2
k = M(M + 2m)c4 + k2c2(1 + M/m) + k4

4m2
, (25)

1The exact equation is given in Appendix A as Eq. (A1). Since the
characteristic frequency ωk of phonon modes is much lower than ωp ,
the nonlocal part of the dissipative term of Eq. (14) can be neglected
as it gives corrections proportional to ωk/ωp . In fact, using Eq. (15),
[D̃(ωp + ω) − D̃(ωp)] ∼ D̃(ωp) ω/ωp for typical dissipation baths,
which is much smaller in magnitude than D̃(ωp) when ω � ωp .

in terms of the mass parameter M defined by

Mc2 = E0 + mc2 − ωp � 0. (26)

The presence of a finite phonon rest energy is a crucial differ-
ence as compared to the equilibrium case where phonons are
always massless. The phonon mass is, however, dramatically
suppressed, M � m, when the pump frequency approaches
resonance with the (interaction-shifted) cavity mode, ωp �
E0 + g|�0|2, that is, when the operating point approaches the
leftmost end point of the upper branch of the bistability loop. In
this limit, M → 0 and the dispersion exactly recovers the usual
Bogoliubov dispersion of equilibrium Bose condensates [1],
with massless phonons and a low-frequency speed of sound
equal to c.

As usual for quantum Langevin equations, the equation of
motion (20) also involves a decay term proportional to 
 and
an effective quantum source term

Ŝk(t)
.=

∫
dζ gζ ĉ(k,ζ ) e−i(ωζ −ωp)t (27)

summarizing quantum fluctuations in the initial state of the
environment, assumed to be decorrelated from the system. In
the Markovian limit ω � ωp, the Langevin quantum noise
operator Ŝk(t) satisfies the bosonic commutation relations of a
destruction operator,

[Ŝk(t),Ŝ†
k′(t ′)] =

∫
dζg2

ζ e
−i(ωζ −ωp)(t−t ′)

= 2
δ(t − t ′)δ(k − k′), (28a)

[Ŝk(t),Ŝk′(t ′)] = 0. (28b)

We further assume that the environment is initially in an
equilibrium thermal state ρ̂e with low temperature Te � ωp.
As the characteristic phonon frequencies ωk are also much
smaller than ωp, we can safely approximate the expectation
values by the following expressions:

Tr[ρ̂eŜk(t)Ŝk′(t ′)] = 0, (29a)

Tr[ρ̂eŜk(t)Ŝ†
k′(t ′)] � 2
 δ(t − t ′) δ(k − k′), (29b)

Tr[ρ̂eŜ
†
k(t)Ŝk(t ′)] = 2


eωp/Te − 1
δ(t − t ′) δ(k − k′) � 0.

(29c)

This means that the environment is a vacuum white-noise
bath with a flat frequency distribution.

B. Quantum fluctuations in the steady state

In the present stationary case, the Bogoliubov transforma-
tion of Eq. (24) is time independent. In terms of the phonon
operator ϕ̂k, Eq. (20) then becomes,

i(∂t + 
)ϕ̂k = ωkϕ̂k + (ukŜk − vkŜ
†
−k). (30)

Because of ωp > 0, the creation operator Ŝ
†
−k contains positive

frequency. Indeed, using Eq. (27), one gets∫
dteiωt Ŝ

†
−k = 2π

∫
dζ gζ ĉ

†
0(k,ζ ) δ(ω + ωζ − ωp), (31)
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which vanishes only for ω > ωp, that is, far outside the
frequency range involved in the phonon dynamics. As a
result, the quantum fluctuations of the environment heat up
the phonon state even when �̂0

ζ is in its vacuum state, i.e.,

when the environment state is annihilated by Ŝk.
The solution of Eq. (30) has the following structure:

ϕ̂k(t) = ϕ̂dec
k (t ; t0) + ϕ̂dr

k (t ; t0). (32)

The decaying part is

ϕ̂dec
k (t ; t0) = b̂k e−
(t−t0)e−iωk (t−t0), (33)

where the b̂k operator destroys a phonon at time t0 and obeys
the canonical commutator [b̂k,b̂

†
k′ ] = δ(k − k′). The driven

part is

ϕ̂dr
k (t ; t0) = −i

∫ t

t0

dt ′e−
(t−t ′)e−iωk (t−t ′)

× [(ukŜk(t ′) − vkŜ
†
−k(t ′)]. (34)

One verifies that ϕ̂k of Eq. (32) obeys the usual equal-time
commutators

[ϕ̂k(t),ϕ̂†
k′(t)] = δ(k − k′), (35a)

[ϕ̂k(t),ϕ̂k′(t)] = 0 (35b)

as an identity, irrespective of the choice of t0. More precisely,
the two-time commutators are given by

[ϕ̂k(t),ϕ̂†
k′(t ′)] = e−
|t−t ′|e−iωk (t−t ′) δ(k − k′), (36a)

[ϕ̂k(t),ϕ̂−k′(t ′)] = O

(
ωk

ωp

)
δ(k − k′). (36b)

In the Markov limit under consideration here, ωk � ωp,
the latter commutator is negligible. Once the stationary state
has been reached (i.e., in the t0 → −∞ limit), the decaying
part ϕ̂dec

k is also negligible and ϕ̂k is given by ϕ̂dr
k of Eq. (34).

1. Two-point functions in the steady state

The statistical properties of the phonon field are summa-
rized by two-point correlation functions

Gϕ†ϕ(t,t ′; k)
.= Tr[ρ̂0ϕ̂

†
k(t)ϕ̂k(t ′)],

Gϕϕ(t,t ′; k)
.= Tr[ρ̂0ϕ̂−k(t)ϕ̂k(t ′)],

(37)

which are directly related to the physically observable second-
order coherence function,

g2(x,t,x′,t ′)

.= Tr[ρ̂0 �̂†(x,t)�̂†(x′,t ′)�̂(x′,t ′)�̂(x,t)]

Tr[ρ̂0 �̂†(x,t)�̂(x,t)] Tr[ρ̂0 �̂†(x′,t ′)�̂(x′,t ′)]
, (38)

describing the correlations of density fluctuations of the
in-cavity photon field. In a typical experiment, this quantity
is experimentally accessible by looking at the intensity
fluctuations of the emitted radiation from the cavity [4,28].
The Fourier transform of g2(x,t,x′,t ′) is related to the so-called
structure factor of the fluid and provides direct information on
the k component of the density fluctuations [1]. To quadratic

order in δ�̂ it is equal to

g2,k(t,t ′) .= |�0|2
∫

d(x − x′)e−ik·(x−x′)g2(x,t,x′,t ′)

= 2 (uk − vk)2 Re[G(t,t ′,k)]

− 2vk(uk − vk)e−
|t−t ′| cos[ωk(t − t ′)], (39)

where

G(t,t ′,k)
.= Gϕ†ϕ(t,t ′,k) + Gϕϕ(t,t ′,k). (40)

We thus see that a measurement of g2 provides complete
information on Re[G]: the term on the last line of Eq. (39)
is in fact state independent, as it is equal to the real part of the
commutator in Eq. (36a) multiplied by some known factor.

Using Eqs. (34) and (29b), one easily obtains the two-point
functions of Eq. (37) in the stationary state:

G
ϕ†ϕ
st (t,t ′; k) = nb

k,st e
−
|t−t ′|eiωk (t−t ′),

(41)
G

ϕϕ
st (t,t ′; k) = c̄b

k,st e
−(
+iωk )|t−t ′|,

where

nb
k,st = v2

k , c̄b
k,st = ukvk



 + iωk

. (42)

Roughly speaking, these quantities give the mean occupation
and the correlation function in the phonon point of view. As
shown by a more careful analysis, these identifications are
subjected to some inherent imprecision; see the discussion
below in Sec. III B 3.

An alternative description of this state in terms of the photon
variables (instead of the phonon ones) can be obtained using
the Bogoliubov transformation Eq. (24). The mean occupation
number and the correlations of photon operators are equal to

n
a,st
k = 2u2

kv
2
k

ω2
k


2 + ω2
k

,

c
a,st
k = iωkukvk

[
v2

k


 − iωk

− u2
k


 + iωk

]
.

(43)

These quantities are accessible from the intensity pattern of the
far-field emission from the cavity and its coherence properties:
the presence of a nonvanishing emission n

a,st
k at a wave

vector distinct from the coherent pump at k = 0 stems from
parametric processes analogous to the ones taking place in
parametric down-conversion experiments. The nonvanishing
correlation c

a,st
k �= 0 is a signature of the two-mode squeezed

nature of this emission [35,38,41].
From the photon momentum distribution Eq. (43), it is

immediate to calculate the first-order coherence function
defined as

g1(x,t,x′,t ′) .= Tr[ρ̂0 �̂†(x,t) �̂(x′,t ′)]. (44)

For simplicity, we restrict our attention to g1 evaluated at equal
times t = t ′,

g1(x,x′,t ′ = t) = |�0|2 +
∫

dk
(2π )d

eik·(x′−x) n
a,st
k . (45)

The modified Bogoliubov coefficients uk,vk which appear in
Eq. (43) are given in Eq. (24) and the frequency ωk in Eq. (25).
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Using these expressions, a straightforward calculation gives

n
a,st
k = m2c4

2
(

2 + ω2

k

) , (46)

which is regular in the k → 0 limit both because of the (small)
phonon mass M(M + 2m)c4 in Eq. (25) and because of losses.

Using isotropy, it is immediate to see from the preceding
discussion that for any dimensionality d, the |x − x′| →
∞ long-distance limit of g1 shows a condensate plus an
exponentially decaying term,

g1(x,x′,t ′ = t) � |�0|2 + Ae−|x−x′ |/�c , (47)

with a coherence length

�c =
[

c2(1 + M/m)


2 + M(M + 2m)c4

]1/2

. (48)

This shows that in the present case, thanks to the presence of
the coherent pump, the long-distance coherence of the photon
“condensate” is robust against fluctuations, independently of
the dimensionality. For a recent discussion of the long-distance
coherence of g1 under an incoherent pump, we refer to [42,43].

2. Dissipationless limit

To understand the physical implications of these results, we
first consider the 
 → 0 limit where dissipation tends to zero.
Note that because of the presence of the pump the system
does not recover a standard thermodynamical equilibrium
state in this limit, but maintains a nonequilibrium character.
More details on this crucial fact are given in Appendix A.
In this case, the effective phonon state is incoherent, since
G

ϕϕ
st = c̄b

k,st = 0, as in standard thermal equilibrium. The state
is thus fully characterized by the finite value of Eq. (42) of the
mean phonon occupation number nb

k . Interestingly, even in the

 → 0 limit, the stationary state of the system differs from a
standard thermodynamical equilibrium state, as is manifest in
the phonon occupation distribution not following the Planck
distribution. Nonetheless, as can be seen in Fig. 2, the state it
is very close to a thermal state at temperature kBTst = mc2/2
fixed by the interaction energy; see Eq. (21). This is our first
result: Because of the unusual presence of positive frequency
in Ŝ

†
−k [see Eq. (31)], the phonon field is effectively heated up

even when the environment is in its vacuum state. More details
on the nonequilibrium origin of this crucial fact are given in
Appendix A. In Fig. 2 and in subsequent figures, the wave
vector k is adimensionalized by making use of the healing
length defined by ξ = 1/(2mc) (since � = 1).

From a physical point of view, it is important to note the
conceptual difference of this result with respect to the quantum
depletion of the Bose condensate as predicted for the ground
state of equilibrium Bogoliubov theory [1]: the finite occupa-
tion number nb

k refers here to phonon quasiparticle excitations,
while standard quantum depletion refers to the underlying
particles (in our case, photons). Along the same lines, one
should not confuse the finite phonon occupation in the present
driven-dissipative stationary state, with the finite photon
occupation in the ground state of a microcavity device in
ultrastrong light-matter coupling, as discussed in Refs. [36,44].

To better understand the physical meaning of the two
different photon and phonon descriptions of the same state,

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.5

1.0

1.5

2.0

2.5

3.0

k Ξ

n i
n

FIG. 2. Mean occupation number of phonons nb
k,st = v2

k for a low
phonon mass parameter M/m = 0.01 in the driven-dissipative steady
state (solid), and in a thermal state at temperature T = (1/2)mc2

(dashed). Both curves are independent of the dissipative rate 
.
Whatever the value of the mass parameter M , one can show that
the absolute deviation between the two curves is always smaller than
0.052, which is reached for �k ∼ 1.5mc2. On the other hand, the
relative difference between the two occupation numbers becomes
large at high momenta; see Fig. 3.

it is useful to introduce the concept of nonseparability of
the quantum state. For generic homogeneous states, unitarity
implies the inequality

|ck|2 � nk(nk + 1), (49)

while separability of the state [45] imposes the stronger
condition

|ck| � nk; (50)

see Appendix B for more details. In our system, Eq. (50) can
be applied in two distinct ways, either to photon or to phonon
operators: the results are not expected to coincide as photon
and phonon operators are related by Eq. (24) which is a U(1,1)
transformation mixing creation and destruction operators.

From the phonon point of view, the stationary state of
the system is manifestly separable in the 
 → 0 limit as the
phonons are fully incoherent, c̄b

k,st = 0. On the contrary, the
same state is nonseparable from the photon point of view since

∣∣ca
k

∣∣2 = na
k

(
na

k + 1/2
)

(51)

violates the separability bound Eq. (50).
Even though the state is nonseparable only from the photon

point of view, we can explicitly verify that the entropy of the
state agrees in the two points of view, as is expected from the
invariance of entropy under U(1,1) transformations. This is
straightforwardly done knowing that the entropy is equal to

S = 2[(n̄ + 1) ln(n̄ + 1) − n̄ ln n̄], (52)

in terms of n̄ defined by (n̄ + 1/2)2 .= (n + 1/2)2 − ∣∣c2
∣∣ [16].

3. Weak dissipation

Having understood the state properties in the limit 
 → 0,
we now turn to the case of small but finite dissipative rates,

 � ωk . The main change is that the correlation function
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FIG. 3. Intrinsic imprecision in the measurement of the mean
occupation number of phonons. The solid curves show nb

k =
nb

k,st ± ∣∣c̄b
k,st

∣∣ involved in Eq. (54). The dotted line represents the
thermal distribution at T = (1/2)mc2: while nb

k decays as 1/k2 for
large momenta in the nonequilibrium stationary state, the thermal
distribution decays according to a much faster Boltzmann law as
e−(k/mc)2

. The system parameters are the same as in Fig. 2: phonon
mass M/m = 0.01 and dissipation rate 
/mc2 = 0.03.

Eq. (41) is now G
ϕϕ
st �= 0. While its t − t ′ time dependence

correctly expresses stationarity of the state, it dramatically
differs from the usual ωk(t + t ′) one describing correlations of
real phonon pairs at wave vectors ±k [8,21]. This means that
G

ϕϕ
st �= 0 cannot be straightforwardly interpreted as describing

real pairs of phonons with opposite momenta. Still, because
of the quantum fluctuations associated with the dissipation
processes, there are nontrivial correlations G

ϕϕ
st �= 0 between

phonon modes of opposite wave vectors ±k. This is a second
main result of this paper.

The presence of a nonzero correlation c̄b
k,st �= 0 in the

stationary state has important consequences when one attempts
to measure the occupation number nb

k,st via a measurement
of g2 and thus of Re[G]. To be specific, let us consider an
experiment where Re[G(t,t ′,k)] is measured for various values
of the interval τ = t ′ − t . Provided τ is short enough, 
τ � 1,
one gets

Re[Gst(t,t + τ,k)] ∼ nb
k,st cos(ωkτ ) + Re

(
c̄b
k,ste

−iωkτ
)
. (53)

For very small dissipation rates 
 → 0, correlations are
negligible: as a result, the left-hand side divided by cos(ωkτ )
directly provides information on the mean number of particles
nb

k,st. When we proceed in the same way in the presence of a
significant dissipation, the same procedure gives

ñb
k,st = nb

k,st + Re
(
c̄b
k,st

) + Im
(
c̄b
k,st

)
tan(ωkτ ), (54)

which shows periodic deviations in τ around an average value
nb

k,st + Re(c̄b
k,st); note that this average still differs from nb

k,st

by a systematic error proportional to c̄b
k,st (see Fig. 3).

IV. PHONON PAIR PRODUCTION BY A SUDDEN
MODULATION

In the previous section, we studied the quantum fluctuations
in a stationary state under a monochromatic continuous-wave

pump. In this section we shall extend the discussion to the case
when a sudden change is imposed on the system and pairs of
phonons are expected to be generated at the time of the fast
modulation via processes that are closely analogous to the
cosmological pair creation effect in the early universe [6,7,18]
and to the dynamical Casimir effect [8,46].

A. The modified state

To facilitate analytical calculations, we will restrict our
attention here to a very idealized model inspired by Ref. [12],
where the spatially homogeneous condensate wave function of
amplitude �0 remains an exact solution of Eq. (17) at all times.
As compared to atomic gases, this requirement is slightly more
subtle in the present nonequilibrium case as the photon density
is related to the pump intensity by the more complicated state
equation (19). A possible strategy to fulfill this condition might
consist of assuming that 
, m, the pump amplitude F0, and its
frequency ωp remain constant while g and E0 suddenly change
at t = 0, keeping E0(t) + g(t) |�0|2 constant.2 While we agree
that such modulations are quite unrealistic in state-of-the art
experiments, still the predicted phonon pair production process
appears to be conceptually identical to the one taking place in
the more realistic but more complex configurations where the
condensate wave function is itself varying, as in, e.g., Ref. [32].

As a result of the modulation, the phonon frequency ωk(t)
of Eq. (23) experiences a sudden change (the subscript ± refers
to its value at times t ≷ 0)

ωk(t) = ωk,− + θ (t)(ωk,+ − ωk,−), (55)

which directly reflects onto the Bogoliubov operators: while
the photon operator φ̂ in Eq. (20) is continuous at t = 0, the
phononic ones ϕ̂ defined in Eq. (24) experience the following
sudden jump [8,21]:

ϕ̂k,+ = αkϕ̂k,− + βkϕ̂
†
−k,−,

αk = uk,+uk,− − vk,+vk,− = ω+ + ω−
2
√

ω+ω−
,

βk = vk,+uk,− − uk,+vk,− = ω+ − ω−
2
√

ω+ω−
,

(56)

where the second equalities follow from the constancy of
�k − mc2.

Hence, for positive times t and with t0 = 0+, we have
ϕ̂dec

k (t) given by Eq. (33) with b̂k = ϕ̂k,+, and ϕ̂dr
k (t) given by

Eq. (34). Using the fact that the source term Ŝ has a white-noise
profile, at all times t > 0 one has

Tr
(
ρ̂0ϕ̂

dec
k ϕ̂dr

−k

) = Tr
[
ρ̂0ϕ̂

dec
k

(
ϕ̂dr

k

)†] = 0. (57)

2In this case, the change is specified by one parameter. Two-
parameter changes can be considered by changing both 
 and F0

while keeping their ratio constant. This can still be generalized by
changing both ωp and E0 while keeping ωp − E0 constant. In all
cases, the gluing of the background across the jump is easily done.
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For t,t ′ > 0, after the jump, the two-point correlation functions
defined in Eq. (37) then have the forms

G
ϕ†, ϕ
DCE (t,t ′,k)=(

nb
k,fe

−
|t−t ′ | + δnb
ke

−
(t+t ′))eiωk,+(t−t ′),

G
ϕ, ϕ

DCE(t,t ′,k)= c̄b
k,fe

−(
+iωk,+)|t−t ′| +cb
ke

−(
+iωk,+)(t+t ′).
(58)

Four independent and constant quantities are identified
in Eq. (58) through the time dependence of their associated
exponential factor, namely,

nb
k,f = v2

k,+,

c̄b
k,f = uk,+vk,+



 + iωk,+
,

δnb
k = Tr[ρ̂0 ϕ̂

†
k,+ ϕ̂k,+] − nb

k,f,

cb
k = Tr[ρ̂0 ϕ̂−k,+ ϕ̂k,+] − c̄b

k,f .

(59)

The first two quantities nb
k,f and c̄b

k,f give the final values once
the stationary state is again reached for the new parameters
after the jump: they have the same physical interpretation
as nb

k,st and c̄b
k,st defined in Eq. (42) and discussed at length

in the previous section. Instead, δnb
k and cb

k govern the time
dependence of the correlation functions in response to the
jump in the parameters. They involve two traces taken at a
time t = 0+ which are [see Eq. (56)]

Tr[ρ̂0ϕ̂
†
k,+ ϕ̂k,+] = (

α2
k + β2

k

)
nb

k,in + β2
k + 2αkβkRe

(
c̄b
k,in

)
,

Tr[ρ̂0ϕ̂−k,+ ϕ̂k,+ ] = α2
k c̄

b
k,in + β2

k

(
c̄b
k,in

)∗ + αkβk

(
2nb

k,in + 1
)
,

(60)

where

nb
k,in = v2

k,−, c̄b
k,in = 
uk,−vk,−


 + iωk,−
(61)

are the initial stationary values as predicted by Eq. (42).
More specifically, δnb

k is involved in the only decaying term
in Eq. (58) which oscillates, eiωk,+(t−t ′): physically, its equal-
time value δnb

k(t) = δnb
k e−2
t describes the number of extra

photons with respect to nb
k,f that are generated by the jump and

still present at time t . cb
k is instead involved in the only term

which is rotating as e−iωk,+(t+t ′): its equal-time value cb
k (t) =

cb
k e−2(
+iωk,+)t gives the instantaneous correlation between

these extra phonons: as it is illustrated in Fig. 4, these
nontrivial correlations can produce nonseparability at the level
of phonons. Studies of this physics for lossless systems were
reported in [16,20–22,25,47].

For completeness, it is useful to give explicit expression of
the corresponding quantities in the photon (rather than phonon)
point of view. Using again the Bogoliubov transformation
Eq. (24), one gets

na
k (t) = n

a,st
k,+ + e−2
t

{(
u2

k,+ + v2
k,+

)
δnb

k

− 2uk,+vk,+Re[cbe
−2iωk,+t ]

}
, (62a)

ca
k (t) = c

a,st
k,+ + e−2
t

{
u2

k,+cbe
−2iωk,+t

+ v2
k,+c∗

be
2iωk,+t − 2uk,+vk,+δnb

k

}
. (62b)

As expected, the Bogoliubov transformation is responsible
for temporal oscillations in these photonic quantities in
response to the jump: as compared to the atomic case [8],

0.0 0.5 1.0 1.5 2.0
0.05
0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35

k Ξin

R
e
G

FIG. 4. Separability of the phonon state after a sudden jump. The
oscillating solid line shows the equal-time Re[GDCE(t,t,k)] defined
in Eq. (63) for t = 3/mc2

in as a function of (normalized) phonon
momentum ξink. Nonseparable phonon states are found wherever the

lower envelope (dotted line), indicating G
ϕ†ϕ
DCE(t,t,k) − |Gϕϕ

DCE(t,t,k)|,
goes below 0. In the present case, the intrinsic imprecision ±|c̄b

k,f |
(dashed lines) does not significantly affect the identification of
nonseparable states. System and jump parameters: Min/m = 0.01,
c2

f /c
2
in = 2, and 
 = 0.03mc2

in.

oscillations are now damped at the loss rate 
 and tend to their
static values n

a,st
k,+ and c

a,st
k,+ for the final parameters after the

jump.

B. The observables

This last section is devoted to a discussion of possible
strategies aiming to extract the four quantities (i.e., six real
quantities) of Eq. (59) from accurate measurements of the
coherence functions of the cavity photon field. Two of them,
nb

k,f,c
b
k,f, characterize the final stationary state, while δnb

k,c
b
k

characterize the decaying properties of the state. Knowledge
of the four real quantities |cb

k |,δnb
k,n

b
k,f and |c̄b

k,f| allows
assessment of the nonseparability of the phonon state.

As a first example, we consider the equal-time combination
analogous to Eq. (40),

Re[GDCE(t,t,k)]

= nb
k,f + δnb

k e−2
t + Re
[
cb
k e2(
+iωk,+)t + c̄b

k,f

]
. (63)

For underdamped phonon modes such that ωk,+ > 
, this
quantity oscillates between maxima and minima given
by nb

k,f + δnb
k(t) + Re[c̄b

k,f] ± |cb
k (t)|: the function cb

k (t) =
cb
ke

−2
t can thus be extracted from the amplitude of oscil-
lations. The midpoint of the oscillations provides instead
information on nb

k(t) = nb
k,f + Re(c̄b

k,f) + δnb
ke

−2
t . This quan-
tity can be taken as an operative definition of the mean
occupation number. If one wishes to extract the δnb

k(t) =
δnb

ke
−2
t contribution from the correlation correction, one has

just to measure Re[GDCE(t,t)] for different times t : since it is
the only term that possesses this time dependence, δnb

k(t) is
therefore well defined. Hence, the only quantity affected by
c̄b
k,f is nb

k,f .
In terms of Re[GDCE(t,t,k)], the nonseparability condition

of Eq. (50) applied to phonon states, |cb
k (t)| � nb

k(t), is simply
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reexpressed as Re[GDCE(t,t,k)] � 0,3 up to error terms of
order O[c̄b

k,f ]. The simplicity of this condition arises from
the fact that GDCE(t,t,k) is the expectation value of normal-
ordered products of phonon operators b̂k,b̂

†
−k of Eq. (33). The

condition and its intrinsic imprecision are visually represented
in Fig. 4 by the two dashed lines.

In practice, optical measurements typically involve the
coherence function of a field. In our case, the second-order
coherence g2 is most important as it is the simplest to analyze.
Inserting the expectation values of Eq. (58) into Eqs. (38)
and (39), we immediately identify the stationary and the
decaying contributions,

g2,k(t,t ′) = e−
|t−t ′ |gst
2,k(t,t ′) + e−
(t+t ′)gdec

2,k(t,t ′). (64)

The time dependences of gst
2,k and gdec

2,k are of the forms

gst
2,k(t,t ′) = A1 cos[ωk,+|t − t ′| + θ1], (65a)

gdec
2,k(t,t ′) = A2 cos[ωk,+(t − t ′)]

+A3 cos[ωk,+(t + t ′) + θ3], (65b)

where the three constants are

A1e
−iθ1 = 2(uk − vk)2

[
nb

k,f + c̄b
k,f

] − 2vk(uk − vk),

A2 = 2(uk − vk)2δnb
k,

A3e
−iθ3 = 2(uk − vk)2cb

k .

(66)

From measurements of g2,k(t,t ′) at different times t,t ′, we
can thus extract five real quantities (out of the six physical
ones), namely, Re[cb

k ],Im[cb
k ],δnb

k,Imc̄b
k,f , and nb

k,f + Re[c̄b
k,f].

To disentangle nb
k,f from Re[c̄b

k,f], another observable, such as
the k component of the g1 function, is needed.

In Fig. 5 we represent the equal-time g2,k as a function
of t , for a given wave number kξin = 0.75 and the same
parameters as in the previous figures: for these values, the
initial value oscillates with amplitude A3 = 0.26 around
the mean value A1 cos(θ1) + A2 = −0.45. Its final value is
A1 cos(θ1) = −0.4. The threshold value of nonseparability is
reached when the minimum of the g2 crosses −0.53 ± 0.005.
Neglecting for simplicity the intrinsic imprecision due to
±|c̄b

k,f|, as in Ref. [21], losses make nonseparability disappear
within a time of the order of

tloss
.= ln

[(∣∣cb
k

∣∣ − δnk

)
/nk,f

]
/2
 � 1/4nk,f
, (67)

where the last inequality follows from Eq. (49) and applies
when 2nk,f � 1. In the present case, tloss
 � 0.16.

In Fig. 6, we represent the k dependence of the equal-time
g2, k function, at a time t = 3/mc2

in in two different cases: when
c2

f /c
2
in = 2 as in the former figure, but also when c2

f /c
2
in = 1/2,

i.e., when the final sound speed is divided by 2 rather than
multiplied by 2. In both cases, we use the same system
parameters as in the former figure. We observe two oscillating
functions, the minima of the upper one close to the maxima of
the lower one. Their common value is gst

2, k evaluated before the

3Notice that Re[GDCE(t,t ′,k)] coincides with the quantity
ωfGac(t,t ′,k) − 1/2 involving the anticommutator which is used in
Ref. [21] to assert the nonseparability of the phonon state.

0 5 10 15 20 25 30

0.55

0.50

0.45

0.40

0.35

t m cin2

g 2

FIG. 5. Time evolution of the Fourier-space second-order co-
herence of the photon field. The solid line shows the equal-time
g2, k(t,t ′) at t = t ′ for a given kξin = 0.75. In this case, the initial and
final values of the phonon occupation are respectively nb

st,k � 0.06
and nb

f,k � 0.14. An exponential convergence towards the final value
is apparent. The horizontal line represents the phonon separability
threshold: Nonseparability is found as long as the lower envelope
of the oscillating solid line stays below the horizontal line, whose
thickness shows the intrinsic imprecision ±|c̄b

k,f | of the mean
occupation number. The system and jump parameters are the same as
in Fig. 4.

jump; see Fig. 6 in Ref. [21] for more details. It is represented
by a dotted line. From the two envelopes of each curve, we
can measure the width on the oscillations A3e

−2
t , which
gives the k dependence of the strength of the correlations, and
the average value A1 cos(θ1) + A2. The two dashed curves in
Fig. 6 are the corresponding thresholds of nonseparability. In
both cases, there is a large domain of k where the state is
nonseparable.

To complete the study of the g2, we represent in Fig. 7
its spatial dependence on x − x′ after integration over k.
For the sake of simplicity, we restrict the study of g2 to a

0.0 0.5 1.0 1.5 2.0
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k Ξin

g 2

FIG. 6. Fourier-space second-order coherence of the photon field.
The two oscillating curves represent the equal-time g2, k(t,t) as a
function of normalized momentum kξin at a time t = 3/mc2

in after a
jump characterized by c2

f /c
2
in = 2 for the upper curve, and c2

f /c
2
in =

1/2 for the lower one. The two dashed curves give the separability
thresholds of these two cases: nonseparability is found whenever the
lower envelope (not represented here) of an oscillating solid line goes
below the corresponding dashed curve. The middle dotted curve is
the (common) value of g2, k before the sudden change. The system
parameters are the same as in Fig. 4.
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FIG. 7. Real-space second-order coherence of the photon field in
the one-dimensional case. We plot the equal-time g2(t,t,x − x ′) as a
function of the (normalized) spatial distance x − x ′ at t = 12/mc2

in

(dashed) and 18/mc2
in (solid). In addition to the negative peak at

x = x ′ due to repulsive interactions, the phonon pairs generated at
the jump are visible in the series of moving fringes with spatially
decreasing spatial period. Given the small value of 
/mc2

in = 0.03,
dissipative effects have a minor effect on the profiles shown here.
Separability features are hard to ascertain from this figure. The system
and jump parameters are the same as in Fig. 4.

one-dimensional geometry where photons are strongly con-
fined also along the y direction. None of the qualitative features
is however expected to be modified when going to higher
dimensions. In addition to the negative peak at x = x ′ due to
the repulsive interparticle interactions, we see a propagating
correlation pattern which is governed by the group velocity
vgr = ∂kωk where ωk is given in Eq. (25). As in the case of
equilibrium condensates [8,21], the fast oscillations at large
separations are due to the superluminal form of the dispersion
relation Eq. (25) in the high-momentum region. Low-momenta
modes k2/m < Mc2 propagate with a smaller velocity because
of the small but finite phonon mass and are responsible
for the long-wavelength oscillations that are visible at small
x − x ′. It is worth observing that dissipation introduce an extra
dissipative length scale Ld = c/
 in addition to the usual
healing length ξ = 1/mc: for the parameters of the figures,
we have Ld/ξin ∼ 30, which means that dissipation affects the
profiles of g2 only at large distances.

For the sake of completeness, we conclude the section with
a study of the first-order coherence function g1 as defined in
Eq. (44). In particular, we consider its Fourier-space form

g1,k(t,t ′) .=
∫

dx e−ik·xg1(x,t,x′ = 0,t′), (68)

which describes the photon momentum distribution (for t = t ′)
and the photon coherence in momentum space (for generic
t �= t ′). Experimentally, this quantity can be directly extracted
from the far-field angular distribution of the emitted light and
its coherence. Using Eq. (24), this quantity is given for k �= 0
by

g1,k(t,t ′) = eiωp(t−t ′){u2
kG

ϕ†ϕ(t,t ′; k) + v2
kG

ϕ†ϕ(t ′,t ; k)

− 2ukvkRe[Gϕϕ(t,t ′; k)] + v2
ke

−
|t−t ′|e−iωk (t−t ′)}.
(69)

When considering the state after a sudden change, the g1 splits
analogously to g2 in Eq. (64) into its stationary and its decaying
parts,

g1,k(t,t ′) e−iωp(t−t ′)

= e−
|t−t ′| gst
1,k(t,t ′) + e−
(t+t ′) gdec

1,k(t,t ′). (70)

Using Eq. (58), the two components define four independent
quantities

gst
1,k(t,t ′) = Re[B1e

−iωk,+|t−t ′|] + iB2 sin[ωk,+(t − t ′)],

(71a)

gdec
1,k(t,t ′) = B3

(
u2

k,+ + v2
k,+

)
cos[ωk,+(t − t ′)]

+ Re[B4e
−iωk,+(t+t ′)] − iB3 sin[ωk,+(t − t ′)],

(71b)

given by

B1 = u2
k,+nb

k,f + v2
k,+

(
nb

k,f + 1
) − 2uk,+vk,+c̄b

k,f,

B2 = nb
k,f − v2

k,+,

B3 = δnb
k,

B4 = −2uk,+vk,+cb
k .

(72)

These encode the six independent real quantities which
characterize the correlation functions of Eq. (58). Hence,
unlike the g2,k, the g1,k fully characterizes the bipartite state
k,−k.

In Fig. 8, we represent the equal-time g1,k(t,t), for tmc2
in =

3 and for the same parameters as in the previous figures.
Contrary to what was found for g2,k, the separability threshold
of Eq. (50) (nb

k = |cb
k |) does not simply enter in g1,k. In fact,

to extract it, we need both the upper and lower envelopes of
g1,k(t,t), called respectively Uk(t) and Lk(t). Violation of the
inequality

Lk(t) >
(uk,+ − vk,+)2Uk(t) + 2v2

k,+
(uk,+ + vk,+)2

(73)

0.0 0.5 1.0 1.5 2.0
0.0

0.2

0.4

0.6

0.8

1.0

k Ξin

g 1

FIG. 8. Momentum distribution of the cavity photons. The equal-
time g1,k(t,t) is plotted in momentum space at t = 3/mc2

in (solid line).
Dotted lines indicate its lower and upper envelopes. The phonon state
is nonseparable whenever the lower envelope goes below the dashed
line indicating the separability condition Eq. (73). The system and
jump parameters are the same as in Fig. 4.
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implies that the phonon state is nonseparable, i.e., nb
k(t) <

|cb
k (t)|. In the figure, the ratio of Eq. (73) is represented by

a dashed line. We again see the large domain of k where the
phonon state is nonseparable, namely, kξin > 0.6.

V. CONCLUSIONS

In this article, we studied the quantum fluctuations in
coherently pumped and spatially homogeneous photon fluids
in planar microcavities. Our attention is focused on the
simplest case of a quasiresonant coherent pump at normal
incidence on the microcavity, where the photon fluid is at rest
and the effective mass of phonon excitations on top of the
photon fluid is very small.

When the pump is monochromatic and stationary, the
system reaches a stationary state: most remarkably, even if
the environment is in its vacuum state, the stationary state of
the photon gas is not a vacuum state, but contains a finite
occupation of (almost) incoherent phonons. Even though the
phonon distribution qualitatively resembles a Planck law at
an effective temperature of the order of the interaction energy
in the fluid, the nonequilibrium nature of the system leads to
quantitatively significant deviations and to violations of the
standard fluctuation-dissipation relations.

When the system parameters are suddenly modulated in
time, entangled pairs of extra phonons are created in the
fluid via processes that are the analogs of cosmological
pair production or the dynamical Casimir effect. Due to
the dissipation, these phonons eventually decay while the
system relaxes to a new stationary state. Accurate information
on the properties of these extra phonons can be obtained
from measurements of the time dependence of the first- and
second-order coherence functions of the cavity photons, which
can be used to assess the quantum nonseparability of the
phonon state after the jump.

The conclusions of this work will provide crucial informa-
tion in view of studies of the quantum entanglement properties
of the Hawking emission of phonons from acoustic black-hole
horizons in photon fluids.
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APPENDIX A: FLUCTUATION-DISSIPATION RELATION

We saw in Sec. III that the stationary state of phonons
when the photon fluid is in its steady state in contact with
the environment is not thermal. This might appear at a first
glance as quite surprising since under very general conditions,
systems weakly interacting with a large stationary reservoir
reach a thermal equilibrium state as is guaranteed by the

fluctuation-dissipation (FD) relations [48,49]. In this appendix,
we shall see that the violation of the FD relation stems from
the fact that our system is externally driven by the coherent
laser pump with a finite frequency ωp.

To show that this violation is not due to some approxima-
tion, we use the exact Heisenberg equation of motion without
performing the Markov approximation used in the body of the
text. From Eqs. (13) and (16), in the place of Eq. (20), the
exact equation for linear perturbations is

i(∂t + 
)φ̂k(t) = �kφ̂k(t) + mc2φ̂
†
−k(t) + Ŝk(t)

|�0|
− i

∫
dt ′D(t − t ′)eiωp(t−t ′)[φ̂k(t ′) − φ̂k(t)].

(A1)

Using Eq. (27) to express Ŝk in terms of the destruction
operators ĉ(k,ζ ) of the environment, and working in Fourier
transform to exploit the stationarity of the situation, the
equation takes the form

O1(ω) φ̂ω
k + O2(ω)

(
φ̂−ω

−k

)†
=

∫
dζgζ δ(ω + ωp − ωζ )ĉ(k,ζ ). (A2)

Using the complex conjugated equation for −ω,−k to elimi-
nate (φ−ω

−k )†, we get

[O1(ω) O∗
1 (−ω) − O2(ω) O∗

2 (−ω)]φ̂ω
k

=
∫

dζgζ [δ(ω + ωp − ωζ )O∗
1 (−ω)ĉ(k,ζ )

+ δ(ω − ωp + ωζ )O2(ω)ĉ(−k,ζ )†]. (A3)

Making the Bogoliubov transformation of Eq. (24) to get the
equation for the phonon field ϕ̂ω

k simply amounts to replacing
in the above equation Oi by ukOi − vkO3−i , for i ∈ {1,2}.
Hence, the same type of expression applies to ϕ̂ω

k , or, more
generally, to any linear superposition (even ω dependent) of
φ̂ω

k and (φ̂−ω
−k )†.

We now remind the reader that the FD relation trivially
applies at the level of the operators of the environment.
Namely, when working in a thermal state, one has

Tr[ρ̂{ĉ(k,ζ ),ĉ(k,ζ )†}]
[ĉ(k,ζ ),ĉ(k,ζ )†]

= coth
βωζ

2
, (A4)

as can be immediately verified by computing the commutator
and the expectation value of the anticommutator of ĉ(k,ζ ) and
ĉ(k′,ζ ′)†.

When the pump frequency ωp = 0, the situation is simple:
Because of the Dirac δ function in Eq. (A3), and because the
energy of the environment modes ωζ is positive for all ζ , for
ω > 0, φ̂ω

k is driven only by the destruction operator ĉ(k,ζ )
with ωζ = ω. Then, using Eq. (A4), a direct evaluation gives

Tr
(
ρ̂

{
φ̂ω

k ,
(
φ̂ω

k

)†})
[
φ̂ω

k ,
(
φ̂ω

k

)†] = coth
βω

2
, (A5)

irrespective of the values of O1(ω) and O2(ω). This is the
standard FD relation.
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When ωp �= 0, to get a concise expression, as in Ref. [33], it is useful to introduce the effective density of states J (ω) through
dζ g2

ζ = dωζ J (ωζ ). A direct evaluation then gives

Tr
(
ρ̂ {φ̂ω

k ,φ̂
†,ω
k })[

φ̂ω
k ,φ̂

†,ω
k

] = |O1(−ω)|2 J (ωp + ω) coth β(ωp + ω)/2 − |O2(ω)|2 J (ωp − ω) coth β(ωp − ω)/2

|O1(−ω)|2 J (ωp + ω) − |O2(ω)|2 J (ωp − ω)
. (A6)

We see that a FD relation is recovered only if O2(ω)J (ωp −
ω) = 0. In such a case, the argument in the coth in the right-
hand side of Eq. (A6) is displaced as if there were a chemical
potential μ = −ωp.

For a general environment, all frequencies ωζ are positive
and cover the whole ω > 0 region, so J (ω) vanishes only
for ω < 0. As a result, the O2(ω)J (ωp − ω) = 0 condition
requires either working at very high frequencies ω > ωp

outside the region of interest for quantum hydrodynamics,
or having O2(ω) = 0, that is, a vanishing interaction between
photons.

APPENDIX B: SEPARABILITY AND CAUCHY-SCHWARZ
INEQUALITIES

The notion of nonseparability for a two-mode system has
been introduced by Werner [45]. A state is defined as separable
when it can be written as a statistical superposition of products
of two one-mode states. For homogeneous systems, the two
modes correspond to the ±k components of some field, and the
density matrix ρk in the kth two-mode subspace is separable
if it can be written as

ρk =
∑

n

pnρn,k ⊗ ρn,−k, (B1)

where pn > 0 are probabilities, and ρn,i are the density
matrices of quantum states for the ±k subsystems. Because
the Bogoliubov transformation of Eq. (24) mixes the k and
−k sectors, it may happen that a state is separable if viewed
in terms of photon operators âk but nonseparable if viewed in
terms of phonon operators ϕ̂k, and vice versa. As an example,
the 
 → 0 stationary state of Sec. III is indeed separable in
term of the phonon operators ϕ̂k and nonseparable in term of
the photon operators âk.

We now show that the nonseparability criterion of Eq. (50)
based on the phonon ϕ̂k operators is equivalent to the violation
of a Cauchy-Schwarz (CS) inequality for phonon operators.
We consider the modified equal-time second-order correlation
which is obtained from the standard photonic one g2,k(t,t ′) by

gb
2,k(t,t ′) .= g2,k(t,t ′) + 2vk(uk − vk)Re[ϕ̂k(t),ϕ̂†

k(t ′)]

= 2 (uk − vk)2 Re[G(t,t ′,k)]; (B2)

subtraction of the contribution of the commutator in this
expression is equivalent to taking the normal ordering with
respect to the phonon operators b̂k of Eq. (33), hence the b

superscript in the above notation. In terms of this quantity, the
CS inequality reads

Dk(t,t ′) = gb
2,k(t,t)gb

2,k(t ′,t ′) − ∣∣gb
2,k(t,t ′)

∣∣2

4 (uk − vk)4 � 0. (B3)

No violation of Eq. (B3) can occur in classical statistical
physics. In the absence of dissipation, the phonon mean
occupation number nb

k and correlation term cb
k are both well

defined, and constant before and after a sudden jump. Using
these two quantities, one obtains

Dk(t,t ′) = [(
nb

k

)2 − ∣∣cb
k

∣∣2]
sin2[ωk(t − t ′)]. (B4)

Hence, the CS inequality is violated if and only if the state is
nonseparable (when sin[ωk(t − t ′)] �= 0).

In the presence of dissipation, as discussed in the main
text of the article and in Sec. IV B of Ref. [21], the coupling
of the phonon field ϕ̂ to an environment introduces intrinsic
ambiguities in the definition of nonseparability. Nevertheless,
decomposition ϕ̂ at any time t over instantaneous destruction
and creation operators b̂k,b̂

†
−k allows one to show that for


(t − t ′) � 1, the above relation between the sign of Dk(t,t ′)
and the nonseparability criterion based on these operators
remains valid to leading order in 
/ωk . Accepting this inherent
uncertainty of order 
/ωk � 1, one can then follow how
nonseparability is progressively lost as time goes on. This
physics is illustrated in Fig. 9: the quantity in Eq. (B3)
displays three different behaviors depending on the values of
t,t ′ compared to the characteristic time tloss of Eq. (67).

0 2 4 6 8 10
0

2

4

6

8

10

t

t'

FIG. 9. (Color online) Plot of the Cauchy-Schwarz criterion
Eq. (B3) as a function of t,t ′ for k = 1.5mcin. Dark blue regions
indicate values below −10−4 that significantly violate the inequality.
White regions indicate values larger than 10−4. Light blue regions
indicate values close to 0. The system and jump parameters are the
same as in Fig. 4.
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(1) For (t,t ′) � tloss, no violation is observed, because the
state is separable, as expected.

(2) For t � tloss � t ′, Eq. (B3) can be violated only for
t such that gb

2,k(t,t) < 0, because gb
2,k(t ′,t ′) > 0. Along a

constant-t ′ cut, the reader will recognize the behavior already
seen in Fig. 5.

(3) For t,t ′ � tloss and 
/ω2
k � |t − t ′| � 1/ωk , Eq. (B3)

is violated. This is the most robust regime for nonseparability.
Note that besides the transition from point 2 to point 3, there

is always a narrow band |t − t ′| � 
/ω2
k where the inequality

is never violated with a positiveness of order 
/ωk . As a result,
a two-time measurement of gb

2,k(t �= t ′) is required to identify
nonseparable states.

We conclude this Appendix with a short discussion of
the standard momentum-space CS inequality for photon âk
operators; see [24] or [23] for its atomic counterpart. In terms
of the momentum-space second-order photon coherence4

G2(k,k′) = Tr(ρ̂a
†
ka

†
k′akak′ ). (B5)

4Note that this quantity should not be confused with g2,k(t,t ′)
defined in Eq. (39) as the Fourier transform of the real-space
g2(x,t,x′,t ′).

Its explicit form is

[G2(k,k′)]2 � G2(k,k)G2(k′,k′), (B6)

Physically, this quantity describes the correlations between the
fluctuations of the photon occupation numbers in the modes
k and k′. Thanks to the Gaussian nature of the state, we can
apply the Wick theorem and expand this expression in terms
of quadratic operators. For homogeneous states, we get

G2(k,k′) = δk+k′
∣∣ca

k

∣∣2 + δk−k′
(
na

k

)2 + na
kn

a
k′ . (B7)

For k′ = −k, the CS condition Eq. (B6) is then equivalent to
the separability condition Eq. (50) applied to photon operators.
Inserting the explicit form of the photon correlations Eq. (51),
it is immediate to see that the CS inequality for the photon
field is indeed violated for k′ = −k even in the stationary
state.

Note that this result is not peculiar to the driven-dissipative
case, but is also found in the ground state of equilibrium
Bogoliubov theory. It has a straightforward physical interpre-
tation if one recalls that the finite-k photons originate from
a parametric scattering process where two pump photons at
kp = 0 scatter into the ±k states.
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