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Interactions of spatial solitons with fused couplers

Alon Harel and Boris A. Malomed
Department of Physical Electronics, School of Electrical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv 69978, Israel

(Received 8 January 2014; published 7 April 2014)

We study dynamical and stationary states of solitons in dual-core waveguides which are locally coupled
(fused) at one or several short segments. The model applies to planar optical waveguides, and to Bose-Einstein
condensate in dual traps. Collisions of an incident soliton with single and double locally fused couplers are
investigated by means of systematic simulations and several analytical methods (quasilinear, fast-soliton, and
adiabatic approximations). Excitation dynamics of a soliton trapped by a local coupler is studied by means of the
variational approximation, and verified by simulations. Shuttle motion of a soliton trapped in a cavity between
two local couplers, and in a finite array of couplers, is studied too.
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I. INTRODUCTION

One of basic types of optical waveguides is represented by
dual-core couplers, in which parallel guiding cores interact via
evanescent fields [1]. If the intrinsic nonlinearity in the cores is
strong enough, the power exchange between them is affected
by the intensity of the guided signals [2], which is a basis for the
design of all-optical switching devices [3–5] and other appli-
cations, such as nonlinear amplifiers [6], stabilization of WDM
(wavelength-division-multiplexed) transmission schemes [7],
and logic gates [8]. In addition to the simplest dual-core
system, realizations of nonlinear couplers have been proposed
in many other settings, including the use of orthogonal
polarizations of light [9]; semiconductor waveguides [10];
twin-core Bragg gratings [11,12]; systems with saturable [13],
quadratic [14,15], and cubic-quintic (CQ) [16] nonlinearities;
plasmonic media [17], dual-core traps for matter waves in
Bose-Einstein condensates (BEC) [18,19], parallel arrays of
discrete waveguides [20], nonlocal intracore nonlinearity [21],
couplers for spatiotemporal “light bullets” in dual-core planar
waveguides [22], and PT -symmetric nonlinear couplers [23].

A fundamental property of nonlinear couplers with sym-
metric cores is the symmetry-breaking bifurcation (SBB),
which destabilizes obvious symmetric modes and gives rise to
asymmetric ones. The SBB was analyzed, at first, for spatially
uniform states [24], and then for solitons in twin-core regular
waveguides [25–28] and Bragg gratings [11] with the Kerr
(cubic) nonlinearity (see also an early review [29], and a more
advanced one [30]). The SBB analysis was then extended
to solitons in couplers with the quadratic [14] and CQ [16]
nonlinearities.

The Kerr nonlinearity in the dual-core system gives rise
to the subcritical SBB for solitons, with originally unstable
branches of emerging asymmetric modes going backward
(to weaker nonlinearity) and then turning forward [31].
The asymmetric modes retrieve the stability at the turning
points. On the other hand, the supercritical SBB gives
rise to stable branches of asymmetric solitons going in the
forward direction. The SBB of the latter type occurs in
twin-core Bragg grating [11], and in the case of the quadratic
nonlinearity [14]. The system with the CQ nonlinearity gives
rise to a bifurcation loop, whose shape may be concave or
convex [16].

Along with to the numerical analysis of soliton modes
in nonlinear dual-core systems, the SBB point was found
in an exact analytical form for the system with the cubic
nonlinearity [25], and the emerging asymmetric modes were
studied by means of the variational approximation (VA) (see
original works [4,11,13,14,22,26] and review [30]).

In addition to the studies of solitons in uniform dual-core
systems, analysis was also developed for fused couplers, in
which the two cores are joined in a narrow segment [32].
In the simplest approximation, the corresponding dependence
of the coupling strength on transverse coordinate x may be
approximated by the delta function, δ(x). In previous works,
interactions of solitons with such a locally fused segment
were studied in the temporal domain, viz., for bright [32,33]
and dark [34] solitons in dual-core optical fibers and fiber
lasers [35]. In that case, the coupling affects the solitons only
over a short interval of their evolution.

Another possibility, which was discussed earlier for various
types of optical media [36,37], is to consider the spatial-
domain dynamics of optical signals carried by dual-core planar
waveguides with short fused segments. Such structures can be
molded using polymer materials [38], or built into photonic
crystals by means of techniques proposed in Ref. [39]. Similar
structures are available in plasmonics [40]. An alternative is to
use virtual dual-core guiding patterns, written in photorefrac-
tive media by means of strong pump beams, on top of which
probe beams propagate [41]. In such settings, one can consider
both stationary spatial solitons trapped by the fused segment of
the coupler, and scattering of incident spatial solitons on one or
several fused segments. This is the subject of the present work.

The paper is organized as follows. The model is formulated
in Sec. II, where we also indicate that it additionally applies
to matter-wave couplers for trapped BEC. Collisions of the
incident soliton with a local coupler are studied in Sec. III, by
means of systematic simulations and three analytical methods,
which are relevant in different parametric regions (quasilinear,
fast-soliton, and adiabatic approximations). Stationary and
excited states of a soliton trapped by the local coupler are
considered in Sec. IV, using the VA in combination with a
numerical approach. Shuttle oscillations of a soliton trapped
between two separated couplers, and in a finite array of
couplers, are studied in Sec. V. The paper is concluded by
Sec. VI.
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II. THE MODEL

The propagation of electromagnetic waves with amplitudes
u (x,z) and v (x,z) along direction z in the dual-core planar
nonlinear waveguide, fused along a narrow stripe around x =
0, which is approximated by the δ function (see a schematic
shape of the fused coupler in Fig. 1), obeys coupled nonlinear
Schrödinger (NLS) equations, that can be derived in the scaled
form, following the lines of Ref. [42]:

i
∂u

∂z
= −1

2

∂2u

∂x2
− |u|2u − δ (x) v, (1)

i
∂v

∂z
= −1

2

∂2v

∂x2
− |v|2v − δ (x) u. (2)

Here the second derivatives represent the paraxial diffraction
in the transverse direction (x), and the equations are scaled
so as to make the coefficients in front of the nonlinear and
coupling terms equal to 1. These equations can be derived
from Lagrangian L = ∫ +∞

−∞ L dx, with density

L = i

2
(u∗uz − u∗

zu) − 1

2
|ux |2 + 1

2
|u|4 + i

2
(v∗vz − v∗

z v)

− 1

2
|vx |2 + 1

2
|v|4 + δ(x)(u∗v + v∗u). (3)

To relate the scaled form of the model to physical units,
one can follow the standard derivation procedure, starting
from the wave equation for the electromagnetic fields in
the dual-core waveguide [1,42,43]. Straightforward analysis
yields the following relation between length l of the fused
segment, which is approximated by the δ functions in Eqs. (1)
and (2), the coupling length of the fused waveguide, Zcoupl,
wavelength λ, and characteristic scale X0 used for the rescaling
(it implies that the characteristic spatial width of solitons in
physical units is ∼X0):

l ∼ λZcoupl/ (2πX0) . (4)

For relevant values Zcoupl ∼ 1 mm [42,43] and the typical
width of the spatial soliton X0 ∼ 50 μm, Eq. (4) demonstrates
that the typical length of the fused segment is l ∼ 3λ, which is
quite realistic in terms of the experimental fabrication of the
couplers [44].

z

x

1st core

2nd core

FIG. 1. A schematic structure of the fused planar coupler.

Coupled equations (1) and (2) were simulated using the
standard split-step Fourier-transform algorithm, with δ(x)
approximated by a narrow Gaussian, δ̂ (x), which is subject to
the normalization condition,

∫ +∞
−∞ δ̂ (x) dx = 1. The width of

the regularized δ function was chosen to be essentially smaller
than the width of the solitons considered below. We have
checked that, under this condition, results of the simulations
practically do not depend on the regularization width.

A pair of two locally fused couplers, separated by distance
D, is described by the NLS equations with the δ functions
multiplied by 1/2, hence the system with D = 0 goes over
back into Eqs. (1) and (2):

i
∂u

∂z
= −1

2

∂2u

∂x2
− |u|2u − 1

2

[
δ

(
x − D

2

)
+ δ

(
x + D

2

)]
v,

(5)

i
∂v

∂z
= −1

2

∂2v

∂x2
− |v|2v − 1

2

[
δ

(
x − D

2

)
+ δ

(
x + D

2

)]
u.

(6)

Further, an array built of 2N + 1 couplers is described by the
extension of Eqs. (5) and (6) with

1

2

[
δ

(
x − D

2

)
+ δ

(
x + D

2

)]
→ C

N∑
n=−N

δ (x − nD) ,

(7)

where C is a coupling constant. For solitons whose width is
much larger than the array’s spacing, D, the comb structure in
Eq. (7) may be approximated by a uniform coupling constant,
C̄ ≡ C/D, which acts inside the corresponding box,

|x| � Xbox ≡ ND. (8)

It is relevant to mention that Eqs. (1), (2), (5), and (6), with
z replaced by time t , are also meaningful as Gross-Pitaevskii
equations (GPEs) for BEC loaded into parallel cigar-shaped
traps, i.e., matter-wave couplers [18,19]. In that case, the local-
ized coupling may be induced by a transverse laser beam [45].
Analyzing the derivation starting from the underlying three-
dimensional GPE [46], it is straightforward to arrive at a
relation between the length of the fused area (l), characteristic
scale X0 (which, as well as in the case of the optical system,
determines the spatial size of the corresponding matter-wave
solitons), and radius a⊥ of the transverse confinement of the
BEC in the quasi-one-dimensional trap, all taken in physical
units:

l ∼ a2
⊥/X0 (9)

[cf. Eq. (4)]. For typical values a⊥ ∼ 3 μm and X0 ∼
10 μm [47], Eq. (9) yields l ∼ 1 μm, which is a relevant
estimate for the size of the area induced by a focused laser
beam.
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FIG. 2. Collision of an incident soliton with the fused coupler, for η = 0.8 and q = 1 [see Eq. (10)], in the straight (a) and cross (b) cores.

III. COLLISIONS OF THE SOLITON WITH
THE SINGLE COUPLER

A. Numerical results

The collision of the incident soliton, launched in the straight
(u) core, with the local coupler was simulated using Eqs. (1)
and (2) with the regularized δ function and the following initial
conditions:

u (x) |z=0 = η sech [η (x − ξ0)] exp (iqx) ,v (x) |z=0 = 0.

(10)

Here η is the amplitude of the soliton, q is its velocity [in fact,
the tilt of the spatial soliton in the (x,z) plane], and ξ0 < 0
with large |ξ0| � 1/η is the initial position. The total power of
the incident soliton is P ≡ ∫ +∞

−∞ [|u(x)|2 + |v(x)|2]dx = 2η.

As shown in Fig. 2, the soliton-coupler interaction gives
rise to five waves: transferred (uT ) and reflected (uR) ones in
the straight core; their counterparts, vT and vR , in the cross
(second) core; and a trapped mode oscillating between the two
cores in a vicinity of x = 0. Obviously, powers of these waves
must obey the conservation relation:

P (uT ) + P (uR) + P (vT ) + P (vR) + Ptrap = 2η. (11)

Results of systematic simulations are summarized in Fig. 3,
which demonstrates the splitting of the total power of the
incident soliton between the five components. In particular, the
power shares carried by the transmitted and reflected waves
in the cross core, vT and vR , are equal, which is explained
below. Panel (d) in this figure demonstrates strong trapping
for slowly moving (q � 1) heavy (η � 2.5) incident solitons.
At larger velocities, the interaction of the soliton with the local
coupler naturally weakens, and the power is chiefly transferred
in the straight core, as seen in panel (b). Lighter incident
solitons, with η � 1, do not generate the trapped mode, being
reflected in the straight core at q � 0.5, or transferred to the
cross core, where they are evenly split into the transmitted and
reflected components, at q � 0.5. For heavy solitons, with η �
3, panels (b) and (d) exhibit a threshold value of the velocity,

qthr, which is a sharp boundary between the trapping at q < qthr

and transmission at q > qthr.

B. The quasilinear approximation

The nonlinearity in Eqs. (1) and (2) may be neglected in
comparison with the coupling terms if the potential energy
of the nonlinear self-interaction is much smaller than the
intercore coupling energy, which in the present notation
implies η 	 1. Then, the substitution of {u (x,z) ,v (x,z)} =
exp (ikz) {U (x),V (x)}, with propagation constant k, into the
linearized version of Eqs. (1) and (2) leads to the scattering
problem based on the stationary equations,

k {U,V } = 1

2

d2

dx2
{U,V } + δ (x) {V,U} . (12)

A solution to these equations, with wave number q [cf.
Eq. (10)] and the respective value of the propagation constant,

k = −q2/2, (13)

is sought for as

U (x) =
{
UI exp (iqx) + UR exp (−iqx) , x < 0
UT exp (iqx) , x > 0,

(14)

V (x) =
{
VR exp (−iqx) , x < 0
VT exp (iqx) , x > 0.

(15)

The amplitudes of the incident, transmitted, and reflected
waves are related by conditions of the continuity of U (x)
and V (x) at x = 0, UI + UR = UT , VR = VT . With regard to
this relation, the jump of the first derivatives following from
integration of Eq. (12) in an infinitesimal vicinity of x = 0
yields another pair of equations for the scattering amplitude,
which amount to the form of VT = iq−1UT = −iqUR .

A trapped mode may also be generated by Eq. (12): U =
V = U0 exp (−|x|), where U0 is an arbitrary amplitude, and the
corresponding propagation constant is ktrap = 1/2. Because
it is separated from values (13), the trapped mode gives no
contribution to the linear scattering problem.
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FIG. 3. (Color online) Fractions of the power of the incident soliton reflected (a) and transmitted (b) in the straight core, scattered
(transmitted = reflected) in the cross core (c), and trapped by the fused coupler (d), vs the velocity and amplitude of the incident soliton, q and
η. The powers obey the balance condition (11).

It is straightforward to find a solution to the continuity and
jump equations for the amplitudes:

UR = (q2 + 1)−1UI ,UT = −(q2 + 1)−1q2UI , (16)

VR = VT = −i(q2 + 1)−1qUI . (17)

This solution satisfies the power-balance condition [see
Eq. (11)] and explains the above-mentioned symmetry be-
tween the transmitted and reflected waves in the cross core.
Further, in Fig. 4 the comparison of the solution, given by
Eqs. (16) and (17), to the numerical results for the scattering
of the soliton with a sufficiently small amplitude, η = 0.1,
demonstrates a very close agreement between the numerical
and analytical results.

C. The interaction of a fast soliton with the local coupler

Another analytical approximation applies to the collision
of a fast soliton with the local coupler, when the incident
soliton itself remains almost unaffected by the interaction,
while generating weak transmitted and reflected waves in
the cross core. In the present notation, this case amounts to
taking q ≡ Q � 1 in initial condition (10) [q is replaced here
by Q to distinguish it from the wave number in dispersion
relation (13)]. The corresponding incident NLS soliton is

u = η sech [η (x − Qz)] eiQx exp
[

1
2 iz(η2 − Q2)

]
, (18)

while Eq. (2) for the cross core may be linearized:

i
∂v

∂z
+ 1

2

∂2v

∂x2
= −δ (x) u. (19)
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FIG. 4. (Color online) Comparison of the power ratios, given by
the analytical solution of the linear scattering problem, as per Eqs. (16)
and (17) (curves), to their counterparts produced by direct simulations
(chains of symbols) for the small-amplitude soliton with η = 0.1.

Thus, soliton (18), if substituted in Eq. (19), gives rise
to a localized source generating waves in the cross core. As
suggested by dispersion relation (13), the source generates
two distinct components of solutions, viz., radiation, with
k < 0, and trapped (nonpropagating) modes with k > 0. The
so generated wave field can be calculated by means of the
Fourier transform. A final result is rather cumbersome, as
the emerging integrations cannot be performed analytically.
It takes a relatively simple form at x = 0, where both radiation
and trapped fields have their maxima:

vtrap (x = 0,z)

= − i

2Q

∫ ∞

0

√
2

k
sech

[
π

2ηQ

(
k + Q2 − η2

2

)]
eikzdk

≈ [1 − i sgn(z)]
√

π

2Q
√|z| sech

(
π (Q2 − η2)

4ηQ

)
, (20)

vrad (x = 0,z)

= i

2Q

∫ 0

−∞

√
2

−k
sech

[
π

2ηQ

(
k + Q2 − η2

2

)]
eikzdk

≈ [1 + i sgn(z)]
√

π

2Q
√

z
sech

(
π (Q2 − η2)

4ηQ

)
. (21)

The asymptotic approximations in Eqs. (20) and (21) are valid
for |z| � (ηQ)−1. Because the present situation is actually
considered for large Q and large η, the latter approximations
are always relevant, as a matter of fact.

This prediction is compared to results of direct simulations
in Fig. 5, where a close agreement is seen. At much
larger values of z, the trapped radiation does not follow the
asymptotic behavior predicted by Eq. (20), as a broad soliton
eventually self-traps in the cross core.
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FIG. 5. (Color online) Comparison of the analytical results,
given by Eqs. (20) and (21), to their numerical counterparts for
the absolute values of the trapped (main plot) and radiation (inset)
components of the field in the cross core at x = 0, produced by
the passage of a fast heavy soliton (18), with Q = 8, η = 10,
through the local coupler. The comparison is shown for z > 0, as
at z < 0 (before the soliton passes the fused coupler) it is difficult to
separate the numerically generated field into the radiation and trapped
components.

D. The adiabatic approximation

In addition to the collision of fast incident solitons with
the local coupler, analytically tractable is also the case of
a relatively slow heavy soliton, with large η and q 	 η in
Eq. (10). Accordingly, the soliton moving in the straight core
is similar to the one given by Eq. (18),

u = η sech {η [x − ξ (z)]} exp(iξ ′x) exp
(

1
2 iz�

)
, (22)

where ξ ′ ≡ dξ/dz and � ≡ (η2 − ξ ′2). Further, the field
equation in the cross core may be linearized as in Eq. (19)
and, accordingly, the solution component in this core, driven
by the soliton’s field (22) via the local coupler, is easily found
in the adiabatic approximation, which treats ξ (z) as a relatively
slowly varying function, and omits ξ ′2 in comparison with η2:

v (x,z) = exp(iη2z/2)sech [ηξ (z)] exp (−η|x|) . (23)

The comparison with direct simulations, displayed in Fig. 6,
demonstrates that the amplitude and shape of expression (23)
are very close to those of the v component of the numerical
solution up to the point of ξ (z) = 0, where the incident soliton
hits the local coupler. Afterwards, a deviation emerges because
the v component does not completely vanish, as is formally
predicted by Eq. (23) at ξ (z) → ∞.

Two terms in Lagrangian density (3) contribute to the
interaction between the incident soliton and the local coupler.
First, the coupling term generates the attraction potential,

Wcoupl ≡ −
∫ +∞

−∞
δ (x) (u∗v + v∗u)dx = −2η sech2 (ηξ ) ,

(24)
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FIG. 6. (Color online) The comparison of the amplitude of the
v component of the soliton, predicted by Eq. (23) in the adiabatic
approximation, to its counterpart produced by direct simulations, for
amplitude η = 4 and initial velocity q = 0.456. The inset shows the
comparison of full profiles of the v component at z = 0, when the
soliton is passing the local coupler.

where use was made of Eqs. (22) and (23). Second, the gradient
energy of component (23) gives rise to an effective repulsive
potential, Wgrad ≡ 1

2

∫ +∞
−∞ |vx |2dx = 1

2η sech2 (ηξ ). Thus, the
net potential of the interaction of the soliton with the local
coupler is attractive:

Wtot(ξ ) ≡ Wcoupl + Wgrad = − 3
2η sech2 (ηξ ) . (25)

The incident soliton accelerates under the action of this
attraction force and attains the largest velocity while passing
the local coupler (ξ = 0). In the case of a small initial velocity,
q2 	 1 [see Eq. (10)], the velocity of the heavy soliton passing
the coupler is thus predicted by the energy-balance condition,
(M/2)(ξ ′

max)2 = −Wtot(ξ = 0), where the soliton’s mass is
M = 2η. Thus, Eq. (25) predicts ξ ′

max = √
3/2. The prediction

is in agreement with direct simulations, which demonstrate that
this velocity ranges between 1.1 and 1.2.

In the adiabatic approximation, the reflection of the soliton
from the local coupler, which is represented by the potential
well given by Eq. (25), cannot be explained, although a
reflection area is clearly present in Fig. 3 at η � 1, q � 0.3,
and an example of periodic reflections is displayed below in
Fig. 12 for η = 0.6, q = 0.4 (in those cases, the adiabatic
approximation is not relevant, as η is too small). Actually, it is
known that reflection of solitons from attractive potentials is
possible beyond the framework of the adiabatic approximation,
if the interaction of the soliton with the trapped mode and
radiation waves is taken into regard [48].

IV. STATIONARY AND EXCITED MODES TRAPPED BY
THE LOCAL COUPLER

A. The stationary modes

Analytical trapped-mode (soliton) solutions to stationary
equations (12) with k > 0, which also include the nonlinear
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FIG. 7. (Color online) Exact stationary solutions for the symmet-
ric and asymmetric trapped modes, as given by Eqs. (26) and (27), are
represented by continuous curves. Numerically found counterparts of
these solutions are shown by chains of symbols [the respective values
of ξ and ζ are identified via U (x = 0) and V (x = 0) as per Eq. (26)].
The dashed line shows the unstable portion of the symmetric-solution
family.

terms U 3 and V 3, were found in Ref. [37], in the form of

{U (x) ,V (x)} =
√

2k sech[
√

2k(|x| + {ξ,ζ })]. (26)

For the symmetric trapped mode, positive constant ξ = ζ is
determined by equation tanh(

√
2kξ ) = (2k)−1/2, hence the

symmetric mode exists at k > 1/2. On the other hand, as
said above, the SBB in the nonlinear coupler gives rise to
asymmetric solitons, which in the present case happens at
kSBB = 3/2, and at k > 3/2 there exists a pair of asymmetric
solutions, which are mirror images of each other. They are
given by Eq. (26) with

sech2(
√

2k{ξ,ζ }) = (4k)−1(2k + 1 ±
√

4k2 − 4k − 3).

(27)

As shown in Ref. [37], this SBB is of the supercritical
type, but these analytical predictions were not compared
to numerical solutions before, therefore we have done it
here (see Fig. 7). Further, the simulations demonstrate that
the symmetric solution at 1/2 < k < 3/2, as well as the
asymmetric ones at k > 3/2, are stable, while the symmetric
solution is unstable at k > 3/2, as expected in the case of the
supercritical bifurcation [31].

B. The variational approximation for excited modes

In addition to stationary solutions (26) for trapped modes,
it is relevant to analyze excited states of such modes. This can
be done on the basis of the variational ansatz,

u (x,z) = η sech {η [x − ξ (z)]} exp [iφ(z)] , (28)

v (x,z) = θ sech {θ [x − ζ (z)]} exp [iψ(z)] , (29)
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where η, θ and φ, ψ are (constant) amplitudes and phases of
the two components, while ξ and ζ represent excitations in
the form of shifts of the components from the central position,
x = 0.

Evolution equations for the so excited mode can be derived
as Newton’s equations of motion for two interacting particles
corresponding to the u and v components, which is equivalent
to the VA [30]. To this end, we note that potential (24) of the
coupling between the components yields, in the present case,
Wcoupl = −2ηθ sech (θζ ) sech (ηξ ) cos (φ − ψ) . The corre-
sponding equations of motion are M{u,v}d2 {ξ,ζ } /dz2 =
−∂Wcoupl/∂ {ξ,ζ }, where the above-mentioned effective soli-
ton masses are M{u,v} = 2 {η,θ}. Thus, the equations take the
form of

d2ξ

dz2
= −ηθ

sinh (ηξ ) cos (φ − ψ)

cosh2 (ηξ ) cosh (θζ )
, (30)

d2ζ

dz2
= −ηθ

sinh (θζ ) cos (φ − ψ)

cosh2 (θζ ) cosh (ηξ )
. (31)

Linearization of Eqs. (30) and (31) for small oscillations of ξ

and ζ reduces to d2ξ/dz2 = −η2θξ and d2ζ/dz2 = −ηθ2ζ ,
hence eigenfrequencies of the small positional oscillations are
predicted to be


1 ≈ η
√

θ,
2 = θ
√

η. (32)

These predictions were verified by simulations, as shown
in Fig. 8. The simulations were run by applying a small
kick to either component of the symmetric or asymmetric
trapped mode (26). In the asymmetric configuration, the
positional oscillations of the lighter component [the one with a
smaller amplitude, which corresponds to a smaller frequency
in Eq. (32)] exhibit strong attenuation, unlike robust oscillation
of the stronger component. Therefore, only one frequency is
shown in Fig. 8 for the excited asymmetric mode.

2 2.5 3 3.5 4 4.5 5 5.5

2

4

6

8

10

12

14

η

Ω
1

 

 

Asymmetric Simulation
Asymmetric VA
Symmetric Simulation
Symmetric VA

FIG. 8. (Color online) The comparison of the VA prediction for
eigenfrequencies of small positional oscillations of the components
of the symmetric (η = θ , upper lines) and asymmetric (η 
= θ , lower
lines) trapped modes, as given by Eq. (32), to results extracted from
direct simulations.

Small oscillations of the power between the two compo-
nents (without position shifts) were simulated too. It was found
that the respective eigenfrequency is very close to the obvious
beating frequency, 
12 = (η2 − θ2)/2.

V. PAIRS AND ARRAYS OF LOCAL COUPLERS

A. The interaction of solitons with the double coupler

Simulations of Eqs. (5) and (6) for the collision of an
incident soliton with the double locally fused coupler were
run using initial condition (10) with amplitude η = 1, while
both the initial velocity q and distance D between the two local
couplers were varied. Results of the simulations, summarized
in Fig. 9, show a conspicuous correlation between uR and vT ,
i.e., the reflected and transmitted waves in the straight and
cross cores, respectively. Similarly, a correlation is observed
between the waves transmitted in the straight core, uT , and
reflected in the cross core, vR . It is worthy to note that the
second coupler strongly affects the scattering in the cross core,
breaking the symmetry between the transmitted and reflected
waves in favor of the latter one, in comparison with the single
coupler [cf. Figs. 9(c) and 3(c)]. The share of the power of the
incident soliton trapped by the pair of local couplers, which
is shown in Fig. 9(d), was evaluated long enough after the
incident soliton hit the first local coupler, viz., at z = 175/q

(recall q is the incident soliton’s velocity). At relatively small
velocities, the trapped share increases in comparison with the
single coupler (D = 0).

The increase of the amplitude of the incident soliton to
η = 2 significantly reduces the portion of the power transferred
to the cross core, as evident in Fig. 10 [in particular, in panel
(c)]. In this case, a dominant share of the incident power is
either trapped or transmitted in the straight core. Accordingly,
panels (b) and (d) reveal the presence of a threshold value of the
distance between the two couplers, Dthr ≈ 0.6, which is a sharp
boundary between the trapping for D < Dthr and transmission
for D > Dthr, at q � 1.2. Note that such a threshold is not
observed for η = 1 (cf. Fig. 9).

If the two couplers are set close enough to each other
(D < 0.6), higher incident powers give rise to strongly excited
trapped states, in which the power trapped around both
couplers swings in unison between the cores. As the couplers
are separated farther, the intercore-swinging mode changes to
oscillations between the couplers, while the trapped power is
greatly reduced, giving way to a higher power-transmission
share in the straight core.

If the distance between the couplers, D, is quite small, the
field is trapped in an almost uniform state between them, as
shown in Fig. 11. In this case a solution to the stationary version
of Eqs. ( 5) and (6) outside of the couplers (at |x| > D/2) has
the same form as given by Eqs. (26) and (27), for the symmetric
(U = V ) and asymmetric (U 
= V ) states alike, while an exact
solution between the couplers, at |x| < D/2, can be expressed
in terms of elliptic functions. Actually, for small D the inner
solution for the symmetric state can be approximated by a
simple expression which is quadratic in x:

U (|x| < D/2) ≈ √
2k − 1

{
1 +

[(
D

2

)2

− x2

]
(k − 1)

}
,

(33)
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FIG. 9. (Color online) Splitting of the power of the incident soliton, with amplitude η = 1 and velocity q, hitting the pair of local couplers
separated by distance D. (a), (b) Shares of the power reflected and transmitted, respectively, in the straight core. (c) The same for the cross
core. In (c), the plots for the reflected and transmitted shares are butt joined to corroborate the equality of these shares for the single coupler
(D = 0). (d) The trapped-power share.

and similarly for the asymmetric state. Solution (33) explains
weak curvature of the intrinsic-layer field observed in Fig. 11.

It is relevant to mention that the dual coupler may give
rise to double symmetry breaking, combining the SBB of the
linearly coupled components, like in Eqs. (26) and (27), and
spontaneous breaking of the spatial symmetry between the two
local couplers, similar to the well-known symmetry-breaking

effect in double-well potentials [19,49]. Analysis of this
problem will be presented elsewhere.

It is relevant to mention too that, for
√

2kD � 1, the
asymmetric states supported by each local coupler, which
are given by Eqs. (26) and (27), can be combined into four
different species of composite states trapped by the pair of far
separated couplers:

{U (x) ,V (x)} =
√

2k

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

{
�

(∣∣x + D
2

∣∣ + ξ
)
,�

(∣∣x + D
2

∣∣ + ζ
)}+{

�
(∣∣x − D

2

∣∣ + ζ
)
,�

(∣∣x − D
2

∣∣ + ξ
)}

{
�

(∣∣x + D
2

∣∣ + ξ
)
,�

(∣∣x + D
2

∣∣ + ζ
)}−{

�
(∣∣x − D

2

∣∣ + ζ
)
,�

(∣∣x − D
2

∣∣ + ξ
)}

{
�

(∣∣x + D
2

∣∣ + ξ
)
,�

(∣∣x + D
2

∣∣ + ζ
)}+{

�
(∣∣x − D

2

∣∣ + ξ
)
,�

(∣∣x − D
2

∣∣ + ζ
)}

{
�

(∣∣x + D
2

∣∣ + ξ
)
,�

(∣∣x + D
2

∣∣ + ζ
)}−{

�
(∣∣x − D

2

∣∣ + ξ
)
,�

(∣∣x − D
2

∣∣ + ζ
)}

, (34)
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FIG. 10. (Color online) Splitting of the power of the incident soliton, with amplitude η = 2 and velocity q, which hits the pair of local
couplers separated by distance D. (a), (b) Shares of the power reflected and transmitted in the straight core. (c) The same for the cross core. In
(c), the plots for the reflected and transmitted shares are butt joined to corroborate the equality of these shares for the single coupler (D = 0).
(d) The trapped-power share.

where �(X) ≡ sech(
√

2kX), while ξ and ζ are given by
Eq. (27) with + and −, respectively (hence one has 0 <

ξ < ζ ). The two top lines of Eq. (34) represent, respectively,
in-phase and π -out-of-phase skew composite states, with
the opposite sense of the spontaneous symmetry breaking
at the two local couplers: U (x = −D

2 ) > V (x = −D
2 )

and |U (x = D
2 )| < |V (x = D

2 )| (the π phase shift implies
opposite overall signs of the fields at x = ±D

2 ), while the
two bottom lines represent in-phase and π -out-of-phase
straight composite states, with U (x = −D

2 ) > V (x = −D
2 )

and |U (x = D
2 )| > |V (x = D

2 )|. In the inner region, |x| < D
2 ,

decaying tails of the in-phase and out-of-phase states are
matched (like it was done, in another context, in Ref. [50]) to
the following solutions of the linearized stationary equations,
k{U,V } = 1

2 {U ′′,V ′′} [cf. Eq. (12)]:

{U (x),V (x)}in = {U0,V0} cosh
[√

2k
(
x − {

x
(0)
U ,x

(0)
V

})]
,

(35)

{U (x),V (x)}out = {U0,V0} sinh
[√

2k
(
x − {

x
(0)
U ,x

(0)
V

})]
.

(36)
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FIG. 11. The wave field in the symmetric state, trapped by the
dual coupler of a small width, D = 0.5, as a result of the passage of
a soliton with amplitude η = 1.0 and initial velocity q = 0.8.

The matching demonstrates that the midpoint of the inner
portion of the straight composite modes is not shifted from
the system’s center, i.e., x

(0)
U = x

(0)
V = 0, while (exponentially

small) amplitudes of the respective inner solutions are{
U 2

0 ,V 2
0

}
straight = 4

√
2k exp[−

√
k/2(D + 2{ξ,ζ })]. (37)

On the other hand, for the skew composite states, the midpoint
of each component, U (x) and V (x), is shifted towards the
individual soliton with the smaller amplitude in the same
component [i.e., with the amplitude corresponding to ζ , rather
than ξ , in Eq. (27)]:

x
(0)
U = −x

(0)
V = 1

2 (ζ − ξ ) , (38)

while the corresponding amplitude of the inner solution is(
U 2

0

)
skew = (

V 2
0

)
skew = 4

√
2k exp[−

√
k/2(D + ξ + ζ )]

[cf. Eq. (37)].

Finally, following the lines of Ref. [50], it is possible to
compare values of the Hamiltonian of the four species of the
composite modes defined in Eq. (34) (the difference in the
Hamiltonian is stipulated by the potential of the interaction
between the far separated individually trapped solitons):
H

(in)
str < H

(in)
skew < H

(out)
skew < H

(out)
str , hence the straight in-phase

state is the ground state, but the other species are expected to
be dynamically stable too.

B. Caging a shuttle soliton between two local couplers

The double coupler with large width D can also hold a
soliton in the state of shuttle oscillations, similar to soliton-
caging cavities formed by pairs of far separated barriers, which
occur in other models of nonlinear optics [51]. We describe
such a cavity by Eqs. (5) and (6) without factor 1/2 in front
of [δ (x − D/2) + δ (x + D/2)], to make each local coupler
identical to the solitary one considered above.

A typical example of the persistent shuttle regime in a
broad cavity (D = 40 ) is shown in Fig. 12, where a soliton
was launched in the u component as per Eq. (10), at ξ0 =
0, with η = 0.6 and q = 0.4. Note that, with these values
of the amplitude and velocity, the soliton colliding with the
local coupler undergoes a nearly perfect reflection, according
to Fig. 3. A dominant share of the soliton’s power stays in
the straight core, but some power penetrates into the cross
core, where it forms a small-amplitude wave pattern whose
oscillations are synchronized with the shuttle motion of the
strong component of the soliton. Persistent shuttle regimes are
also possible for symmetric solitons with equal components.

C. Shuttle oscillations of solitons in multicoupler arrays

An example displayed in Fig. 13 demonstrates that solitons
can also be held in the state of persistent shuttle motion in
the array defined as per Eq. (7), periodically bouncing from
edges of the array. In the example shown in this figure, the

FIG. 12. (Color online) An example of persistent shuttle dynamics of a soliton in a broad cavity (D = 40) bounded by two local couplers.
The soliton was launched in the u component, with initial amplitude η = 0.6 and velocity q = 0.4. Panels (a) and (b) display absolute values
of fields u and v.
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FIG. 13. (Color online) An example of the persistent shuttle
motion of a symmetric soliton, created with amplitude η = 1 and
velocity q = 0.8, in the array defined as per Eq. (7), with C = 1/4
and D = 0.354. The number of local couplers in the array is
2N + 1 = 65. Note that these parameters satisfy the average trapping
condition (39).

soliton is symmetric, hence the potential of its interaction with
a solitary local coupler is W

(symm)
coupl (ξ ) = −2Cη2sech2 (ηξ ) [see

Eq. (24)]. For a broad soliton, with η−1 � D, the potentials
induced by the comb of couplers can be averaged, making
the array tantamount to a potential box of depth 4Cη/D and
spatial width 2ND [see Eq. (8)]. Thus, the symmetric soliton
with the double effective mass, M (symm) = 4η, is trapped in
the box if its squared velocity takes values

q2 < 2C/D. (39)

Note that this trapping threshold does not depend on the
soliton’s amplitude, η.

For strongly asymmetric solitons, with mass M ≈ 2η, the
effective potential of the interaction with the solitary coupler is
given by Eq. (25), which, in this case, should be here multiplied
by C2. Thus, the average depth of the respective potential
box is 3C2/D, and trapping condition (39) is replaced by
q2 < 3C2/ (Dη), which this time depends on η.

VI. CONCLUSION

The objective of this work is to extend the well-elaborated
analysis of the dynamics of solitons in nonlinear couplers to
dual-core waveguides fused at one or several narrow segments,
which can be approximated by δ functions. The model directly
applies to optical spatial solitons in dual-core planar waveg-
uides with the Kerr nonlinearity, as well as to dual traps for the
self-attracting BEC. By means of systematic simulations and
a combination of several analytical approximations, we have
studied collisions of the free soliton with single and double
local couplers. The outcome of the collision is characterized
by splitting of the total power between five waves, viz., those
transmitted and reflected in each core of the waveguide, and the
one trapped by the local waveguide. Dynamics of the soliton
trapped by the local coupler was studied too, by means of the
variational approximation and simulations. Shuttle oscillations
of a soliton between two local couplers, and the shuttle
motion between edges of a finite array of couplers, were also
addressed. In the context of the pair of far separated local
couplers, four species of straight and skew trapped two-soliton
states were predicted analytically.

The present analysis can be extended in other directions. In
particular, it may be interesting, as mentioned above, to study
double symmetry breaking in the double local coupler. On the
other hand, it may be also relevant to introduce a similar model
with the quadratic nonlinearity.
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