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Quantum information processing, from cryptography to computation, based upon linear quantum-optical
circuit elements relies heavily on the ability offered by the Hong-Ou-Mandel (HOM) effect to “route” photons
from separate input modes into one of two common output modes. Specifically, the HOM effect accomplishes
the path entanglement of two photons at a time such that no coincidences are observed in the output modes of
a system exhibiting the effect. In this paper, we prove, in principle, that by operating a specific nanophotonic
device properly, one can conditionally “bunch” coincident input photons in a way that is more configurable than
with an ordinary 50:50 beam splitter, while maintaining the inherent scalability of such an on-chip device.
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I. INTRODUCTION

The Hong-Ou-Mandel (HOM) effect [1] is of obvious and
ubiquitous importance to photonic quantum information pro-
cessing [2]. For example, the design [3], implementation [4],
and improvement [5] of the Knill-LaFlamme-Milburn (KLM)
linear optical quantum computing (LOQC) protocol inherently
relies upon the conditional routing of coincident input photons,
which is the essence of the HOM effect. Although there have
been many impressive successful demonstrations of building
blocks for the KLM protocol, such as those that have recently
been realized in bulk optics [4], there remains significant
challenges toward realizing complex quantum information
processing circuits and systems. One key challenge that
has recently been addressed is the need for miniaturization
from bulk to integrated optics [6], which allows for dense
integration of circuit components and increasing scalability of
quantum information systems. However, with the increasing
level of integration of these devices it is crucial to have a
process to overcome fabrication errors, whether this is thermal
stabilization of the chip, a full chip calibration [7], or through
the introduction of new devices, as we consider here, that can
operate over wider operating conditions as well as offer denser
integration and the ability to be reconfigured dynamically with
low energy requirements.

In this paper, we present results, involving an on-chip, linear
optical device, that we believe, represent a substantial step
toward scalable LOQC. In particular, we show herein that a
ring resonator system can, in principle, be operated efficiently
to produce the HOM effect over a broader parameter range
within a richer parameter space than can systems based on the
more common architectures constructed from beam splitters
and Mach-Zehnder interferometers (MZI). Specifically, we
show that the device shown in Fig. 1(b), which can be used
as the fundamental building block of a scalable nonlinear
sign (NS) shifter essential to the KLM protocol, exhibits, in
principle, the HOM effect, with 100% output state fidelity
relative to the |2 :: 0〉 NOON state, for infinite sets of parameter
choices forming submanifolds of the parameter space of the
device. In what follows, we shall refer to these submanifolds
as Hong-Ou-Mandel manifolds (HOMM). We emphasize that
the existence of the HOMM within the device we consider is

in sharp contrast to the situation in bulk optics where exact,
100% |2 :: 0〉 NOON state fidelity exists at the output of a
beam splitter on a hit-or-miss basis only for a single choice,
viz., 50:50, of beam splitter parameters.

Ring resonators like the one shown schematically in
Fig. 1(b) are readily fabricated, and they have been shown
to be of great importance for the realization of a wide
range of integrated photonic devices and systems, from high
performance electro-optic modulators to low-power densely
integrated optical interconnects [8]. The relevant system
parameters are the round-trip linear phase shift θ , through
the ring resonator, the cross-coupling parameters (κ,γ ), and
the direct transmission parameters (τ,η) describing the two
evanescent directional couplers (see the inset to Fig. 1). The
couplers are assumed to be lossless, |κ (γ )|2 + |τ (η)|2 = 1.
The two internal phase shifts, φ1 and φ2, partition the round-
trip phase shift of the device according to the exact placements
of the directional couplers. For any such choice, θ = φ1 + φ2;
as the reader will see below, our principal results do not depend
on the exact choice of partition.

Single- and two-photon transport analyses through systems
like the one represented in Fig. 1(b) have been presented
in the literature. Notably, Shen and Fan have thoroughly
examined the transport properties of such a system using a
steady state scattering theory approach based on Lippmann-
Schwinger theory and the Bethe ansatz [9,10]. Also, some
of the present authors have analyzed the quantum dynamics
of single-photon transport though such a system using an
ansatz-free development along with finite difference time
domain numerical integration [11].

In this paper, we describe the quantum-optical system in
the limit of continuous-wave (cw) operation. This regime
is the one most relevant to the analysis of the operation of
linear optical quantum information processing (QIP) devices
provided that the light transit time through the device is short in
comparison with the relevant coherence lifetime of the optical
state vector. In fact such an assumption is ubiquitous in the
literature ranging from the ground breaking proposals by Knill,
Laflamme, and Milburn [3] to textbook presentations of the
essential |2 :: 0〉 NOON state generation at a balanced beam
splitter that is the basis of the Hong-Ou-Mandel effect [12].
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FIG. 1. Schematic comparison of (a) a beam splitter with (b) a dual coupled ring resonator. The system shown in (b) represents our prototype
for a scalable QIP circuit element. The inset to the right reminds the reader of the action of the evanescent directional coupler. The phase
convention here follows that implied by Yariv in Ref. [16].

Furthermore, this approach is justified in application to this
paper by recent experimental results that have showed that the
correlated photons generated in high quality factor (Q factor)
silicon microresonators through spontaneous photon scattering
processes (e.g., analogous to spontaneous parametric down
conversion) exhibit long coherence times (>100 ps) dictated
directly by the photon lifetime of the high-Q microresonators
[13,14]. In other words these microresonators produce photons
with very narrow spectral content. Therefore, provided the
generated photons spectrum is considerably narrower than that
of the ring resonators we consider in this paper, the systems
behavior is essentially cw-like. And because typical ring
resonators have photon lifetimes that range from <1 ps to tens
of picoseconds [11], the analysis presented here is very appli-
cable to future experimental results using these microresonator
photon sources and typical ring resonators. Further, as we
shall report elsewhere, our current work focuses partially upon
extending the quantum transport analysis to the more general
regime of pulsed operation. Quantitatively, this extension
will place slightly more restrictive bounds on the ranges of
operation for which the behaviors we discuss below can be
observed. Qualitatively, such an extension of the analysis will
not affect our predictions that the behaviors can be observed.

Working in this limit and using a discrete path integral
approach [15,16] we can arrive at the quantum-mechanical
linear transformation relating the boson operators along the
output modes to those along the input modes,(
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For convenience, we have defined the transition amplitudes
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for which it is straightforward to verify that bosonic com-
mutation relations are satisfied in the output mode operators.
The form of this linear transformation is anticipated. Indeed,
proceeding to the parametric limit, as we shall below, this
result reduces to the corresponding classical result presented
some years ago by Yariv [17].

While each belongs to the general class of U(2) linear
optical devices, the fundamental advantage offered by a ring
resonator over a beam splitter emanates from a difference in
topology. To emphasize this point, we compare in Sec. II of
this paper the operation of a lossless beam splitter, shown
schematically in Fig. 1(a) with that of the ring resonator device
that is the subject of this paper [Fig. 1(b)]. In the device
represented in Fig. 1(b), not only do the waveguide modes
“scatter” as a result of local interactions with the directional
couplers, but also they passively feed back on themselves at the
couplers by virtue of the ring resonator. This effect, referred to
here for brevity as passive quantum-optical feedback (PQOF),
is clearly not possible at the beam splitter in Fig. 1(a) (or
to a Mach-Zehnder interferometer). We include in Sec. II a
detailed discussion of PQOF, specifically relating its effects in
the classical limit to a well-known interference phenomenon
arising from classical critical coupling between a waveguide
and a lossy ring resonator [17].

The remainder of the paper is organized as follows. Within
the framework of the theory of PQOF that we present in Sec. II,
Sec. III is devoted to a systematic study of the existence and
properties of the HOMM that are central subject of this work.
Section IV is devoted to a discussion of the HOMM with
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respect to the practical advantages they offer for applications
in photonic QIP. We conclude the paper in Sec. V with
remarks about the scope and possible applications of the results
presented in the body of the paper. We indicate also in Sec. V
some of the foci of our ongoing and future work on the quantum
electrodynamics of ring resonator systems.

II. PQOF

To illustrate the striking physical consequences that arise
due to PQOF and to indicate the use of our formulation of the
problem, as well as to serve as a “sanity check” of our method,
we compare the devices shown in Fig. 1 assuming the input to
be an ordinary coherent state injected along mode a. The input
state in each case is |ψin〉 = D̂(a) (α) |∅〉, where D̂(a) (α) =
exp(αâ† − α∗â) is the familiar displacement operator [12],
and |∅〉 is the quantum electrodynamic vacuum.

In the case of the beam splitter, the output state is well
known to be |ψBS

out〉 = D̂(c)(tα)D̂(d) (rα) |∅〉, where r and t are,
respectively, the reflectance and transmittance of the beam
splitter. It is clear from this form of the output state that,
except in the trivial case in which t = 0, output mode c will
always be populated by a coherent field of nonzero amplitude;
this is a standard result of elementary quantum optics [12].

Using Eq. (1) it is straightforward to show that the
output state in the case of the ring resonator is |ψRR

out 〉 =
D̂(c) (tα) D̂(l) (sα) |∅〉. In this case, the existence of PQOF
allows for possibilities not available in the case of the beam
splitter. In particular, the output field in mode c can be
suppressed even in nontrivial cases provided that t = 0. In
fact, this result represents the quantum-mechanical extension
of the condition of critical coupling as has been predicted [17]
and observed [18] in classically driven ring resonators.

In Fig. 2 we display schematically a lossy ring resonator
driven classically via directional coupling with a single
waveguide as in Fig. 2(a) along with its appropriate quantum-
mechanical generalization, shown in Fig. 2(b). Figure 2(b) is
identical to Fig. 1(b), except we emphasize in Fig. 2(b) the
role of the waveguide supporting modes f and l as a drop
port for modeling losses in the ring resonator. To model, in a
simple way, the losses from the ring resonator in Fig. 2(a), we
require that the input along the “fictitious” mode f in Fig. 2(b)
is necessarily the single mode vacuum. The introduction of
a drop port as we have done here is an example of the sort
of unitary dilation commonly employed in the treatment of

(a) 
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(b) 
“ ” 

κ,τ

γ,η

FIG. 2. A cartoonlike representation of modeling a singly coupled
lossy ring resonator (a) using a dually coupled, lossless ring resonator
and drop port (b). Losses in (a) are modeled by tracing over mode l in
(b). This figure serves as a rationale for our choices of f (“fictitious”)
and l (“loss”) for mode labels and operators in the system we analyze
in this work.

linear quantum-optical systems. In particular, a simple beam
splitter, even when driven by a highly excited ordinary coherent
state, must be equipped with a “fictitious” input port in order
to preserve commutation relations [12]. Further, to model
noise in the system, we relinquish all knowledge about the
quantum state in the loss mode l. Mathematically, we take an
arbitrary input state along mode a to the lossy ring resonator
to be of the form |ψLRR

in 〉 = ∑
m Cm(â†)m � |∅〉, and we use

Eq. (1), effectively working in the Heisenberg picture [19],

to determine the output state |ψLRR
out 〉 = ∑

m Cm(tĉ† + sl̂
†
)m|∅〉

from the dual waveguide system shown in Fig. 2(b). We recover
a quantum-mechanical description of the output of the single
waveguide system of Fig. 2(a) along mode c by first forming
the global (pure state) density operator for the output of the
dual waveguide system 
̂

(G)
out = |ψLRR

out 〉〈ψLRR
out |, and then tracing

over the loss mode 
̂
(c)
out = Trl{|ψLRR

out 〉〈ψLRR
out |}. Elsewhere, we

shall apply this scheme of analysis in further detail to a
wider range of systems of interest. We include the discussion
here to provide a theoretical basis connecting our fully
quantum-mechanical analysis of the system shown in Fig. 2(a)
with previous results based on classical electrodynamics [17].
We can now see that the loss rate from, or equivalently
the cavity lifetime of, the ring resonator is related to the
cross-coupling parameter γ connecting the ring resonator to
the drop port in Fig. 2(b). Alternatively, we can follow Yariv
in characterizing the same cavity loss information in terms
of the intracavity “circulation” factor, which expresses that
fraction of the classical amplitude that survives a round trip
through the ring resonator [17]. Specifically, the parameter
in our analysis corresponding to Yariv’s circulation factor is
η∗, which for practical reasons we assume to be real (see
below). For completeness, in Table I we present a precise
transcription relating the parametric limit of our quantum-
mechanical analysis to the classical analysis presented in
Ref. [17].

To continue, consider the expectation value of the
electric field in mode c. For the cw, traveling field
mode we are considering, the field operator is Êx(z,t) =
iEc{ĉei(kpz−ωt) − ĉ†e−i(kpz−ωt)}, where we assume for nota-
tional simplicity and without loss of generality that the linearly
(x-) polarized output field propagates in the z direction.
In the parametric limit, we equate the quantum-mechanical
expectation value of the output field with the output of a
classically driven system. This is allowed by virtue of the
optical equivalence theorem [12]. The output field is

Ex(z,t) = 〈
ψRR

out

∣∣Êx(z,t)
∣∣ψRR

out

〉
= iEc{tαei(kpz−ωt) − (tα)∗e−i(kpz−ωt)}. (3)

It is clear from Eqs. (2) and (3) that the field in mode c

will vanish whenever t ≡ ( η∗−τeiθ

η∗τ ∗−eiθ ) → 0. We note that in any
case for which |η| = |τ | = 1, the output field is merely phase
shifted leaving the field amplitude in mode c equal to that of
the input field in mode a. Such a case is essentially trivial and
corresponds to the physically uninteresting situation in which
there is no cross coupling from the input waveguide into the
ring resonator.

Experimentally, the most important cases appear to be the
ones in which both η ∈ R and τ ∈ R, so we proceed under
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TABLE I. Transcriptions between the classical variables used by Yariv in Ref. [16] and the parameters used in this paper in investigating
the parametric limit of a driven ring resonator. Note that we have assumed η ∈ R for the present analysis.

Yariv classical Fully quantum-mechanical treatment
Quantity treatment Ref. [14] in parametric limit

Input field amplitude (waveguide) 1 αin

Output field amplitude b1 αout

“Circulation Factor”/Internal α η∗

Transmission amplitude at drop port
Round-trip phase θ −θ

a→c transition amplitude t τ

these conditions, avoiding the trivial case mentioned in the
previous paragraph. The effect of PQOF is encoded in the
form of t. To see this, we examine the situation in which
there is exact resonance between the feedback mode of the
ring resonator and the input field, θ = 0 mod 2π . Under these
conditions, we will show in the next paragraph that the output
field in mode c is suppressed as long as η = τ < 1. These
two conditions, exact resonance and balanced couplings, are
precisely the conditions for critical coupling that lead to the
destructive interference between that part of the field that is
directly transmitted from mode a to mode c and the part that is
fed back into mode c after having been processed through the
ring resonator. Classically, the destructive interference arises
from the phase shift that occurs upon cross coupling (twice:
once to get into the ring and again to get out) between the
waveguide and the ring. The balanced coupling in the present
case manifests classically as a “tuning” of the cavity losses in
the ring so as to match the amplitudes of the direct and the
feedback fields, assuring complete cancellation of the output
field along mode c.

To understand the condition for destructive interference and
to highlight the role of PQOF, consider the situation in Fig. 2(a)
from the perspective of classical electrodynamics. At exact
resonance, the feedback field coupling out of the ring resonator
and into mode c will be exactly out of phase with the field
directly transmitted through the directional coupler from mode
a to mode c. The reason for this is that the initial cross coupling
from mode a into the ring resonator puts the cavity field in
quadrature with the transmitted field, and then the second cross
coupling out of the ring resonator into mode c puts the feedback
field in opposition with it. To demonstrate full cancellation of
the fields, therefore, it remains to be shown that upon output,
the feedback field and the directly transmitted fields have equal
amplitudes. Assuming the input field amplitude along mode
a to be αin, ignoring the phases for the moment allowing us
to write the cross-coupling “factor” as

√
1 − τ 2, and replacing

the effect of the drop port with the equivalent circulation factor
η, we proceed to compute the output amplitudes for the output
fields interfering in mode c. For a field cross coupling into

or out of the ring |α| cross→ √
1 − τ 2|α|, for a field transmitted

directly through the coupler, whether inside or outside of the

ring, |α| direct→ τ |α|, and for a field making a single round trip

inside the cavity |α| r.t.→ η |α|. The output amplitude of the
directly transmitted field is then αdir

out = ταin, where we assume
for convenience that αin ∈ R. The feedback field is a linear
superposition of fields experiencing two cross couplings and

any number of round trips though the ring resonator, each of
which picks up a factor of η and all but the first of which picks
up a factor of τ at the coupler,

αfb
out = (

√
1 − τ 2)2{ηαin + ητηαin + ητητηαin

+ · · · (ητ )j ηαin + · · · }

= (1 − τ 2)ηαin

∞∑
j=0

(ητ )j , (4a)

αfb
out =

(
1 − τ 2

1 − ητ

)
ηαin. (4b)

Examining the ratio αfb
out

αdir
out

= ( 1−τ 2

1−ητ
)( η

τ
) we see immediately

that the output field amplitudes are equal for η < 1 and τ < 1
if η = τ , a direct enforcement of the critical coupling condition
familiar from, among other places, the work presented some
time ago by Yariv in Ref. [17].

In this section we have introduced the concept of PQOF
as manifested in the ring resonator system of Figs. 1(b) and
2(b) and as described mathematically via Eqs. (1) and (2).
Specifically, we have demonstrated that, in the well-known
classical limit, it is PQOF that is ultimately responsible for
complete destructive interference in a ring resonator driven in
the condition of critical coupling via a waveguide. We now turn
to a decidedly more quantum-mechanical feature of PQOF that
we anticipate will have important and far reaching applications
in schemes for photonic QIP.

III. HOMM

Using Eqs. (1) and (2), it is straightforward to establish
the existence of the HOMM in our system. Referring again to
Fig. 1(b), we consider the usual input for the HOM effect along
modes â and f̂ , |ψin〉 = â†f̂ † |∅〉 = |1,1〉. In the output modes
we find |ψout〉 = √

2ts′|2,0〉 + (ss′ + tt′)|1,1〉 + √
2t′s|0,2〉.

It is clear upon inspection of this result that the HOM effect
is obtained as long as the constraint ss′ + tt′ = 0 is satisfied;
under this condition the probablilty P (1,1) = |ss′ + tt′|2, for
photon coincidence in the output modes c and l vanishes. We
shall refer to this constraint as the strong form of the Hong-
Ou-Mandel manifold constraint (sHOMMC); the existence
and important features of these manifolds are the central new
results presented in this paper.

To appreciate the importance of the HOMM, consider
the parameter space of the device pictured in Fig. 1(b) in
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FIG. 3. (Color online) Surface plot of the probability P (1,1) for output photon coincidence for the case in which two incident photons
are coincident on the ring along modes a and f . The Hong-Ou-Mandel effect is the zeros of this surface plot. The level set of zeros forms a
continuous manifold in this case; it is a one-dimensional HOMM. In this figure, as in Figs. 4 and 5, we display the same result over the ranges
(a) θ ∈ [0,2π ] and (b) θ ∈ [−π,π]. We do this merely for ease of visualization and reference; the two plots in each figure so displayed convey
the same information.

comparison with that of an ordinary, lossless beam splitter as
in Fig. 1(a). In the former case, the four complex parameters
κ , τ , γ , and η, along with the single real parameter θ

characterize a nine-dimensional manifold that is the parameter
space of the system. Of these nine dimensions, the four
phases of the coupling parameters are essentially redundant. In
practice, these phases are typically determined by the details
of the construction of the coupler and do not represent truly
“free” parameters within the operating space of the device.
In any case, these phases can be adjusted either on chip
or in bulk optics via linear phase shifters. For analogous
reasons, the general operation of a beam splitter can be
described without loss of generality using a one-dimensional
parameter space, the HOM effect occurring for an individual
(50:50) operating point (i.e., a zero-dimensional “HOMM”)
within that one-dimensional parameter space. As we now
examine, the sHOMMC establishes the existence of higher
(>0) -dimensional manifolds that are level sets of operating
points for which the device shown in Fig. 1(b) exhibits the
HOM effect.

To clarify the result we examine the case in which the device
shown in Fig. 1(b) is characterized via τ = η ∈ R and κ =
γ = ik, k = √

1 − τ 2 ∈ R. We note that these constraints,
while restrictive, are experimentally relevant, and devices
adhering to them have been fabricated by our group [20] and
by others [21]. This constraint corresponds at exact resonance
with the optical balance condition for critical coupling. In this
case, the parameter space of the device is restricted to two
dimensions. Here we take the free parameters to be τ and θ .
Applying these constraints to the sHOMMC and using Eq. (2),
we plot in Fig. 3 the probability of output photon coincidence
in modes l and c versus the free parameters of the system. It
is precisely the bottom of the “valley of zeros” of the P (1,1)
that is the one-dimensional HOMM for this system. In obvious
contrast to the 50:50 beam splitter, which has a single HOM
operating point, the system shown in Fig. 1(b) has, in this case,
infinitely many such operating points.

To further investigate the one-dimensional HOMM for the
system we consider a weaker form of the sHOMMC, which we

will call wHOMMC, written in terms of the system parameters
as

|κ|2 + |γ |2 + |κ|2|γ |2 + 2 Re(ητeiθ ) = 2. (5)

Equation (5) is obtained from the sHOMMC by using
Eq. (2) and requiring the numerator of the expression to vanish.
Working within the foregoing special case, we can solve Eq. (5)
in closed form to obtain analytically a parametric curve for the
HOMM. The physical branch of the solution can be written as

τ (θ ) =
√

2 − cos (θ ) −
√

[2 − cos (θ )]2 − 1. (6)

We plot Eq. (6) in Fig. 4. Note that Fig. 4 correctly
represents the HOMM for the system except in the limit
θ → 0 mod 2π , τ → 0, that is, the points labeled C in that
figure must be disregarded. One can show that these are
the only points within the parameter space of the system
for which the denominator of the sHOMMC vanishes, thus
forcing us to take the limit using the L’Hôpital rule; the result
is P (1,1) → 1, as expected for perfect transmission through
each of the directional couplers and as can be seen upon
inspection of Fig. 3. Except for at the end points, the curve
shown in Fig. 4 can be inlaid exactly along the bottom of the
P (1,1) = 0 level set of the surface shown in Fig. 3.

It is noteworthy to mention that in this simple case, perfect
photon coincidence is expected whenever the field is exactly
resonant with a mode of the ring. That is, whenever nRω

c
∈ N,

where R is the radius and n the linear index of refraction
of the resonator and ω is the angular frequency of the field,
such that θ = 0 mod 2π , it is straightforward to show that
P (1,1; τ ) = 1 ∀τ ∈ [0,1]. This behavior is also evident in
Fig. 3. Appealing to the semiclassical argument presented in
the previous section, we understand this limiting behavior
at resonance as follows. Feynman paths connecting either
input mode to the corresponding output mode along the same
waveguide interfere destructively; recall that we are currently
imposing conditions of critical coupling. Now, however, we
must include contributions from Feynman paths that describe
exchange between waveguides, and the amplitudes describing
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FIG. 4. (Color online) Parametric plot of a one-dimensional HOMM based upon the wHOMMC. The point(s) labeled C is the one for
which the wHOMMC breaks down. Away from point(s) C, the parametric curve shown in this figure lies along the level set of zeros in Fig. 3.
Points A and B are included to accompany the discussion in Sec. IV. In (a) θ ∈ [0,2π ] and in (b) θ ∈ [−π,π].

the various exchange paths (j + “ 1
2 ” round trips in the

ring resonator—quotes to remind the reader that the result
is insensitive to the exact placement around the ring of either
of the directional couplers relative to the other) do not interfere
destructively, allowing for the observed photon coincidences.

Suppose that we now relax the restriction that the directional
couplers are balanced; we allow τ �= η though we continue to
require both to be real. Under these conditions, the system
is characterized by a three=dimensional parameter space in
which we take the free parameters to be η, τ , and θ . In Fig. 5 we
plot, using the sHOMMC, the surface on which the probability
of photon coincidence in the output modes l and c vanishes.
The surface shown in Fig. 5 is the two-dimensional HOMM for
this slightly more complex situation. Cutting the plot shown
in Fig. 5 with the appropriate diagonal plane (i.e., the one on
which η = τ ) through the cubic frame of the figure reproduces
the curve for physical root for τ = η vs θ shown in Fig. 4,
again neglecting the pathological behavior of the end points of
the curve in Fig. 4.

It is clear from the examples presented in this section
that the device shown in Fig. 1(b) admits a rich subset of
its parameter space on which the HOM effect occurs. The
structure of each HOMM is directly related to the form of the
quantum-mechanical mode transformation given in Eqs. (1)
and (2). The form of this transformation, in turn, encodes the
PQOF inherent to the topology of the system. Without PQOF,
as in the case of the beam splitter shown in Fig. 1(a), the
HOMM is a single point. With PQOF, as in Fig. 1(b), there
are infinitely many HOM operating points that form continua
within the parameter space of the device. We anticipate that this
trend will make for even more interesting quantum interference
phenomena as we extend, elsewhere, our analysis to U(N )
linear optical devices for N>2.

The inherent scalability of devices such as the one shown
in Fig. 1(b) along with the tunability of couplings within the
device can be used in conjunction with the HOMM that we
have demonstrated in this section to produce a flexibility
in operation that, when integrated on chip, could form an
integral part of a new generation of QIP circuits. We proceed
in the next section to discuss in more detail some of these
possibilities.

IV. RING RESONATORS AS QIP CIRCUIT ELEMENTS

The broader importance of the results we have presented
here is really twofold. First, we have demonstrated that a
ring resonator evanescently coupled to two waveguides as
shown in Fig. 1(b) is a system capable of “routing” input
photons in accordance with the well-known Hong-Ou-Mandel
effect. The system we have analyzed here is scalable [18]
and can be fabricated in large numbers [22]. These attributes
suggest that such system could be easily engineered for on-chip
implementation of the HOM effect, a staple of many, if not
all, quantum information processing architectures based upon
linear quantum optics. In fact, one can readily establish that
the system shown in Fig. 1(b) is formally equivalent to an
(scalable, easily manufactured) externally driven Fabry-Perot
etalon [23,24].

Second, we have demonstrated that the range of parameters
for which the ring resonator system demonstrates HOM
behavior is larger than the corresponding range in the typical
beam splitter version of the effect. This fact, combined with the
dynamical tunability of the waveguide, ring resonator coupling
[25] allows for the possibility of dynamically adjustable pho-
ton “routing” unlike that possible with bulk optics. To see this,
suppose that a balanced device like the one shown in Fig. 1(b)
is operating within its two-dimensional parameter space at
point A in Fig. 4. This point is not within the HOMM for the
system, and we should expect to observe photon coincidences
in the output modes. This situation corresponds to the behavior
one observes in an unbalanced beam splitter. However, unlike
the case of the beam splitter we can dynamically “correct”
the situation by tuning, thermally for example, the coupling
between the waveguides and the ring. Such a “correction”
corresponds in Fig. 4 to a vertical translation of the operating
point of the system, ideally to point B shown explicitly on
the HOMM curve. What we have demonstrated here is that,
by virtue of the existence of the HOMM within the parameter
space of the coupled waveguide, ring resonator system, we
can, in principle, produce on-chip, scalable, dynamically
configurable quantum-optical interconnects for integration
into photonic QIP devices.

We conclude this section with a brief discussion of
the operationally advantageous design parameters for such
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FIG. 5. (Color online) Surface plot of the two-dimensional HOMM for the case of an unbalanced dually coupled ring resonator. In
(a) θ ∈ [0,2π] and in (b) θ ∈ [−π,π]. The higher dimension of the HOMM for this case suggests even more opportunity for robustness of the
HOM along the lines of that described for the one-dimensional case discussed explicitly in the paper.

devices; specifically we wish to start the process of homing in
on the “sweet” region for practical operation of the device we
have analyzed above. To motivate the discussion, we plot in
Fig. 6 P (1,1) versus θ for several values of τ . We assume again
that η = τ ∈ R and, for ease of reference, we consider the plot
in Fig. 6 over the interval θε[−π,π ]; each plot in Fig. 6 is a
vertical cut taken from Fig. 3(b).

Under conditions in which the effect occurs, the HOM
dips in Fig. 6 are symmetrically placed about θ = 0. Two
important observations are clear. First, there is a cutoff value
for τ beneath which the HOM effect does not occur in the
operation of the device for any relationship between the field
frequency and the frequency of the eigenmode of the ring
resonator. Using Eq. (5) it is easy to show for this case that

the cutoff value is τcutoff =
√

3 − √
8 ≈ 0.4142, in agreement

with Fig. 6(a). Practical concerns, as discussed above in
Sec. III, restrict the operation of the device in the regime
τ <∼ 1. For τ = 1 − ε, the HOM dips become arbitrarily narrow
and close to θ = 0 for arbitrarily small but nonzero values
of ε. For ε = 0, the HOM dips suddenly disappear (see
Sec. III), making the regime near τ = 1 impracticable for
device operation. Referring to Fig. 6(a), it is clear that values
of τ equal to or even in excess of 0.8 are quite practical for
operation; the HOM dips are obviously visible and resolvable.
Based upon these observations, we take the outer limits on
the practical operating regime for the tunable HOM effect
in the device in the balanced case we consider here to be√

3 − √
8 < τ <∼ 0.8. Of course, the upper and lower limits

FIG. 6. (Color online) Plots of P (1,1) for several values of τ = η ∈ R, corresponding to balanced operation of the dually driven ring
resonator. The HOM dips are apparent, provided they occur. Clearly, both the existence and resolution of such and HOM dip are dependent on
the coupling parameters for the system. This suggests the existence of an “optimal” operating region for an on-chip device made from dually
coupled rings. In (b) we demonstrate that the pragmatically important case involving 3 dB couplers is safely within this “optimal” region,
however, heuristically defined at this point.

043805-7



HACH, III, PREBLE, ELSHAARI, ALSING, AND FANTO PHYSICAL REVIEW A 89, 043805 (2014)

of this regime are chosen rather heuristically, and depending
upon the details of a particular application, we expect to find
more rigid empirical foundations for corrections to them. We
defer detailed analysis of special cases to forthcoming papers
specifically about those applications. Instead, we point out
that the experimentally important case of the balanced ring
resonator with 3 dB couplers, τ = η = 1/

√
2, is safely within

the practically attainable HOM regime for the device; the HOM
dips for this important special case are clearly resolvable in
Fig. 6(b).

V. SUMMARY AND OUTLOOK

In this paper, we have developed the theory of PQOF, and we
have presented examples of important physical consequences
of it. In particular, we have predicted the existence of HOMM
within the parameter space of a PQOF device (PQOFD),
namely, the externally driven ring resonator system shown
schematically in Fig. 1(b).

In the interest of conservative reporting of our findings, we
offer the following remarks in closing. Again, owing to PQOF,
the PQOFD topologically “unpacks” the system relative to the

MZI such that quantum interference effects (e.g., the HOM
effect) can be made to occur via global tuning of the system
(viz., tuning the balanced couplers of the PQOFD) as opposed
to merely the differential tuning (viz., phase shifting one arm)
available in the single pass MZI. This attribute only enhances
the possibility for miniaturizing and integrating the PQOFD
for on-chip applications.

Our ongoing work is partially focused on designing and
demonstrating specific devices for applications in QIP. One
specific example essential to the KLM protocol for LOQC is
that of the NS gate. We have discovered a scalable design, and
we shall report this result elsewhere very soon.
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