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Mie scattering of Laguerre-Gaussian beams: Photonic nanojets and near-field optical vortices
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We study Mie scattering of Laguerre-Gaussian (LG) light beams remodelled using the method of far-field
matching. The theoretical results are used to analyze the optical field in the near-field region for purely azimuthal
LG beams characterized by a nonzero azimuthal mode number mLG. The morphology of photonic nanojets and
the near-field structure of optical vortices associated with the components of the electric field are both found to
be highly sensitive to the mode number mLG.
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I. INTRODUCTION

The problem of light scattering by particles has a long
history, dating back more than a century to the classical
exact solution due to Mie [1]. The Mie solution applies to
scattering of plane waves by uniform spherical particles with
isotropic dielectric properties. The analysis of a Mie-type
theory uses a systematic expansion of the electromagnetic field
over vector spherical harmonics [2–7]. The specific form of
the expansions is also known as the T-matrix ansatz that has
been widely used in the related problem of light scattering
by nonspherical particles [5,8,9]. More recently this strategy
has been successfully applied to optically anisotropic particles
[10–18].

In its original form the Mie theory assumes that the scatterer
is illuminated with a plane electromagnetic wave. For laser
beams, it is generally necessary to go beyond the plane-wave
approximation that may severely break down when the beam
width becomes of order of the scatterer size. The problem of
light scattering from arbitrary shaped laser beams has now a
more than two-decade-long history [19–23] and has been the
key subject of the Mie-type theory—the so-called generalized
Lorenz-Mie theory (GLMT) [7,24]—extended to the case of
arbitrary incident-beam scattering.

Mathematically, in such generalization of the Mie theory,
the central and the most important task is to describe
illuminating beams in terms of expansions over a set of basis
wave functions (for the spherical coordinate system, it is
the multipole expansion over the basis of vector spherical
wave functions). In GLMT, a variety of formally exact (the
quadrature and double quadrature formulas) and approximate
(the finite series and localized approximations) methods [25]
were developed to evaluate the expansion coefficients that are
referred to as the beam shape coefficients (for a recent review
see Ref. [26] and references therein).

The central problem with laser beams is due to the fact
that in their standard mathematical form these beams are not
radiation fields which are solutions to Maxwell’s equations.
Typically, the analytical treatment of laser beams is performed
using the paraxial approximation [27] and the beams are de-
scribed as pseudofields which are only approximate solutions
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of the vector Helmholtz equation (higher-order corrections can
be used to improve the accuracy of the paraxial approximation
[27,28]).

Unfortunately, multipole expansions do not exist for such
approximate pseudofields. Therefore, some remodelling pro-
cedure must be invoked to obtain a real radiation field which
can be regarded as an approximation to the original paraxial
beam.

The basic concept that might be called matching the fields
on a surface lies at the heart of various traditional approaches to
the laser beam remodelling and is based on the assumption that
there is a surface where the actual incident field is equal to the
paraxial field. Examples of physically reasonable and natural
choice are scatterer-independent matching surfaces such as a
far-field sphere [29], the focal plane (for beams with well-
defined focal planes) [29,30], and a Gaussian reference sphere
representing a lens [31]. Given the paraxial field distribution
on the matching surface, the beam shape coefficients can be
evaluated using either numerical integration or the one-point
matching method [29].

An alternative approach is to describe analytically prop-
agation of a laser beam, which is known in the paraxial
limit, without recourse to the paraxial approximation. In
Refs. [32–36] this strategy has been applied to the impor-
tant case of Laguerre-Gaussian (LG) beams using different
methods such as the vectorial Rayleigh-Sommerfeld formulas
[33,36], the vector angular spectrum method [35], approximat-
ing LG beams by nonparaxial beams with (near) cylindrical
symmetry [32,34].

The nonparaxial beams are solutions of Maxwell’s equa-
tions and the beam shape coefficients can be computed using
the methods of GLMT. In recent studies of light scattering
by spherical and spheroidal particles illuminated with LG
beams [37,38], the analytical results of Ref. [34] were used
to calculate the beam shape coefficients.

It is now well known [39] that LG beams represent optical
vortex beams that carry angular momentum of two kinds: the
spin angular momentum associated with the polarization state
of the beam and the orbital angular momentum related to
spatial variations of the field. These variations derive from the
helical structure of the wave fronts comprising the beam or,
equivalently, from a phase singularity at the beam axis. The
topological charge characterizing the phase singularity and
associated orbital angular momentum gives rise to distinctive
phenomena such as soliton generation [40], entanglement of
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photon quantum states, orbital angular momentum exchange
with atoms and molecules (in addition to the collection of
papers [39], see reviews in Ref. [41]), rotation and orbital
motion of spherical particles illuminated with LG beams
[42,43].

In this paper the problem of light scattering from LG beams
that represent laser beams exhibiting a helical phase front
and carrying a phase singularity will be our primary interest.
In our calculations we shall follow Ref. [15] and use the
T -matrix approach in which the far-field matching method is
combined with the results for nonparaxial propagation of LG
beams [35,36]. Our goal is to examine the near-field structure
of optical field depending on the parameters characterizing
both the beam and the scatterer.

This structure has recently attracted considerable attention
that was stimulated by an upsurge of interest to the so-
called photonic nanojets and their applications (for a review
see Ref. [44]). These nanojets were originally identified in
finite-difference–time-domain simulations [45,46] as narrow,
high-intensity electromagnetic beams that propagate into
background medium from the shadow-side surface of a plane-
wave illuminated dielectric microcylinder [45] or microsphere
[46] of diameter greater than the illuminating wavelength. In
other words, a photonic nanojet can be regarded as a localized,
subdiffractional, nonevanescent light focus propagating along
the line of incidence.

There is a variety of potentially important applications
of the photonic nanojets for detecting and manipulating
nanoscale objects, subdiffraction-resolution nanopattering and
nanolithography, low-loss waveguiding, and ultradensity opti-
cal storage. These applications are reviewed in Ref. [44].

The most striking effect underlying some of the applications
is that a nanoparticle inserted within a nanojet may produce
significant and easily detectable perturbations of the far-field
backscattering [45–47]. In this way the presence of the
nanoparticle turns out to be projected to the far field by means
of the nanojet. It is also worth noting that the photonic nanojets
are found to have a profound effect on the optical forces acting
on metallic nanoparticles [48]. In general, these effects are
governed by the near-field structure of the optical field and it
is important to understand how this structure transforms under
the action of the incident light beam.

The bulk of theoretical studies devoted to nanojets [49–54]
has been predominantly focused on the case of plane-wave
illumination. In this paper we intend to fill the gap.

The layout of the paper is as follows. In Sec. II, we
describe our theoretical approach and then, in Sec. III, we
obtain the analytical results for the beam shape coefficients
of LG beams. The numerical procedure and the results of
numerical computations representing the near-field intensity
distributions and phase maps of electric-field components for
purely azimuthal LG beams are presented in Sec. IV. Finally,
in Sec. V, we present our results and make some concluding
remarks.

II. T-MATRIX FORMULATION OF LORENZ-MIE THEORY

We consider scattering by a spherical particle of radius
Rp embedded in a uniform isotropic dielectric medium with
dielectric constant εmed and magnetic permeability μmed. The

dielectric constant and magnetic permittivity of the particle
are εp and μp, respectively. Our starting point is the Maxwell
equations for a harmonic electromagnetic wave (the time-
dependent factor is exp{−iωt}) written in the form

− ik−1
i ∇ × E = μi

ni

H , (1a)

ik−1
i ∇ × H = ni

μi

E, i =
{

med, r > Rp,

p, r < Rp,
(1b)

where nmed = √
εmedμmed is the refractive index outside the

scatterer (in the ambient medium), where r > Rp (i = med)
and ki = kmed = nmedkvac (kvac = ω/c = 2π/λ is the free-
space wave number); np = √

εpμp is the refractive index
for the region inside the spherical particle (scatterer), where
r < Rp (i = p) and ki = kp = npkvac.

In this section we introduce all necessary notations and
remind the reader about how the scattering properties are
described in terms of the T matrix [2,5]. Our formulation
is slightly nonstandard and closely follows the line of our
presentation given in Ref. [15].

A. Vector spherical harmonics and Wigner D functions

The electromagnetic field can always be expanded using the
vector spherical harmonic basis, Yj+δ j m(φ,θ ) ≡ Yj+δ j m(r̂)
(δ = 0, ± 1) [55], as follows:

E =
∑
jm

Ejm

=
∑
jm

[
p

(0)
jm(r)Y(0)

jm(r̂) + p
(e)
jm(r)Y(e)

jm(r̂) + p
(m)
jm (r)Y(m)

jm (r̂)
]
,

(2a)

H =
∑
jm

Hjm

=
∑
jm

[
q

(0)
jm(r)Y(0)

jm(r̂) + q
(e)
jm(r)Y(e)

jm(r̂) + q
(m)
jm (r)Y(m)

jm (r̂)
]
,

(2b)

where Y(m)
jm = Yj j m and Y(e)

jm = [j/(2j + 1)]1/2Yj+1 j m +
[(j + 1)/(2j + 1)]1/2Yj−1 j m are electric and magnetic har-
monics respectively, and Y(0)

jm = [j/(2j + 1)]1/2Yj−1 j m −
[(j + 1)/(2j + 1)]1/2Yj+1 j m are longitudinal harmonics. In
Ref. [15], it was shown that the spherical harmonics can be
conveniently expressed in terms of the Wigner D functions
[55,56] as follows:

Y(m)
jm (r̂) = Nj/

√
2
{
D

j ∗
m,−1(r̂) e−1(r̂) − D

j ∗
m, 1(r̂) e+1(r̂)

}
, (3a)

Y(e)
jm(r̂) = Nj/

√
2
{
D

j ∗
m,−1(r̂) e−1(r̂) + D

j ∗
m, 1(r̂) e+1(r̂)

}
, (3b)

Y(0)
jm(r̂) = NjD

j ∗
m, 0(r̂) e0(r̂) = Yjm(r̂)r̂,

Nj = [(2j + 1)/4π ]1/2, (3c)

where e±1(r̂) = ∓[ex(r̂) ± iey(r̂)]/
√

2; ex(r̂) ≡ ϑ̂ = (cos θ

cos φ, cos θ sin φ, − sin θ ), ey(r̂) ≡ ϕ̂ = (− sin φ, cos φ,0)
are the unit vectors tangential to the sphere; φ (θ )
is the azimuthal (polar) angle of the unit vector
r̂ = r/r= (sin θ cos φ, sin θ sin φ, cos θ ) ≡ e0(r̂) ≡ ez(r̂). (Hats
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will denote unit vectors and an asterisk will indicate complex
conjugation.)

Note that, for the irreducible representation of the ro-
tation group with the angular number j , the D functions,
D

j
mν(α,β,γ ) = exp(−imα)d j

mμ(β) exp(−iμγ ), give the ele-
ments of the rotation matrix parametrized by the three Euler
angles [55,56]: α, β, and γ . In formulas (3) and throughout
this paper, we assume that γ = 0 and D

j
mν(r̂) ≡ D

j
mν(φ,θ,0).

These D functions meet the following orthogonality relations
[55,56]: 〈

D j ∗
mν (r̂)D j ′

m′ν(r̂)
〉
r̂ = 4π

2j + 1
δjj ′ δmm′ , (4)

where

〈f 〉r̂ ≡
∫ 2π

0
dφ

∫ π

0
sin θdθ f (r̂)

and f (r̂) ≡ f (φ,θ ). The orthogonality condition (4) and
Eqs. (3) show that a set of vector spherical harmonics is
orthonormal:〈

Y(α) ∗
jm (r̂) · Y(β)

j ′m′(r̂)
〉
r̂ = δαβ δjj ′ δmm′ . (5)

We can now use the relations [55]

NjD
j ∗
m 0(r̂) = Yjm(r̂), (6)

NjD
j ∗
m±1(r̂) = nj

[
∓∂θ + i

sin θ
∂φ

]
Yjm(r̂),

nj ≡ [j (j + 1)]−1/2, (7)

where ∂x stands for a derivative with respect to x and Yjm(r̂)
is the normalized spherical function

Yjm(φ,θ ) = Nj exp(imφ)d j

m,0(θ )

= (−1)m
√

(2j + 1)(j − m)!

4π (j + m)!
exp(imφ) P m

j (cos θ )

(8)

expressed in terms of the associated Legendre polynomial of
degree j and order m,

P m
j (x)=

{
(−1)m/(2j j !)(1 − x2)m/2∂

j+m
x (x2 − 1)j , m > 0,

(−1)|m|(j − |m|)!/(j + |m|)!P |m|
j (x), m < 0,

(9)

and derive the following expressions for the magnetic and
electric vector spherical functions:

Y(m)
jm (r̂) = −inj

[
[∂θYjm]ϕ̂ − i

m

sin θ
Yjmϑ̂

]

= nj LYjm = −ir̂ × Y(e)
jm, (10)

Y(e)
jm(r̂) = nj

[
[∂θYjm]ϑ̂ + i

m

sin θ
Yjmϕ̂

]

= nj r∇Yjm = −ir̂ × Y(m)
jm , (11)

where L is the operator of angular momentum given by

iL = r × ∇ = ϕ̂ ∂θ − ϑ̂ [sin θ ]−1∂φ. (12)

Formulas (10) and (11) give the vector spherical harmonics
(3) rewritten in the well-known standard form [57].

B. Wave functions and T matrix

The electric field (2a) is completely described by the
coefficients {p(λ)

jm(r)} and similarly the magnetic field (2b) is

described by {q(λ)
jm(r)} with λ = {0,e,m}. In order to find the

coefficient functions we can use separation of variables. In the
simplest case of an isotropic medium the coefficient functions
can be expressed in terms of spherical Bessel functions,
jj (x) = [π/(2x)]1/2Jj+1/2(x), and spherical Hankel functions
[58], h

(1, 2)
j (x) = [π/(2x)]1/2H

(1, 2)
j+1/2(x), and their derivatives.

Alternatively, it is well known (a discussion of the proce-
dure can be found, e.g., in Ref. [59]) that solutions of the scalar
Helmholtz equation, (∇2 + k2)ψ(r) = 0, taken in the form

ψ
(α)
jm = njz

(α)
j (ρ)Yjm(r̂), nj ≡ [j (j + 1)]−1/2, (13)

where ρ = kr and z
(α)
j (ρ) is either a spherical Bessel or

Hankel function, can be used to obtain the following solenoidal
solutions of the vector Helmholtz equation:

M(α)
jm(ρ,r̂) = Lψ

(α)
jm = z

(α)
j (ρ)Y(m)

jm (r̂), (14)

N(α)
jm(ρ,r̂) = −ik−1 ∇ × M(α)

jm

=
√

j (j + 1)

ρ
z

(α)
j (ρ) Y(0)

jm(r̂) + Dz
(α)
j (ρ)Y(e)

jm(r̂),

(15)

where Df (x) ≡ x−1∂x[xf (x)]. The vector wave functions,
M(α)

jm and N(α)
jm, are linked through the identities

−i∇ × M(α)
jm = kN(α)

jm, i∇ × N(α)
jm = kM(α)

jm (16)

and their linear combination represents the expansions (2) over
the vector spherical harmonics.

There are three cases of these expansions that are of
particular interest. They correspond to the incident wave,
{Einc,Hinc}, the outgoing scattered wave, {Esca,Hsca}, and the
electromagnetic field inside the scatterer, {Ep,Hp}:
Eα =

∑
jm

[
α

(α)
jmM(α)

jm(ρi,r̂) + β
(α)
jmN(α)

jm(ρi,r̂)
]
,

α ∈ {inc,sca,p}, (17a)

Hα = ni/μi

∑
jm

[
α

(α)
jmN(α)

jm(ρi,r̂) − β
(α)
jmM(α)

jm(ρi,r̂)
]
, (17b)

i =
{

med, α ∈ {inc,sca},
p, α = p,

z
(α)
j (ρi) =

⎧⎪⎨
⎪⎩

jj (ρ), α = inc,

h
(1)
j (ρ), α = sca,

jj (ρp), α = p,

(17c)

where ρmed = kmedr ≡ ρ, ρp = kpr ≡ nρ, and n = np/nmed

is the ratio of refractive indexes also known as the optical
contrast. Thus outside the scatterer the optical field is a sum of
the incident wave field with z

(inc)
j (ρ) = jj (ρ) and the scattered

waves with z
(sca)
j (ρ) = h

(1)
j (ρ) as required by the Sommerfeld

radiation condition.
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In the far-field region (ρ 
 1), the asymptotic behavior of
the spherical Bessel and Hankel functions is known [58]

ij+1h
(1)
j (ρ),ijDh

(1)
j (ρ) ∼ exp(iρ)/ρ, (18)

(−i)j+1h
(2)
j (ρ),(−i)jDh

(2)
j (ρ) ∼ exp(−iρ)/ρ, (19)

ij+1jj (ρ),ij+1Djj+1(ρ) ∼ [exp(iρ) − (−1)j exp(−iρ)]/(2ρ).

(20)

So, the spherical Hankel functions of the first kind, h
(1)
j (ρ),

describe the outgoing waves, whereas those of the second
kind, h

(2)
j (ρ), represent the incoming waves.

The incident field is the field that would exist without a
scatterer and therefore includes both incoming and outgoing
parts [see Eq. (20)] because, with no scattering, what comes in
must go outwards again. As opposed to the spherical Hankel
functions that are singular at the origin, the incident wave field
should be finite everywhere and thus is described by the regular
Bessel functions jj (ρ).

Now the incident wave is characterized by amplitudes
α

(inc)
jm , β

(inc)
jm and the scattered outgoing waves are similarly

characterized by amplitudes α
(sca)
jm , β

(sca)
jm . So long as the

scattering problem is linear, the coefficients α
(sca)
jm and β

(sca)
jm

can be written as linear combinations of α
(inc)
jm and β

(inc)
jm :

α
(sca)
jm =

∑
j ′,m′

[
T 11

jm, j ′m′ α
(inc)
j ′m′ + T 12

jm, j ′m′ β
(inc)
j ′m′

]
,

(21)
β

(sca)
jm =

∑
j ′,m′

[
T 21

jm, j ′m′ α
(inc)
j ′m′ + T 22

jm, j ′m′ β
(inc)
j ′m′

]
.

These formulas define the elements of the T matrix in the most
general case.

In general, the scattering process mixes angular momenta
[8]. The light scattering from uniformly anisotropic scatterers
[15,60] provides an example of such a scattering process.
In simpler scattering processes, by contrast, such angular
momentum mixing does not take place. For example, radial
anisotropy keeps intact spherical symmetry of the scatterer
[10,15,18]. The T matrix of a spherically symmetric scatterer
is diagonal over the angular momenta and the azimuthal
numbers: T nn′

jj ′,mm′ = δjj ′δmm′T nn′
j .

In order to calculate the elements of the T matrix and
the coefficients α

(p)
jm and β

(p)
jm , we need to use continuity of

the tangential components of the electric and magnetic fields
as boundary conditions at r = Rp (ρ = kmedRp ≡ x). So,
the coefficients of the expansion for the wave field inside
the scatterer, α

(p)
jm and α

(p)
jm , are expressed in terms of the

coefficients describing the incident light as follows:

iα
(p)
jm = α

(inc)
jm

μ−1vj (x)u′
j (nx) − n−1v′

j (x)uj (nx)
, μ = μp/μmed,

(22)

iβ
(p)
jm = β

(inc)
jm

n−1vj (x)u′
j (nx) − μ−1v′

j (x)uj (nx)
, n = np/nmed,

(23)

where x = kmedRp, uj (x) = xjj (x), and vj (x) = xh
(1)
j (x). The

similar result relating the scattered wave and the incident
wave,

α
(sca)
jm = T 11

j α
(inc)
jm =n−1u′

j (x)uj (nx) − μ−1uj (x)u′
j (nx)

μ−1vj (x)u′
j (nx) − n−1v′

j (x)uj (nx)
α

(inc)
jm ,

(24)

β
(sca)
jm = T 22

j β
(inc)
jm =μ−1uj (x)u′

j (nx) − n−1u′
j (x)uj (nx)

n−1vj (x)u′
j (nx) − μ−1v′

j (x)uj (nx)
β

(inc)
jm ,

(25)

defines the T matrix for the simplest case of a spherically
symmetric scatterer. In addition, since the parity of electric
and magnetic harmonics with respect to the spatial inversion
r̂ → −r̂ ({φ,θ} → {φ + π,π − θ}) is different,

Y(m)
jm (−r̂) = (−1)j Y(m)

jm (r̂), Y(e)
jm(−r̂) = (−1)j+1Y(e)

jm(r̂),
(26)

where f (r̂) ≡ f (φ,θ ) and f (−r̂) ≡ f (φ + π,π − θ ), they do
not mix provided the mirror symmetry has not been broken.
In this case the T matrix is diagonal and T 12

j = T 21
j = 0.

The diagonal elements T 11
j and T 22

j are also called the Mie
coefficients.

III. INCIDENT WAVE BEAMS

The formulas (22)–(25) are useful only if the expansion
for the incident light beam is known. First we briefly review
the most studied and fundamentally important case where the
incident light is represented by a plane wave.

A. Plane waves

The electric field of a transverse plane wave propagating
along the direction specified by a unit vector k̂inc is

Einc = E(inc) exp(i kinc · r) , E(inc) =
∑
ν=±1

E(inc)
ν eν(k̂inc) ,

(27)
kinc = kk̂inc ,

where the basis vectors e±1(k̂inc) are perpendicular to k̂inc.
Then the vector version of the well-known Rayleigh expansion
(see, for example, [2])

exp(i ρk̂ · r̂) = 4π

∞∑
l=0

l∑
m=−l

i ljl(ρ) Ylm(r̂) Y ∗
lm(k̂), ρ ≡ kr,

(28)
which is given by

eν(k̂) exp[iρ(k̂ · r̂)] =
∑
jm

αjD
j
mν(k̂){iνMjm(ρ,r̂)−Njm(ρ,r̂)},

(29)
ν = ±1,
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where αj = ij+1[2π (2j + 1)]1/2, immediately gives the ex-
pansion coefficients for the plane wave,

α
(inc)
jm = iαj

∑
ν=±1

Dj
mν(k̂inc)νE(inc)

ν ,

(30)
β

(inc)
jm = −αj

∑
ν=±1

Dj
mν(k̂inc)E(inc)

ν ,

where D
j

mm′ is the Wigner D function.
In the far-field region, the electric field of scattered wave

is related to the polarization vector of the plane wave through
the scattering amplitude matrix as follows [2,8,61]:

E(sca)
ν ≡ (e ∗

ν (k̂sca),Esca)

= ρ−1 exp(iρ)
∑

ν ′=±1

Aνν ′ (k̂sca,k̂inc)E(inc)
ν ′ , ν = ±1,

(31)

where k̂sca = r̂. For a spherically symmetric scatterer, the
expression for the scattering amplitude matrix in terms of the
T matrix is given by

Aνν ′ (k̂sca,k̂inc) =
∑

j

Aj

νν ′ (k̂sca,k̂inc)

= −i
∑

j

(j + 1/2)D̃j

νν ′ (k̂sca,k̂inc)

× [
νν ′ T 11

j − iν T 12
j + iν ′ T 21

j + T 22
j

]
,

(32a)

D̃
j

νν ′(k̂sca,k̂inc) =
∑
m

Dj ∗
mν(k̂sca)Dj

mν ′(k̂inc). (32b)

Equation (32b) shows that the scattering amplitude matrix
(32a) depends only on the angle between k̂inc and k̂sca. All far-
field scattering characteristics of the system can be computed
from the scattering amplitude matrix.

B. Far-field matching

Now we consider a more general case where an incident
electromagnetic wave is written as a superposition of propa-
gating plane waves:

Einc(r) ≡ Einc(ρ,r̂) = 〈exp(iρ k̂ · r̂) Einc(k̂)〉k̂,
(33a)

Einc(k̂) =
∑
ν=±1

Eν(k̂) eν(k̂),

Hinc(r) ≡ Hinc(ρ,r̂) = n

μ
〈exp(iρ k̂ · r̂) [k̂ × Einc(k̂)]〉k̂,

(33b)

where

〈f 〉k̂ ≡
∫ 2π

0
dφk

∫ π

0
sin θkdθk f.

Our first step is to examine the asymptotic behavior of the
wave field (33) in the far-field region, ρ 
 1. The results can
be easily obtained by using the asymptotic formula for a plane

wave (see, e.g., [5]),

exp(iρ k̂ · r̂) ∼ −2πi

ρ
[exp(iρ)δ(k̂ − r̂) − exp(−iρ)δ(k̂ + r̂)]

(34)
at ρ 
 1,

where δ(k̂ ∓ r̂) is the solid angle Dirac δ function symbolically
defined through the expansion

δ(k̂ ∓ r̂) =
∞∑
l=0

l∑
m=−l

Ylm(±r̂) Y ∗
lm(k̂). (35)

Applying the relation (34) to the plane-wave superposition
(33a) gives the electric field of the incident wave in the far-field
region,

Einc(ρ,r̂) ∼ E(∞)
inc (ρ,r̂)

= 1

ρ
[exp(iρ)Eout(r̂) + exp(−iρ)Ein(r̂)], (36)

Ein(r̂) = −Eout(−r̂), (37)

where Eout(r̂) is the far-field angular distribution for the
outgoing part of the electric field of the incident wave:

Eout(r̂) = −2πi Einc(r̂) = E
(out)
θ (r̂) eθ (r̂) + E

(out)
φ (r̂) eφ(r̂),

(38)

whereas the incoming part of the incident wave is described
by the far-field angular distribution Ein(r̂).

The result for the far-field distribution of the magnetic field
(33b) can be written in a similar form:

Hinc(ρ,r̂) ∼ H(∞)
inc (ρ,r̂)

= 1

ρ
[exp(iρ)Hout(r̂) + exp(−iρ)Hin(r̂)], (39)

Hin(r̂) = −Hout(−r̂), (40)

μ/n Hout(r̂) = r̂ × Eout(r̂), μ/n Hin(r̂) = r̂ × Eout(−r̂).

(41)

Formulas (36)–(41) explicitly show that, in the far-field region,
the incident wave field is defined by the angular distribution of
the outgoing wave (38). In particular, from these formulas, it is
not difficult to obtain the far-field expression for the Poynting
vector of the incident wave Sinc = c/(8π ) Re(Einc × H ∗

inc),

Sinc(ρ,r̂) ∼ S(∞)
inc (ρ,r̂) = ρ−2{Sin(r̂) + Sout(r̂)}, (42)

Sin(r̂) = −Sout(−r̂), μ/n Sout(r̂) = c/(8π ) |Eout(r̂)|2 r̂,

(43)

where |Eout(r̂)|2 = [Eout(r̂) · E ∗
out(r̂)]. From this expression it

immediately follows that the flux of Poynting vector of the
outgoing wave, Sout(r̂), through a sphere of sufficiently large
radius is exactly balanced by the flux of Poynting vector of the
incoming wave, Sinc(r̂).

Alternatively, the far-field distribution of an incident light
beam, Eout(r̂), can be found from the expansion over the vector
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spherical harmonics (17a). The far-field asymptotics for the
vector wave functions that enter the expansion for the incident
wave (17),

M(inc)
jm (ρ,r̂) ∼ (−i)j+1

2ρ

[
exp(iρ)Y(m)

jm (r̂)− exp(−iρ)Y(m)
jm (−r̂)

]
,

(44)

N(inc)
jm (ρ,r̂) ∼ (−i)j

2ρ

[
exp(iρ)Y(e)

jm(r̂) − exp(−iρ)Y(e)
jm(−r̂)

]
,

(45)

can be derived from Eqs. (14) and (15) with the help of the
far-field relation (20). Substituting Eqs. (44) and (45) into the
expansion (17a) gives the far-field distribution of the form (36)
with

Eout(r̂) = 2−1
∑
jm

[
(−i)j+1α

(inc)
jm Y(m)

jm (r̂) + (−i)jβ(inc)
jm Y(e)

jm(r̂)
]
.

(46)

The coefficients of the incident wave can now be easily found
as the Fourier coefficients of the far-field angular distribution,
Eout, expanded using the vector spherical harmonics basis (3).
The final result reads

α
(inc)
jm = 2 ij+1

〈
Y(m) ∗

jm (r̂) · Eout(r̂)
〉
r̂

= iαj

∑
ν=±1

ν
〈
D j

mν(k̂) Eν(k̂)
〉
k̂, (47a)

β
(inc)
jm = 2 ij

〈
Y(e) ∗

jm (r̂) · Eout(r̂)
〉
r̂

= −αj

∑
ν=±1

〈
D j

mν(k̂) Eν(k̂)
〉
k̂. (47b)

A comparison between the expressions on the right-hand side
of Eq. (47) and those for the plane wave (30) shows that,
in agreement with the representation (33a), the result for
plane waves represents the limiting case where the angular
distribution is singular: Eν(k̂) = E(inc)

ν δ(k̂ − k̂inc).
By using Eqs. (10) and (11) formulas (47) can be conve-

niently rewritten in the explicit form

α
(inc)
jm = 2nj ij+1〈Y ∗

jm(r̂) [L · Eout(r̂)]〉r̂

= 2nj ij
∫ 2π

0
dφ

∫ π

0
dθ Y ∗

jm(φ,θ )

× [
∂θ

(
sin θE

(out)
φ

) − ∂φE
(out)
θ

]
, (48a)

β
(inc)
jm = −2nj ij 〈Y ∗

jm(r̂) [r∇ · Eout(r̂)]〉r̂

= −2nj ij
∫ 2π

0
dφ

∫ π

0
dθ Y ∗

jm(φ,θ )

× [
∂θ

(
sin θE

(out)
θ

) + ∂φE
(out)
φ

]
, (48b)

which might be useful for computational purposes.
We conclude this section with the remark concerning the

effect of translation

{Einc(r),Hinc(r)} → {Einc(r − Rd ),Hinc(r − Rd )} (49)

on the far-field angular distribution (38). Note that, under the
action of transformation (49), the focal plane is displaced from
its initial position by the vector Rd . From Eqs. (33) and (38),
it follows that, for the far-field distribution (38), translation
results in the phase shift

Eout(r̂) → Eout(r̂) exp(−ikRr ), (50)

where Rr = (Rd · r̂) is the radial component of the displace-
ment vector Rd .

C. Laguerre-Gaussian beams

In the paraxial approximation, the beams are described in
terms of scalar fields of the form u(r) exp(ikz), where u(r) is
a solution of the paraxial Helmholtz equation

[∇2
⊥ + 2ik∂z]u = 0, ∇2

⊥ = ∂2
x + ∂2

y . (51)

For LG beams, the solution can be conveniently written in the
cylindrical coordinate system, (r⊥,φ,z), as follows:

unm(r⊥,φ,z) = |σ |−1ψnm(
√

2r⊥/w)

× exp
{−r2

⊥/
(
w2

0σ
) + imφ − iγnm

}
,

(52a)

σ ≡ σ (z) = 1 + iz/zR, w ≡ w(z) = w0|σ |,
(52b)

γnm ≡ γnm(z) = (2n + m + 1) arctan(z/zR),
(52c)

ψnm(x) = x|m|L|m|
n (x2),

where Lm
n is the generalized Laguerre polynomial given by

[62]

Lm
n (x) = (n!)−1x−m exp(x) ∂n

x [xn+m exp(−x)], (53)

n (m) is the radial (azimuthal) mode number, w0 is the
initial transverse Gaussian half width (the beam diameter
at waist), zR = kw2

0/2 = [2kf 2]−1 is the Rayleigh range,
and f = [kw0]−1. Note that, in addition to the standard
mathematical methods, the result (52) can also be obtained
using either the ladder operator technique [63] or the operator
approach developed in Ref. [64].

The problem studied in Refs. [33,35,36] deals with the exact
propagation of the optical field in the half space, z > 0, when
its transverse components at the initial (source) plane, z = 0,
are known. In Ref. [35], the results describing asymptotic
behavior of the linearly polarized field

E(r⊥,φ,0) = unm(r⊥,φ,0) x̂

= ψnm(
√

2r⊥/w0) exp
{−r2

⊥/w2
0 + imφ

}
x̂ (54)

were derived using the angular spectrum representation (De-
bye intergrals) and comply with both the results of rigorous
mathematical analysis performed in Ref. [65] and those
obtained using the vectorial Rayleigh-Sommerfeld integrals
[33,36]. The resulting expression for the far-field angular
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distribution can be written in the following form:

E(LG)
out (φ,θ ) = Enm(f −1 sin θ/

√
2) exp(imφ)eout, (55a)

eout = cos φ eθ (r̂) − cos θ sin φ eφ(r̂)

= cos θ x̂ − sin θ cos φ ẑ, (55b)

Enm(x) = xm

i2n+m+12f 2
Lm

n (x2) exp(−x2/2). (55c)

We can now combine the relations (38) and (33) with the
outgoing part of the far-field distribution (55a) to deduce the
expression for the electric field of the remodelled LG beam

E(LG)
inc (ρ⊥,φ,ρz)

= E(LG)
x (ρ⊥,φ,ρz) x̂ + E(LG)

z (ρ⊥,φ,ρz) ẑ

= i

2π
〈exp{i[ρ⊥ sin θk cos(φ−φk)+ρz cos θk]} E(LG)

out (k̂)〉k̂,

(56)

where ρ⊥ = kr⊥ and ρz = kz. For computational purposes,
the electric field can be conveniently recast into the explicit
form with the help of the identity [58]

exp[ix cos φ] = J0(x) + 2
∞∑

k=1

ikJk(x) cos kφ, (57)

where Jm(x) is the Bessel function of the first kind of order m.
The final result reads

E(LG)
x = im+1 exp[imφ]

∫ π/2

0
Jm(ρ⊥ sin θk)Fnm(ρz,θk)

× cos θk sin θkdθk, (58a)

E(LG)
z = im/2

∑
δ=±1

δ exp[i(m + δ)φ]
∫ π/2

0
Jm+δ(ρ⊥ sin θk)

×Fnm(ρz,θk) sin2 θkdθk, (58b)

where Fnm(ρz,θk) ≡ exp[iρz cos θk]Enm(f −1 sin θk/
√

2).

IV. RESULTS AND DISCUSSION

In this section, we present the results of numerical compu-
tations on the light-scattering problem for the case where the
incident wave is represented by the remodelled LG beams (56)
with the vanishing radial mode number n = 0 and the nonzero
azimuthal number, m = mLG � 0. Such beams are also known
as the purely azimuthal LG beams [66].

Substituting the far-field distribution (55) into Eq. (48) gives
the beam shape coefficients of these beams in the following
form:

α
(inc)
jm = α

(+)
j, mLG

δm, mLG+1 + α
(−)
j,mLG

δm, mLG−1, (59a)

β
(inc)
jm = β

(+)
j, mLG

δm, mLG+1 + β
(−)
j, mLG

δm, mLG−1. (59b)

Then the coefficients of expansions (17) describing scattered
wave and electromagnetic field inside the scatterer can be
evaluated from formulas (22)–(25).

FIG. 1. (Color online) Near-field intensity distributions of the
total wave field in (a) the x-z plane and (b) the y-z plane for the LG
beam with mLG = 0, f = 0.05, and |Rd | = 0. The parameters are as
follows: Rp = λ is the scatterer radius and np = 1.3 (nm = 1.0) is
the refractive index inside (outside) the particle.

A. Photonic nanojets

For spherical particles illuminated by plane waves, forma-
tion of photonic nanojets and their structure was previously
discussed in Refs. [49–51]. Plane waves can be regarded as
Gaussian beams with n = mLG = 0 and sufficiently small
focusing parameter, f � 1, which is defined after Eq. (53)
through the ratio of wavelength, λ, and the beam diameter at
waist, w0, f = (2π )−1λ/w0. This limiting case is illustrated
in Fig. 1 which shows the near-field intensity distributions for
the total light wave field in both the x-z and the y-z planes
computed at mLG = 0 and f = 0.05 for the spherical particle
of the radius Rp = λ with the refractive index np = 1.3 (water)
located in the air (nm = 1).

It can be seen that the distributions are characterized by
the presence of elongated focusing zones formed near the
shadow surface of the scatterer. The transverse size of these
zones is smaller than the wavelength of incident light, whereas
their longitudinal size in the direction of incidence which is
along the z axis from top to bottom is relatively large. Such a
jetlike light structure is typical for the photonic nanojets. The
characteristic length and width of nanojets along with the peak
intensity are known to strongly depend on a number of factors
such as the scatterer size Rp, the particle absorption coefficient,
and the optical contrast ratio np/nm. For microspheres, the
results of a comprehensive numerical analysis including the
case of shell particles are summarized in the recent paper [51].

Effects of nonplane incident waves such as the laser beams
on the structure of photonic nanojets are much less studied.
Some theoretical results for tightly focused Gaussian beams
are reported in Ref. [67] and the case of Bessel-Gauss beams
was studied experimentally in [68].

For the LG beams, we begin with the effects of the azimuthal
mode number and describe what happens to the near-field
structure shown in Fig. 1 when the azimuthal number takes
the smallest nonzero value, mLG = 1. The latter represents the
simplest case of an optical vortex beam in which, owing to the
presence of phase singularity, the intensity of incident light at
the beam axis (the z axis) vanishes [see Fig. 2(a)]. From Fig. 2,
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FIG. 2. (Color online) Near-field intensity distribution in the x-z
plane of (a) the incident wave beam and (b) the total wave field for the
LG beam with mLG = 1, f = 0.05, and |Rd | = 0. Other parameters
are described in the caption of Fig. 1.

it can be seen that, even though the bulk part of the scatterer
is in the low intensity region surrounding the optical vortex,
the scattering process is efficient enough to produce scattered
waves that result in the formation of a pronounced jetlike
photonic flux emerging from the particle shadow surface [see
Fig. 2(b)].

A comparison between Figs. 2(b) and 1(a) shows that
the three-peak structure of the photonic jet formed at Mie
scattering of the optical vortex LG beam with mLG = 1
significantly differs from the well-known shape of the nanojet
at mLG = 0. Interestingly, similar to the case of Gaussian
beams with mLG = 0, the focusing zones at mLG = 1 involve
the beam axis where one of the light intensity peaks is located.

The results for tightly focused LG beams with mLG = 2 and
f = 0.25 are shown in Figs. 3 and 4. When the displacement
vector, Rd defined in Eq. (49), vanishes, the focal (waist) plane
of the incident LG beam is z = 0 and contains the center of the
spherical scatterer [see Fig. 3(a)]. Referring to Fig. 3, this is
the case where, similar to the focal plane of the incident beam,

FIG. 3. (Color online) Near-field intensity distribution in the x-z
plane of (a) the incident wave beam and (b) the total wave field for
the LG beam with mLG = 2, f = 0.25, and |Rd | = 0.

FIG. 4. (Color online) Near-field intensity distribution in the x-z
plane of (a) the incident wave beam and (b) the total wave field for
the LG beam with mLG = 2, f = 0.25, and Rd = (0,0,λ).

the bulk part of the four-peak structure of the focusing zones
is localized inside of the particles.

For Rd = (0,0,λ), the focal plane, z = λ, is tangential to
the shadow part of the particle surface [see Fig. 4(a)]. From
Fig. 4(b), it is seen that, as opposed to the case with |Rd | = 0,
the four peaks of light intensity now develop in the immediate
vicinity of the scatterer surface.

What all the wave fields depicted in Figs. 2(b)–4(b) have
in common is that, by contrast to the incident optical vortex
beams with mLG = 1 and mLG = 2, the light intensity at the
incident beam axis (the z axis) clearly differs from zero [see
the neighborhood of the point (0,0,λ)]. In other words, it is
turned out that, in the near-field region, the optical vortex with
0 < |mLG| � 2 has been destroyed by Mie scattering. From
Fig. 5 it is clear that this is no longer the case at mLG = 3. This
result will be explained in the subsequent section.

B. Optical vortices in near-field region

In this section we consider optical vortices and their
near-field structure. The optical vortices are known to represent

FIG. 5. (Color online) Near-field intensity distribution in the x-z
plane of (a) the incident wave beam and (b) the total wave field for
the LG beam with mLG = 3, f = 0.25, and Rd = (0,0,λ).
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phase singularities of complex-valued scalar waves which
are zeros of the wave field ψ = |ψ | exp(iχ ) where its phase
χ is undefined. A phase singularity is characterized by the
topological vortex charge mV defined as the closed-loop
contour integral of the wave phase χ modulo 2π ,

mV = 1

2π

∮
L

dχ, (60)

where L is the closed path around the singularity.
Optical vortices associated with the individual components

of electric field will be of our primary concern. More
specifically, we shall examine the optical vortex structure of
the components Ez and Ex in the planes z = z0 parallel to
the x-y plane. Since, in such planes, circles naturally play the
role of closed loops, the starting point of our analysis is the
electric-field vector expressed as a function of the azimuthal
angle φ in the following form:

E =
2∑

μ=−2

Eμ exp[i(mLG + μ)φ], (61)

E±2 ‖ x̂ ∓ iŷ, E±1 ‖ ẑ, E0 ⊥ ẑ. (62)

This formula gives the φ dependence of electric-field expan-
sion (17a) in which the coefficients are of the form given by
Eq. (59). An immediate consequence of Eq. (61) is that Eμ

can be different from zero on the z axis, Eμ(0,0,z) �= 0, only
if mLG + μ = 0.

From Eq. (62), at |mLG| = 1, the electric field nonvanishing
at the beam axis is linearly polarized along the z axis, whereas
it is circular polarized at |mLG| = 2. The intensity distributions
shown in Figs. 1–4 clearly indicate that, as opposed to the case
with mLG = 3 (see Fig. 5), the z axis is not entirely in the dark
region provided that 0 � mLG < 3.

At |mLG| � 3 and |μ| � 2, a sum mLG + μ cannot be
equal to zero and the beam axis is always a nodal line for
the components of electric field. For two-dimensional (2D)
electric-field distributions in planes normal to the z axis, it
implies that there is an optical vortex located at the origin.

Now we turn back to the optical vortex structure for the
components Ez and Ex . The φ dependence of Ez can be written
in the following form:

exp[−imLG φ]Ez = exp[−imLGφ + iχz]|Ez|
= E

(z)
+1 exp[iφ] + E

(z)
−1 exp[−iφ]

= exp[iψ (z)
+ ]

{∣∣E(z)
+1

∣∣ exp[i(φ + ψ
(z)
− )]

+ ∣∣E(z)
−1

∣∣ exp[−i(φ + ψ
(z)
− )]

}
, (63)

where E
(z)
±1 = (E±1 · ẑ), 2ψ

(z)
± = arg(E(z)

+1) ± arg(E(z)
−1) and χz

is the phase of Ez.
In the complex plane formula (63) describes an ellipse

parametrized by the azimuthal angle φ. It is centered at the
origin with the major (minor) semiaxis of the length E

(z)
+ (R)

(|E(z)
− (R)|), where E

(z)
± (R) = |E(z)

+1(R)| ± |E(z)
−1(R)|R is the

radius of circle CR in the plane of observation, z = z0. Then
the closed-loop contour integral of the wave phase χz is

mz = 1

2π

∮
CR

dχz = mLG + μz(R), (64a)

μz(R) = sgn[E(z)
− (R)] = sgn

[∣∣E(z)
+1(R)

∣∣ − ∣∣E(z)
−1(R)

∣∣]. (64b)

From Eq. (64) the net topological charge of vortices
encircled by CR can be either mLG + 1 or mLG − 1. At
|E(z)

+1(R)| = |E(z)
−1(R)|, μz(R) is undefined. This is the special

case when |Ez| = 0 at cos(φ + ψ
(z)
− ) = 0 and the circle

contains a pair of symmetrically located vortices. Each of
these vortices carries the charge of the magnitude equal to
unity. Generally, the vortices are of the same sign which is
determined by the change of μz(R) as the radius R passes the
critical value. When μz(R) changes from +1 (−1) to −1 (+1)
two vortices of the charge −1 (+1) intersect the boundary and
move into the interior part of the circle.

The near-field phase maps for χz are presented in Figs. 6(a)–
6(c). Figure 6(a) shows the 2D map for the incident optical
vortex LG beam with mLG = 2 in the focal plane z = 0. The
corresponding intensity map is depicted in Fig. 7(a). It is seen
that there is a vortex of the charge mLG − 1 = 1 at the center, so
that, at sufficiently small R, mz = 1 and μz = −1. In addition,
there is a pair of the symmetrically arranged vortices of the
charge +1 outside the particle. So, when the radius R is large
enough for the circle to enclose the three vortices, the total
charge is mz = mLG + 1 = 3 and μz = 1.

For the total wave field at z = 0, the phase and intensity
maps are given in Figs. 6(b) and 7(b), respectively. It can
be seen that the vortex pattern is complicated by interference
between the incident and the scattered waves. Referring to
Fig. 6(b), there are two additional pairs of vortices whose
charges are opposite in sign. The positively charged vortices
(the charge is +1) are located inside the particle, whereas
the negatively charged ones (the charge is −1) are formed
at the surface of the particle. Similar structure is discernible
from Figs. 6(c) and 7(c) representing the results for the plane
tangent to the particle surface z = Rp.

The case of the x component of the electric field, Ex , can
be analyzed along similar lines. From Eq. (61), we deduce the
φ dependence of Ex in the form

exp[−imLG φ + iχx]|Ex | − E
(x)
0

= E
(x)
+2 exp[2iφ] + E

(x)
−2 exp[−2iφ]

= exp[iψ (x)
+ ]

{∣∣E(x)
+2

∣∣ exp[i(2φ + ψ
(x)
− )]

+ ∣∣E(x)
−2

∣∣ exp[−i(2φ + ψ
(x)
− )]

}
, (65)

where E
(x)
±2, 0 = (E±2, 0 · x̂), 2ψ

(x)
± = arg(E(x)

+2) ± arg(E(x)
−2) and

χx is the phase of Ex . The center of the ellipse described
by Eq. (65) is generally displaced from the origin and is
determined by E

(x)
0 . The length of its major (minor) semiaxis is

E
(x)
+ (R) [|E(x)

− (R)|], where E
(x)
± (R) = |E(x)

+2(R)| ± |E(x)
−2(R)|.

The closed-loop contour integral of the wave phase χx is

mx = 1

2π

∮
CR

dχx = mLG + μx(R), μx(R) ∈ {−2,0,2}.
(66)

When the origin is enclosed by the ellipse (65), similar to
Eq. (64b), we have the relation

μx(R) = 2 sgn[E(x)
− (R)] = 2 sgn

[∣∣E(x)
+2(R)

∣∣ − ∣∣E(x)
−2(R)

∣∣].
(67)
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FIG. 6. (Color online) Near-field phase maps of the electric-field components Ez (a)–(c) and Ex (d)–(f) in the planes z = 0 (a),(b),(d),(e)
and z = Rp (c),(f) for the LG beam with mLG = 2 and f = 0.1. (a) [(d)] Phase map of the electric-field component E(LG)

z [E(LG)
x ] of the incident

wave beam in the x-y plane (z = 0). (b),(c) [(e),(f)] Phase maps for the electric-field component Ez [Ex] of the total light wave field in the
planes z = 0 and z = Rp , respectively.

In the opposite case where the origin is outside the area
encircled by the ellipse, μx(R) is zero. The latter is the
case for the phase maps representing the 2D distribu-
tions of χx in the x-y plane [see Figs. 6(d)–6(e)]. As is

evident from Figs. 6(d)–6(e) [see also the intensity maps
in Figs. 7(d)–7(e)], in these distributions, the only vor-
tex is positioned at the center and possesses the charge
mx = mLG = 2.

FIG. 7. (Color online) Near-field intensity maps of the electric-field components |Ez|2 (a)–(c) and |Ex |2 (d)–(f) in the planes z = 0
(a),(b),(d),(e) and z = Rp (c),(f) for the LG beam with mLG = 2 and f = 0.1. (a) [(d)] Intensity distribution for the z [x] component, |E(LG)

z |2
[|E(LG)

x |2], of the incident wave beam in the x-y plane (z = 0). (b),(c) [(e),(f)] Intensity distributions for the z [x] component of electric field of
the total light wave field in the planes z = 0 and z = Rp , respectively.
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For the origin located on the ellipse, we generally have
the circle CR containing a pair of symmetrically arranged and
identically charged vortices each with the charge magnitude
equal to unity. Note that, by contrast to the case of Ez where
the origin is placed at the center of the ellipse (63), intersection
of CR and the vortices generally occurs at nonvanishing E

(x)
− ,

E
(x)
− �= 0, when the ellipse (65) is not degenerated into the

interval.
In Fig. 6(f), we show what happens to the above-discussed

central vortex in the tangent plane of the particle surface, z =
Rp. From the phase and intensity maps [see Figs. 6(f) and 7(f)],
the central vortex has been destroyed and is replaced by a pair
of positively charged and symmetrically arranged vortices. In
this vortex pattern, μx(R) = −2 at small R, whereas μx(R)
becomes zero when the vortices are encircled by CR . For the
ellipse (65), it means that, at small R, the origin is encompassed
by the ellipse with E

(x)
− < 0. Then the ellipse transforms with

R in such a way that the origin no longer belongs to its interior
part and lies outside the area bounded by the ellipse provided
the radius R exceeds the half distance between the vortices.

V. CONCLUSIONS

In this paper, we have used a T -matrix approach [15]
to study the light-scattering problem for optically isotropic
spherical scatterers illuminated with LG beams that represent
optical vortex laser beams. In our approach, such beams
are described in terms of the far-field angular distribution
(38) using the remodelling procedure in which the far-field
matching method is combined with the results for nonparaxial
propagation of LG beams [see Eq. (55)].

The analytical results are employed to perform numerical
analysis of the optical field in the near-field region. In order to
examine the effects of incident beam spatial structure on the
light wave field near the scatterer, we have computed a number
of the 2D near-field intensity and phase distributions for purely
azimuthal LG beams. In this case, a LG beam possesses the
vanishing radial mode number and carries the optical vortex
with the topological charge characterized by the azimuthal
number mLG.

The 2D near-field intensity distributions computed for the
plane-wave limiting case in which the incident wave is a
Gaussian beam (mLG = 0) with small focusing parameter
f (2πf = λ/w0 < 1) reveal the well-known structure of
photonic nanojets (see Fig. 1). Figures 2–5 represent the
results for the LG beams with 1 � mLG � 3 and illustrate
the following effects:

(a) a jetlike photonic flux emerging from the particle
shadow surface can be formed even if the bulk part of the
scatterer is in the low intensity region [see Fig. 2(b)];

(b) the morphology of photonic jets formed at mLG �= 0
significantly differs from the well-known shape of nanojet at
mLG = 0 (see Figs. 3–5);

(c) by contrast to the case with mLG = 3, at |mLG| < 3,
the intensity of scattered wave field does not vanish on the
beam axis so that, in the near-field region, light scattering has
a destructive effect on the optical vortex (see Figs. 2–4).

Our analysis of optical vortices associated with the electric-
field components is based on general formula (61) giving the
electric-field vector expressed as a function of the azimuthal
angle φ. An important consequence of Eq. (61) is that,
at sufficiently large azimuthal numbers, |mLG| � 3, light
scattering of LG beams takes place without destroying the
optical vortex located on the beam axis.

Using analytical expressions (63) and (65), we have
described the geometry of optical vortices for the components
Ez and Ex in the planes z = z0 normal to the beam axis (the
z axis). It was found that, except for the central vortex, the
topological charge of off-center vortices generally equals unity
in magnitude. They are organized into pairs of symmetrically
arranged and equally charged vortices. These pairs lie on
concentric circles and their vortex charges alternate in sign
with the circle radius.

The phase maps of Ex shown in Figs. 6(d)–6(f) [the
corresponding square amplitude distributions are presented in
Figs. 7(d)–7(f)] are computed for the LG beam with mLG = 2.
It turned out that the central vortex of the charge equal to the
azimuthal number mLG = 2 is the only vortex in the x-y plane
(z = 0) for both the incident beam [see Fig. 6(d)] and the total
wave field [see Fig. 6(e)]. At z = Rd , this vortex breaks down
into a pair of vortices each of the unity charge mV = 1 [see
Fig. 6(f)].

By contrast to the case of Ex , Eq. (63) implies that the z

axis is a nodal line for the z component of the electric field
Ez and the central vortex is structurally stable at mLG = 2 [see
Figs. 6(a)–6(c)]. A comparison between the phase maps for the
incident beam [see Fig. 6(a)] and for the total light field [see
Fig. 6(b)] shows that, in the x-y plane, interference between
the incident and the scattered waves produces two additional
pairs of vortices.

We now try to place our results in a more general
physical content. They show that the near-field optical field
is determined by the multipolar content of the incident laser
beam, so that rearrangements of this field can be regarded as
effects induced by the angular momentum of incident light.
Hence it might be feasible to control the near field (and
the near-field response) using the experimental method to
engineer the multipolar content of light beams suggested in
Refs. [69,70]. We hope that our study will stimulate further
progress in the field.
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