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Reexamination of the variational Bose-Hubbard model
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For strongly interacting bosons in optical lattices, the standard description using the Bose-Hubbard model
becomes questionable. The role of excited bands becomes important. In such a situation, we compare results
of simulations using the multiband Bose-Hubbard model with a recent proposition based on a time-dependent
variational approach. It is shown that the latter, in its original formulation, uses a too small variational space,
often leading to spurious effects. Possible expansion of the variational approach is discussed.
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I. INTRODUCTION

Ultracold bosonic atoms in an optical lattice potential have
been a very active field of both experimental and theoretical re-
search. They enable one to prepare and study a broad spectrum
of complex quantum systems in well-controlled experiments.
Of particular importance is experimental research, using
ultracold quantum gases, of systems which mimic various
condensed-matter Hamiltonians. For a complete review, please
see Refs. [1,2]. The key stimulus for these activities is the
existence of the mapping from a continuous model [3],
describing a gas of ultracold atoms in an optical lattice
potential [4] to a discrete Bose-Hubbard (BH) model.

By choosing a proper setup of lasers forming an optical
lattice, various lattice geometries and dimensionalities may be
realized [5,6]. In particular, one may obtain a one-dimensional
lattice [7], which is then mapped to a one-dimensional
Bose-Hubbard model. One dimension makes interactions and
correlations relatively strong [8,9] driving the system far from
the mean-field regime [10]. The mapping is performed by
expanding the field operator in localized modes with the help
of Wannier functions [11,12]. Although often, restriction to the
lowest Bloch band, leading to a standard Bose-Hubbard model
[4] is sufficient, for stronger interactions, higher bands become
significant as already realized quite early [13–15]. Near a Fes-
hbash resonance, for a large scattering length, an optical lattice
may strongly modify atom-atom interactions [14,16–21], mak-
ing a lowest band description of the problem questionable too.

Taking higher bands into account leads to a numerically
challenging problem as it exponentially increases the on-
site Hilbert-space dimension with the number of bands. It
hampers further any direct diagonalization of the problem.
Even the application of the very successful density-matrix
renormalization-group method [22] in the multiband case is
questionable as its time complexity also increases very fast
with the on-site Hilbert-space dimension limiting any serious
computation for bosons to, at most, two to four bands.

In recent years, another approach to the strongly interacting
bosons in a lattice has been proposed [23–27]. The higher
bands are included in the local single-site Hamiltonian. Its
diagonalization yields ground states corresponding to different
numbers of particles at a site; this new basis is then used
instead of the usual Fock basis to reexpress the Hamiltonian.
In effect, instead of a multiband Hamiltonian, one obtains
an effective single-band model with occupation-dependent
parameters. Evaluation of them is quite costly, numerically

due to a large dimension of the local Hilbert space describing
a configuration of particles within one lattice site. Additionally,
convergence problems may arise, and the theory may fail to
represent the physical system for strong interactions in part
due to a neglect of long-range tunneling of particles in highly
excited bands. In effect, the efficient description of strongly
interacting atoms in optical lattices, even for the simplest
contact interactions, remains an unsolved problem.

Recently, a new, different in spirit and potentially efficient,
proposal for an approximation, designed to address the
convergence as well as the large Hilbert-space dimension
problems, has been performed [28]. Authors use a time-
dependent variational (TDV) principle to optimize a single
one-particle Wannier function per site. Its shape also is
altered by interactions with the other particles during the
evolution, whereas, in the standard approach [29], Wannier
functions depend solely on the instantaneous strength of the
optical lattice potential, i.e., on a single-particle physics. In
the variational approach, a dynamic change in the Wannier
functions may be a substantial improvement by allowing
them to be optimally chosen. The proposed approach seems
quite promising, and the question remains if and under what
assumptions this method provides an alternative approach for
the treatment of realistic problems. This is the problem we
want to address in this paper.

We discuss the multiband BH (MBH) model reduced to one
dimension in Sec. II, whereas, Sec. III offers necessary infor-
mation concerning the time-dependent variational approach.
Comparison of both approaches is given in Sec. IV, both on the
ground-state and on the different time-dependent dynamical
problems. We restrict ourselves to small model systems that,
nevertheless, allow us to compare both methods. A simple
generalization of the variational approach and its possible
advantages is discussed in Sec. V with the subsequent section
presenting our conclusions.

II. THE MULTIBAND BOSE-HUBBARD MODEL

The ultracold interacting gas of bosons in the optical lattice
potential is described by a second quantized Hamiltonian,

Ĥ =
∫

d3r �†(�r)ĥ(�r)�(�r)

+ 1

2

∫
d3r d3r ′�†(�r)�†(�r ′)V (�r,�r ′)�(�r)�(�r ′), (1)
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where ĥ = − �
2

2m
∇2 + Vlat(�r) is a one-particle Hamiltonian and

V (�r,�r ′) = 4π�
2a

m
δ(3)(�r − �r ′) = gδ(3)(�r − �r ′) (2)

is a contact pseudopotential modeling the s-wave scattering
interaction with a being the scattering length. Formally, to
avoid problems with the Hermiticity of the above Hamiltonian
[30], instead of the Dirac-δ interaction, one should use a
pseudopotential of the form

V (�r,�r ′) = gδ(�r − �r ′)
∂

∂|�r − �r ′| |�r − �r ′|. (3)

However, in the multiband expansion, one typically uses a
basis spanned by smooth Wannier functions truncated to the
first few Bloch bands (for details, see the next section). In that
case, the potential (3) is equivalent to the simplified Dirac-δ
potential (2).

In the following, we consider a quasi-one-dimensional
geometry assuming Vlat(�r) = s sin2(kx) + 1

2m�2(y2 + z2),
where � is a frequency of a tight transverse harmonic trapping
potential. In these transverse directions, we assume that only
the ground-state mode φ0 is occupied. For a given lattice depth
s, the field operator is expanded as

�(�r) =
∑
i,α

aα
i Wα

i (�r), (4)

with

Wα
i (�r) = wα

i (x)φ0(y)φ0(z), (5)

where wα
i (x) is the standard (assumed real) one-dimensional

Wannier function of the α band [11] localized at site i.
Performing integrations in Eq. (1), the multiband model is
obtained

Ĥ = −
∑
i �=j,α

J α
i−j

(
b̂

α†
i b̂α

j + H.c.
) +

∑
i,α

Eα
i n̂α

i

+ 1

2

∑
α,β,γ,δ

∑
ijkl

U
αβγ δ

ijkl b̂
α†
i b̂

β†
j b̂

γ

k b̂δ
l . (6)

The tunneling from site j to i (along the x direction) in the α

band is

J α
i−j =

∫
wα

i (x)

[
− �

2

2m

d2

dx2
+ s sin2(kx)

]
wα

j (x)dx, (7)

with mean energies at the sites in different bands Eα
i = J0

being independent of the site. Often in experiments, an
additional slowly varying harmonic trap potential is present,
which may be taken into account in Eα

i ’s. For the purpose of
the present paper, such terms are not relevant and are dropped
for simplicity. The interaction integrals read

U
αβγ δ

ijkl = g

∫
dx wα

i (x)wβ

j (x)wγ

k (x)wδ
l (x), (8)

with

g = 4π�
2a

m

∫
dy dz|φ0(y)|4|φ0(z)|4 (9)

being a modified contact interaction strength due to a reduction
of the problem to one dimension. In terms of the transverse
trap frequency, it reads g = 2�a�.

For sufficiently deep lattices (with depth s of a few
energy recoils ER = �

2k2/2m), one may perform a standard
approximation neglecting long-range tunnelings Ji−j for |i −
j | � 2 and keeping nearest-neighbor tunnelings J1 only (later,
we drop the subscript and denote this tunneling simply as
J following a standard convention). Similarly, often only
the on-site interactions terms U

αβγ δ

ijkl for (i,j,k,l) = (i,i,i,i)
are taken into account since other integrals are significantly
smaller. Recently however, it has been stressed [24,26,27,31]
that contributions U

αβγ δ

ijkl for (i,j,k,l) = (i,i,i,j ) (up to a
permutation) may not be easily dismissed. They have a
character of density-dependent tunnelings, and they may
compete with standard tunnelings (especially for deep lattices,
strong interactions, or high density), leading to significant
measurable effects.

Although we could take these terms into account, we
choose to neglect them in the following to concentrate on
the comparison between the multiband and the variational
approach on a standard Bose-Hubbard system without density-
dependent tunnelings as introduced in Ref. [28].

With these assumptions, the MBH Hamiltonian reads

ĤMBH =
L∑

k=1

(
−

N∑
α=1

J α
(
b̂

α†
k b̂α

k+1 + H.c.
) +

N∑
α=1

Eα
k n̂α

k

+ 1

2

N∑
α,β,γ,δ

Uαβγ δb̂
α†
k b̂

β†
k b̂

γ

k b̂δ
k

⎞
⎠ , (10)

where N is the number of bands taken and we have dropped
the subscripts on interaction constants as they become, within
the assumed model, independent of the sites. The above
Hamiltonian is used in the simulations in the subsequent
sections. It is also a basis for the formulation of the varia-
tional system of equations of motion described in the next
section.

III. THE TIME-DEPENDENT BOSE-HUBBARD MODEL
FROM THE VARIATIONAL PRINCIPLE

While forming a single-band BH model, a special case
of the MBH, one neglects the contribution from higher
Bloch bands. For strong interparticle interactions, this may
significantly alter the results.

There have been attempts at restricting the Hamiltonian
(10) to a relevant Hilbert subspace [23,24,26,27,31] by
renormalizing the single-band BH model’s parameters to
density-dependent values including effective influence of the
higher bands. This approach is suitable only for low-energy
physics when excited bands are not populated.

Another interesting variational approach to simulate multi-
band effects has originally been proposed in Ref. [28]. We
review its formulation below for self-containment of the paper.
This variational single-band model assumes that particles do
not populate single-particle modes defined by the ordinary
Wannier functions but time-dependent modes formed by linear
combinations of Wannier functions with appropriate time-
dependent coefficients dα

k (t). For one-dimensional systems,

043626-2



REEXAMINATION OF THE VARIATIONAL BOSE-HUBBARD . . . PHYSICAL REVIEW A 89, 043626 (2014)

this gives

wk(x,t) =
NV∑
α=1

dα
k (t)wα

k (x), (11)

with wα
k (x) being the standard (time-independent) Wannier

functions also used in the previous section. The coefficients
are allowed to vary in time and are chosen variationally by the
TDV principle [32–35].

The novel idea in this approach is that the dynamics of
Wannier functions wk(x,t) is set by the variational principle
and not simply determined by, e.g., the time dependence of
the optical lattice potential depth. By construction, they are
mutually orthogonal and may be assumed to form the orthonor-
mal set: 〈wi(t)|wj (t)〉 = δij . Many boson wave functions are
defined as

|�(t)〉 =
∑

�n
C�n(t)|�n; t〉, (12)

where |�n; t〉 in the position representation is

|�n; t〉 = 1√
n1! · · · nL!

∑
π∈SN

ws(1)(xπ(1),t) · · · ws(N)(xπ(N),t).

Here s(n) is a sequence for which exactly nl terms take a
value of l. This construction defines a variational manifold
embedded in the full Hilbert space of the problem. Observe that
all the particles at a given site occupy the same time-dependent
mode. Thus, by construction, they are in a separable state
where multiparticle entanglement is absent.

State |�n; t〉 depends on time via the time dependence of
Wannier functions wi(�x,t). Thus, creation and annihilation
operators for bosons are also time dependent and are denoted
by b̂k(t) and b̂

†
k(t). At any time t , a commutation relation

[b̂k(t),b̂†q(t)] = δkq is fulfilled. In the complete analogy to the
ordinary Bose-Hubbard Hamiltonian, one may define a time-
dependent Bose-Hubbard model [28],

ĤV =
L∑

k=1

[
−Jkk+1(t)b̂†k(t)b̂k+1(t) + H.c.

+Ekn̂k(t) + 1

2
Ukkkk(t)n̂k(t)[n̂k(t) − 1]

]
, (13)

where Jkk+1(t), Ek(t), and Ukkkk(t) are the hopping integral,
the on-site energy, and the interaction strength parameter
defined, respectively, as

Jkk+1(t) = −
∫

w∗
k (x,t)ĥ(x)wk+1(x,t)dx, (14)

Ek(t) =
∫

w∗
k (x,t)ĥ(x)wk(x,t)dx, (15)

Ukkkk(t) = g

∫
w∗

k (x,t)w∗
k (x,t)wk(x,t)wk(x,t)dx. (16)

A standard formulation of the TDV principle assumes a
minimization of the action functional (Lagrange multipliers
μi are added to preserve the orthonormality of the variational

Wannier functions),

S
(
C�n,dα

k

) =
∫

〈ψ |ĤV − i∂t |ψ〉

−
∑

i

μi(t)(〈wi(x,t)|wi(x,t)〉 − 1)dt. (17)

Evolution equations for a vector |ẇk(t)〉 and Fock-space
coefficients C�n follow:

i|ẇk(t)〉 = P̂k(x,t)

[
M∑

l=k±1

ρkl(t)

ρkk(t)
ĥ(x)|wl(x,t)〉

+ ĥ(x)|wk(x,t)〉 + ρkkkk(t)

ρkk(t)
Ukk(x,t)|wk(x,t)〉

]
,

(18)

iĊ�n(t) =
∑

�n′
〈�n|ĤV (t)|�n′〉C�n′(t), (19)

where P̂k(x,t) are projectionlike operators,

P̂k(x,t) =
NV∑
α=1

∣∣wα
k (x)

〉 〈
wα

k (x)
∣∣ − |wk(x,t)〉〈wk(x,t)|,

with

ρkl = 〈ψ(x,t)|b̂†k(t)b̂l(t)|ψ(x,t)〉,
ρkkkk = 〈ψ(x,t)|b̂†k(t)b̂†k(t)b̂k(t)b̂k(t)|ψ(x,t)〉

and Ukk(x,t) = g|wk(x,t)|2.
Explicitly working out all the terms of Eq. (18) that couple

different components of a vector dk(t) yields

ḋa
k (t) = (· · · ) + i

NV∑
α,β,γ

U
aαβγ

kkkk (t)dα∗
k (t)dβ

k (t)dγ

k (t)

− i

NV∑
αβγ δ

U
αβγ δ

kkkk (t)dα∗
k (t)dβ∗

k (t)dγ

k (t)dδ
k (t)da

k (t). (20)

The parity symmetry of the Wannier functions implies that
U

αβγ δ

kkkk �= 0 only if sum α + β + γ + δ is even. If all dα
k ’s for

even (odd) α’s are set initially to 0, then ḋα
k = 0 for all t’s.

IV. SIMULATIONS

The MBH model as an approximation of the true Hamilto-
nian (1) is not very practical. Even restricting the single-site
space considering states with maximal occupation of a few
bosons per lattice site, the total dimension of that space
grows exponentially with the number of Bloch bands N
used. The TDV approach reduces that dimension dramatically,
potentially leading to a great improvement of the efficiency.
Below, we will compare both approaches on a simple model
system consisting of four lattice sites among which a total
number of six bosons has been distributed. We assume periodic
boundary conditions. On-site energies, hopping integrals, and
interaction energies are calculated using Wannier functions for
this four-site lattice.
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Typically, we consider the first three to five bands for the
MBH model. For the TDV simulation of this system, we
consider a sufficient number of Bloch bands NV to allow
for convergence of the variational Wannier functions as this
increases the total computational cost very little (usually
convergence is reached for three to five bands).

The energy is measured in units of recoil energy Er =
h2/2m(2a)2 with a = λ/2 being the lattice constant. The depth
of the lattice is typically set by us to s = 10Er . Simulations of
the TDV model are performed with Mathematica’s NDSOLVE

function.

A. Ground state

The energy of a ground state can be used as a simple quantity
enabling one to compare the accuracy of state representation
over various variational manifolds. It has been calculated
numerically for different coupling constant g’s using up to
five Bloch bands in both approaches. For the special case of a
single Bloch band N = 1, both methods obviously reduce to
the same standard BH model and lead to the same ground-state
energy. It is no longer true when more bands are taken into
consideration. Let us denote NM as the number of bands used
within the MBH (keeping NV for the variational approach).

In Fig. 1, estimates for the ground-state energy are
presented. Notice that the TDV ansatz quickly leads to the
apparent convergence of the estimated ground-state energy
(for NV � 3), even for large values of the interaction constant.
Observe also that, already, NM = 2 is sufficient in the MBH
approach to yield lower estimates for the energy. Here for large
g, a slow convergence with increasing NM is observed. On the
other hand, for small g < 1, TDV as well as MBH predictions
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FIG. 1. (Color online) Ground-state energy for six particles in a
four-site system with periodic boundary conditions calculated within
the MBH model for NM = 1–5 Bloch bands included (black curves
with number of bands indicated). Results for the variational ansatz
of Ref. [28] are shown as a dashed red curve—they converge for
NV > 2. The energy is shown with respect to the ground-state energy
of the standard Bose-Hubbard model as a function of the coupling
constant g. Clearly, for g > 1, the TDV approach based on (11) fails
to approximate the ground-state energy.

become close to the standard BH model pointing out its region
of validity.

The failure of TDV for larger g indicates that even the
ground state in the model involves significant entanglement
between particles, a feature absent in the variational ansatz
(11) where all the particles at a given site are in the same
variationally chosen Wannier state.

B. Time evolution

Let us now compare time evolution in both approaches.
Rather than starting this evolution from the appropriate
ground states (which may differ significantly—see above),
we consider model initial states that enlighten the differences
between MBH and TDV results. The time evolution in the
TDV model is performed by numerically solving the system
of differential equations (18). For the MBH, a many-body
Schrödinger equation is solved (which is easy for our small
model cases).

We study evolution of the system using both approaches
in three cases: with constant interaction strength but inho-
mogeneous distribution of bosons over sites, with a linearly
quenched coupling constant, and with an oscillating one.
Time-dependent g may be realized by varying the magnetic
field B(t) close to the Feshbach resonance. The alternative
would be to vary the lattice depth s. That, for rapid changes in
s(t), may lead to additional effects [36], which, for clarity, we
presently want to avoid.

1. The inhomogeneous distribution of particles

We numerically performed the evolution of the system
with the initial state being a Fock state, containing the initial
distribution of six particles over four lattice sites as (2,2,1,1).
Particles in sites 1, 3, and 4 initially are confined to the lowest
Bloch band, whereas, two particles localized in site 2 either
also are set in the lowest Bloch band or are set in the first
(second) excited band. During the numerical integration of the
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FIG. 2. (Color online) Population of lattice sites in time for the
initial Fock state |2,2,1,1〉 (all particles in the lowest band) for
different interaction strengths: panel (a) g = 0.2, panel (b) g = 2,
and panel (c) g = 4. Results from the TDV approach are represented
by black solid curves; MBH predictions are shown as colored curves
with stars and circles. The first two and second two sites are equivalent
due to assumed periodic boundary conditions.
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time-dependent Schrödinger equation, populations of all four
lattice sites are monitored.

Let us consider first the case when all the particles were set
in the lowest Bloch band. If the interaction strength coupling
constant g is small enough (g ≈ 0.2), results obtained using
both methods are virtually the same (compare Fig. 2). Due
to the symmetry of the system, two sites having initially
single occupancy are equivalent (the same holds for initially
doubly occupied sites). Thus, only two distinct curves appear
in the plot with population between sites being transferred in
an oscillatory manner. For larger g, the predictions of both
approaches start to diverge for longer times but for short
enough times, remain similar, and TDV can be used in this
regime to get approximate results (e.g., for g = 1 for the
time of one oscillation). But when g is large, results for both
methods differ considerably in a time shorter than a single
oscillation (as for g = 4). All the results presented are obtained
using three Bloch bands in the MBH. For the TDV method, we
use up to five bands (we checked that the results are converged
with respect to the number of bands in both approaches).

If the two particles are set in the first excited state in site
2, initially, the differences become much more striking (see
Fig. 3). The variational approach is incapable of showing any
transport of particles that occupied the first excited band into
the adjacent sites. This is obviously incorrect and results from
the restriction of the TDV ansatz in which all particles at a
given site occupy the same time-dependent Wannier orbital.
The MBH approach has no such a restriction.

In the case of particles set in the second excited state
when interactions are set to zero, tunneling in the TDV model
also does not appear. Only in the presence of interactions is
some transport between sites restored, but obviously, it has a
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FIG. 3. (Color online) Populations of different lattice sites in
time for [panel (a)] the initial Fock state |2+,2,1,1〉 and [panel (b)]
|2++,2,1,1〉, where “+” (“++”) denote occupation by both particles
of the first (second) excited Bloch band. Black curves show the
occupation of site 1, and red curves show the occupation of site
2. Solid (dashed) lines represent results obtained with the help of
TDV (MBH) models. The site in which particles originally resided in
the excited band is not depleted at all within the TDV approach if the
excited band has opposite parity (the case shown in the top plot with
g = 0.2) or if the atoms are noninteracting (bottom plot, g = 0).

different interaction-based origin. In effect, the simulations in
the MBH and TDV approaches show different results.

The difference between the TDV and the MBH results can
be understood using a simplified case of two particles in a
two-well system. Assume that, initially, the time-dependent
Wannier function in the first site is purely a ground state
(w1 = w1

1), whereas, in the second site, it is in an excited
state (w2 = wε

2). The tunnelings between such Wannier states
vanish J12 = J21 = 0. The transport between sites may result
from interactions only provided that the bands are of the same
symmetry. For the opposite symmetry of bands, the parity rule
discussed in the context of Eq. (20) implies vanishing coupling
between sites. Then iĊ�n(t) = 〈�n|HV (t)|�n〉C�n(t) only gives a
phase change, and occupations remain constant.

2. Quench

Consider a simple quench scenario, a linear change in the
strength of two-particle interactions from initial value gini to
gfin over time τ . The initial state has been prepared in the
ground state of the single-band BH model with g = gini. This
assures the same initial state for both methods. Numerical solu-
tion of the time-dependent Schrödinger equation is performed
by means of a Runge-Kutta numerical scheme, both for the
MBH model and for the TDV approach. Figure 4 illustrates
two cases: (gini,gfin) = (0.2,1) and (gini,gfin) = (1,5). For a
sufficiently slow quench, the final energy of the system
after the quench is close to the ground-state energy of the
Hamiltonian with g = gfin. Note that we have started from
a good approximation of the ground state for small initial
g = gini but not exactly from a ground state, so we do not
expect to reach the ground state at the end of the quench
even in the τ → ∞ limit. Obviously, however, these final
ground-state energies give the lower bound for the energies
possible to obtain using both methods. From Fig. 4, it is clear
that, indeed, the difference between predictions for the final
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FIG. 4. (Color online) Final energy after a linear quench of
interaction strength g during time τ , in panel (a), starting from
gini = 0.2 up to gfin = 1.0 and in panel (b), gini = 1.0, gfin = 5.0. Red
(upper) solid curves show results obtained using the TDV method (for
five bands), whereas, black thicker lines correspond to the simulation
using the MBH model (with three bands). Horizontal dashed lines
show ground-state energies for corresponding methods (see text).
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energy is largely due to the inability of the TDV ansatz to
reproduce the ground-state energy accurately for large values
of g.

One may observe, however, that the excess energy over the
corresponding ground state as well as the shape of the energy
versus quench time dependence is quite similar in both MBH
and TDV approaches.

3. Modulation

Periodic modulations of system parameters (e.g., optical
lattice depth or the interaction strength) serves as a mean to
transfer the energy to cold atomic systems. Sensitivity of the
process with respect to the modulation frequency allows for
finding excitation spectra providing, e.g., information about
the energy gap in the system [7,37] or enabling studying
the multiband interaction effects [38]. Larger modulation
frequencies help to control effective tunnelings [39], and
resonant driving may lead to a direct population of excited
bands [36,40]. Analysis of periodic modulations also has been
a useful theoretical-numerical tool [41] for access to the exited
states of BH-like systems.

Here we consider a periodic modulation of the system
by varying the interaction coupling constant: g(t) = g0 +
gmod sin ωt . Specifically, we take g0 = 1, gmod = 0.1. The
depth of the lattice potential is assumed to be s = 25Er , deep
in the Mott regime with vanishing tunneling. Then the analysis
may be reduced to a single site in which we put two particles.
The initial state is a single Bloch-band ground state. This initial
condition has an overlap over 98% on the energy minimum
state in the variational manifold and a similar value on the
MBH ground state. At characteristic resonant frequencies,
one expects that strong Rabi oscillations occur manifesting
efficient excitation of excited bands. To detect the resonance,
it is sufficient to measure the depletion of the initial state. In
parallel to Ref. [40], we define a transfer efficiency function,

D(ω) = 1 − inf
t∈[0,T ]

|〈ψ(0)|ψ(t)〉|, (21)

where T is a fixed (long) evolution time.
The depletion as a function of the frequency of modulation

is shown in Fig. 5. The MBH shows two prominent peaks at
ω ≈ 15.9Er and ω ≈ 17.5Er . The latter may be identified as
a double occupancy of the first excited Bloch band. This is
strictly forbidden in the TDV model: As mentioned before,
occupation of Bloch bands 2,4,6, . . . , when starting from the
initial state containing particles populating 1,3,5, . . . bands
(in our case, only the first band), is not possible. Thus, the
corresponding peak in the TDV approach is missing.

Another noteworthy feature of Fig. 5 is a noticeable,
although small, shift in the single (in this frequency range)
absorption peak in the TDV case. This peak is identified in
the MBH model as the interaction-induced promotion of two
particles to the second excited Bloch band. The TDV dynamics
shows a similar behavior with significant population of the
second excited band. The striking asymmetry of the TDV peak
(compare Fig. 5) with a sharp drop (be aware of the mirror
image) on the right-hand side is an unexplained peculiarity of
TDV approach numerics. This is not a numerical instability as
checked by high-precision arithmetics using the Mathematica
code.
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FIG. 5. (Color online) Transfer efficiency from the ground state
during a modulation of total duration T = 400�/Er . The top panel
shows the MBH results, and the lower panel (in the mirror image)
corresponds to the TDV model calculations.

The state in which two particles occupy the same site: One
in the lowest Bloch band, the other in the second excited band
is as follows: ψ13 = b̂

1†
k b̂

3†
k |�〉 is not representable by the vari-

ational ansatz. Indeed, such a state is a maximally entangled
state of two particles. The maximal overlap of ψ13 over a
variational product state: |〈ψ13| 1√

2
(αb

1†
k + βb

3†
k )2|�〉|, |α|2 +

|β|2 = 1 is 1√
2

and is reached when α = β = 1√
2
. Such a

state has an energy of E1 + E3 just as state ψ13. This is quite
accurately represented in the simulations: The position of the
MBH peak is 15.9Er , whereas, the TDV model leads to a
highly asymmetric peak situated at 15.7Er. Presumably, this
shape reflects the drawback of the oversimplified variational
space used by the ansatz (11).

V. GENERALIZATION OF THE TDV METHOD

The variational approach fails in the situations described in
this paper, largely due to a large truncation of the Hilbert
space, a truncation denying any possibility for the on-site
entanglement to be present in the system. This may be,
to some extent, improved by introducing more variational
bands in the TDV model, leading, however, to a further
complication of the model. Hopefully, in some cases, the
number of bands may be kept rather small, allowing for a
reasonable computational efficiency. For example, for modu-
lation spectroscopy, allowing for just one additional variational
band would include state a

†
1a

†
3|�〉, coupled by a resonance to

the ground state in the variational space. Excitations of these
type dominate modulation spectra [27,42,43].

Let us describe the proposed extension of the TDV method
in some detail. In the complete analogy to the single variational
band approach, we suggest defining D > 1 variational bands
(here we consider D = 2). Equation (11) is generalized to

wκ
k (x,t) =

NV∑
α=1

d
α,κ
k (t)wα,κ

k (x) for κ = 1, . . . ,D. (22)
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The orthonormality is imposed: 〈wκ
k (x,t),wκ ′

k (x,t)〉 = δκ,κ ′ . To
obtain equations for the time evolution, the time-dependent
variational principle could be used again.

Here we test the effect of including D variational bands
instead of just one by comparing the ground-state energy
computation. The energy functional being minimized reads

Ĥ =
L∑

k=1

⎡
⎣ D∑

κ,λ,μ,ν=1

1

2
U

(κ,λ,μ,ν)
k (t)b(κ)†

k (t)b(λ)†
k (t)b(μ)

k (t)b(ν)
k (t)

+
D∑

μ,ν=1

(
E

(μ,ν)
k (t)b(μ)†

k (t)b(ν)
k (t)

− J
(μ,ν)
k,k+1(t)b†(μ)

k (t)b(ν)
k+1(t) + c.c.

)⎤⎦ , (23)

where

E
(μ,ν)
k (t) =

∫
w

μ∗
k (x,t)ĥ(t)wν

k (x,t)dx,

J
(μ,ν)
k,k+1(t) =

∫
w

μ∗
k ĥ(t)wν

k+1(x,t)dx, (24)

U
(κ,λ,μ,ν)
kkkk (t) =

∫
wκ∗

k (x,t)wλ∗
k (x,t)wμ

k (x,t)wν
k (x,t)dx,

we cannot omit one-particle cross terms (for example, E
(1,2)
k )

because generalized Wannier functions for different variational
bands are not formed by eigenstates confined to a single Bloch
band. Such a TDV model with D = 2 is compared with the
MBH model in Fig. 6. For D < NV < NM , the TDV space is
smaller than the Hilbert space of the MBH model. If, however,
D < NM < NV , it is not obvious which approach should be
more efficient. The complexity of calculations within the limits
of the ansatz given by Eq. (22) depends largely on D, not on
NV , thus, the D < NM < NV situation is the only one that
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FIG. 6. (Color online) Ground-state energy for four particles
distributed on three sites calculated within the MBH model for
NM = 1, . . . ,4 Bloch bands included (black curves). Results for
the variational ansatz with D = 1,2 and NV = 5 are shown in
red. The energy is presented with respect to the ground-state energy
of the standard BH model.

may result in the variational method boosting the efficiency of
the computation.

Exemplary application of the TDV ansatz for D = 2 is
presented in Fig. 6 for four particles residing on the three-site
system. We have found that D = 2 leads to a significant
improvement in the estimate for the ground-state energy as
compared to the D = 1 proposition [28]. In both calculations,
NV = 5. Disappointingly, however, a comparison with the
MBH model shows that a full three-band calculation is superior
to the TDV ansatz with D = 2. Thus, although the latter
constitutes a significant improvement over the D = 1 case,
it still does not catch the complexity involved in the ground
state of the system, in particular, for higher interaction strength
g values. Seemingly, multiparticle entanglement (missing for
D = 2 that captures two-particle entanglement only) becomes
important.

It would be desirable to also compare D = 1 and D = 2
results of the TDV approach for a slightly larger system of
six particles on four sites as previously discussed for D = 1.
Unfortunately, for D = 2, the TDV procedure seems to be
quite ineffective, leading to a significant slow down of the
minimization procedure due to a large number of local energy
minima in a highly nonlinear variational equation. This casts
a shadow on a possible application of the TDV approach for
really interesting cases.

VI. CONCLUSIONS

For the system of interacting bosons in an optical lattice,
we have performed extensive comparisons of two different
methods, namely, the time-dependent variational approach
(as proposed in Ref. [28]) and the multiband Bose-Hubbard
expansion. Unfortunately, we have found that the TDV ap-
proach, while computationally less demanding, provides little
alternatives for moderate and strong interatomic interactions
and nontrivial time dependence of the system. Even extending
the TDV approach to a richer Hilbert space taking two-particle
entangled states into account only helps a little. For the
ground-state energy estimation, the gain resulting from using
two variational bands is smaller than that obtained from three
standard single-particle bands. That shows that the genuine
ground state of strongly interacting bosons in optical lattices
constitutes a clear example of multiparticle entanglement.
Further increasing the number of variations seems not practical
due to the enhanced complexity of the approach and the growth
of the on-site Hilbert-space dimension.

Both interaction strength quenches and its modulation may
lead to significant excitation of entangled modes—in such
cases, the TDV approach clearly fails to capture the details of
the physics involved. Moreover, for periodic modulation of the
interaction strength, we have observed strange asymmetry in
modulation spectra in the TDV approach, probably reflecting
the fact that the variational space is strongly restricted.
Although the modulation spectra asymmetry would disap-
pear enlarging the variational space taking two variational
bands per site, as for the ground-state calculations, the
increased complexity of the approach would not compen-
sate for its drawbacks, clearly shown for the ground state
above.
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