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We consider the scattering of an acoustic wave from a vortex induced by optical superradiance. The vortex is
created by pumping a large amount of angular momentum with a Laguerre-Gaussian light beam in an atomic
Bose-Einstein condensate. We derive the mean-field dynamical equations of the light-superfluid system, and
obtain the equations governing the elementary excitation of the system, which result in a massless Klein-
Gordon equation with source terms. This equation describes the propagation of the sound wave in an effective
space-time. Employing a simplifying draining bathtub model for the vortex, we investigate the scattering of
the acoustic wave in the vortex phase and obtain a condition for the acoustic superradiance. We conclude that
Laguerre-Gaussian-beam-induced sudden transition from homogeneous to vortex state in the superfluid leads to
a prominent observation of the acoustic superradiance.
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I. INTRODUCTION

The achievements in cooling and trapping of the ultracold
dilute gases and developments in controlling their various
properties makes it a favorite candidate for simulating different
physical systems from solid-state to high-energy physics [1].
A fine control over dilute gases both experimentally and theo-
retically allows us, by analogy, to analyze the systems that are
not easy to study, when dealing with the real one. In this paper,
as an example of such efforts we theoretically investigate the
possibility of the acoustic superradiance, the analog version
of the Penrose process, which is the extracting of energy
from the rotating black holes [2,3], mutually with the optical
superradiance that happens in Bose-Einstein condensates.

Acoustic superradiance occurs in Bose-Einstein condensa-
tion when a sound wave scatters from a vortex with an effective
curved space-time that is the geometry of rotating black holes.
The event horizon in such a space-time exists inside a region
called the ergoregion, and since the rotating energy of the black
hole is located in between the event horizon and the ergosphere
the extraction of energy becomes possible. In other words, in
this process, the wave solution of the field equation is scattered
from the ergoregion with an increase in its amplitude [4–7].

The theoretical framework to study the possible connection
between motion of sound waves in a fluid flow and behavior
of a quantum field in a classical gravitational field was
constructed by Unruh in 1981. In his paper [8], Unruh
showed that the equation describing the propagation of the
acoustic fluctuation of the velocity potential in a barotropic,
inviscid, and irrotational fluid is the same as the equation that
governs the propagation of a massless scaler field in a curved
space-time. Since that time the acoustic black holes have
gathered a lot of attention. A relatively respectable amount
of work [4–7,9–15] has been devoted to make analogies of
different features of the black holes, among which spontaneous
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radiation [16] and stimulated emissions [2,3,17,18] are the
most engaged properties.

On the other hand, an ensemble of atoms optically
driven above a threshold intensity radiates in the form of
superradiance [19,20]. The process occurs in Bose-Einstein
condensates [21–25] for which above a threshold intensity
the condensate undergoes another phase transition and rests
in vortex state, in the case that the incident light carries
angular momentum [26]. We aim to observe the acoustic
aspect of superradiance along with optical superradiance in
presence of an optically driven vortex. For this purpose, we
consider a system of bosonic cold atoms cooled down to
the condensate state in an elongated trap. The condensate
is under a far off-resonant intense beam of laser (in our
case Laguerre-Gaussian beams) pumped along the large axis
of the trap. The light couples to the atoms and transfers
angular momentum to the condensate. The large amount of
angular momentum pumped to the condensate to create a
vortex throughout a transition from normal state to optical
superradiance state provides an opportunity to extract energy
from this environment. This process eases the observation of
the superradiance in an acoustic superradiance experiment.

The superradiance-induced vortex phase has been studied in
detail in Ref. [26] and we work in this regime searching for the
conditions of the acoustic superradiance for the system. Then,
the equation of motion for acoustic fluctuation of the velocity
field is derived from mean-field equations for the condensate
order parameter and light modes. The resulting equation is a
nonhomogeneous massless scalar field in an effective curved
space-time. The possibility of observing superradiance for the
system is discussed throughout the analytical method used in
Refs. [4,5]. This paper is organized as follows: we describe the
system writing the Hamiltonian in the first section giving the
details of laser and also deriving the equations of motion for
condensate and light modes order parameters. In addition we
discuss the superradiance induced vortex state qualitatively.
In the second section, we introduce the effective geometry
of the acoustic black hole, writing the field equation for the

1050-2947/2014/89(4)/043619(7) 043619-1 ©2014 American Physical Society

http://dx.doi.org/10.1103/PhysRevA.89.043619
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phase perturbation of the condensate and discussing the metric
and properties of rotating acoustic black hole. In Sec. III,
we discuss the possibility of superradiance for the system by
calculating the reflection coefficient throughout the scattering
of a sound wave from a vortex. Finally we summarize the
results in Sec. IV.

II. SUPERRADIANCE-INDUCED VORTEX STATE

We first review the main results and equations in Ref. [26],
where the generation of a superradiance-induced vortex state
by angular momentum carrying LG beam is studied. We
consider a cigar-shaped Bose-Einstein condensate coupled to
a far off-resonant intense laser field along the long axis of the
trap. Atoms are interacting via short-range s-wave interaction.
The many-body Hamiltonian describing the system is

H =
∫

d3r�̂†(r)H0�̂(r) +
∑
m

d3k�ωa
†
kmakm

+
∑
m,m′

∫
d3rd3kd3k′J (k,k′; r)�̂†(r)a†

kmak′m′�̂(r)

+ 1

2

∫
d3rd3r′�̂†(r)�̂†(r′)V (r − r′)�̂(r)�̂(r′), (1)

where H0 is the atomic single-particle Hamiltonian consisting
of a kinetic term and an external trapping potential, Vext(r),
�̂(r), and akm are the annihilation operators for atoms and
optical field, respectively, and m and m′ are labeling the
angular momentum for optical modes. Here V (r − r′) =
4π�

2as/Mδ(r − r′) is the two-body potential with as being
the s-wave scattering length and M the mass of a single atom.
The effective atom-light coupling coefficients J (k,k′; r) are
given by

J (k,k′; r) = −�J ∗(k)J (k′)
�

�∗
km(r)�k′m′(r), (2)

and determined by the single atom-photon dipole matrix
element g(k). Here, � is the detuning frequency, and �km(r)
are the mode functions (in our case Laguerre-Gaussian modes)
for the light field with the wave number k. These mode
functions are given as

�km(r) = φm(r)eimφeikz,

= 1√
π

(
r

am

)m

e−r2/2ameimφeikz. (3)

The laser beam has a width of am and carries m� units of
orbital angular momentum. We write the Heisenberg equation
of motion for four annihilation operators, and apply mean-
field approximation, whereby the field operators are replaced
by c numbers. In particular, we replace �̂ → ψ , a−k01 →
α1, a−k00 → α2, ak00 → α3, and ak01 → αL, which lead us to
expressions

i∂tψ =
[
− �

2M
∇2 + V + 4πas�

M
|ψ |2 − Jl

]
ψ (4)

i∂tα1 = [−�1 − 2U0I
(11)
−− ]α1 − U0I

(11)
−+ αL

i∂tα2 = [−�2 − 2U0I
(00)
−− ]α2 − U0I

(01)
−+ αL (5)

i∂tα3 = [−�3 − 2U0I
(00)
++ ]α3 − U0I

(01)
++ αL,

where U0 = J 2
k /�, �i’s are the end-fire mode frequencies in

the rotating frame at frequency ω0, Jl is the light-atom coupling

Jl = 2U0
{|αL|2∣∣�k01

∣∣2 + |α1|2
∣∣�−k01

∣∣2

+ |α2|2
∣∣�−k00

∣∣2 + |α3|2
∣∣�k00

∣∣2}
+U0

{
αLα∗

1�
∗
−k01�k01 + α∗

2�
∗
−k00�k01

+α∗
3�

∗
k00�k01 + c.c.

}
, (6)

and

Imm′
σγ =

∫
d3r�∗

σk0m
(r)�γk0m′(r)|ψ(r)|2. (7)

Here σ , and γ = ±1 label the sign of the wave vectors with
amplitude k0.

Equation (4) is the Gross-Pitaevskii equation for a con-
densate coupled with a laser beam. Equations (4) and (5)
have been solved numerically in Ref. [26] and the optical
superradiance has been observed. In that paper, Tasgin et al.
illustrate the dynamics of the transition from a condensate at
its nonrotating ground state to a normal superradiance and
then a rotatory superradiance and finally a superradiance-
induced vortex phase for the condensate. We will work in
this phase where after a certain density of laser beam two
transitions happen and the superradiance with a topological
vortex coexist. According to the dynamics of the transition
discussed in Ref. [26], the mean photon number in mode α1

decreases dramatically, α2 remains unchanged but very small,
and only the α3 mode survives in this phase where it increases
sharply when superradiance take place. Assuming that the
system resides in this regime we aim to find the possibility
of observing the acoustic superradiance along with the optical
superradiance when a sound wave scatters from the vortex.

III. ACOUSTIC BLACK HOLE: EFFECTIVE GEOMETRY

In order to investigate the possibility of observing the acous-
tic superradiance we need to write the equation governing the
propagation of the acoustic fluctuation of the velocity potential
in the effective geometry created by the vortex. We start
from the Gross-Pitaevskii Eq. (4) and express the condensate
order parameter in terms of its amplitude and phase, i.e.,
ψ(r,t) = √

ρ(r,t)eiS(r,t), where ρ = |�|2. This leads us us
to two equations for real and imaginary parts of Eq. (4) as

∂tρ(r,t) = − �

M
[∇ρ · ∇S + ρ∇2S] (8)

∂tS(r,t) = �

2M

1√
ρ

∇2√ρ − �

2M
|∇S|2

−Vext − 4πas�

M
ρ + Jl. (9)

By linearizing Eqs. (8)–(9) and (5) for density, phase, and the
light-atom coupling around the background values ρ0, S0, and
J0 in the optical superradiance-induced vortex phase, as

ρ = ρ0 + ρ1, S = S0 + S1, Jl = J0 + J1, (10)
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where J0, and J1 are

J0 = 2U0
[|αL|2∣∣�k01

∣∣2 + |α3|2
∣∣�k00

∣∣2]
+U0αL

[
α3�k00�

∗
k01 + c.c.

]
,

J1 = U0αL

[
δα1�−k01�

∗
k01 + δα2�−k00�

∗
k01

+ δα3�k00�
∗
k01 + c.c.

]
,

we obtain

∂tρ1 = − �

M
[∇ · (ρ0∇S1) − ∇ · (ρ1∇S0)], (11)

∂tS1 = − �

M
∇S0 · ∇S1 − 4πa�

M
ρ1 + J1. (12)

It should be noted that in Eq. (12) we have neglected the
quantum pressure term,

�
2

2M

(
1

2
√

ρ0
∇ ρ1√

ρ0
− ρ1

2ρ
3/2
0

∇2√ρ0

)
.

Equations (11) and (12) should be solved together with the
linearized equations of the modes α1, α2, and α3.

i∂t δα1 = −�1δα1 − 2
U0

�
I 11
−−δα1, (13)

i∂t δα2 = −�2δα2 − 2
U0

�
I 00
−−δα2, (14)

i∂t δα3 = −�3δα3 − 2
U0

�
I 00
++δα3. (15)

In order to write Eqs. (11) and (12) in a compact form we
can use the definitions for the the background flow velocity v,
and the speed of sound c in a condensate,

v = �

M
∇S0, c = �

M

√
4πasρ0. (16)

We assume that the background density ρ0 is constant, thus
the speed of sound. Now Eqs. (11) and (12) can be combined
and rewritten in a single equation for sound waves as

1√−g
∂μ(

√−ggμν∂νS1) = −∂tJ1 − ∇ · (vJ1), (17)

where μ and ν = 0,1,2, and gμν , the inverse metric tensor is
obtained as

gμν = 1

c2

⎛
⎜⎜⎜⎜⎜⎝

−1
... −vr − vθ

r· · · · · · · · · · · · · · · ·
−vr

... c2 − v2
r − vrvθ

r

− vθ

r

... − vrvθ

r

c2−v2
θ

r2

⎞
⎟⎟⎟⎟⎟⎠

. (18)

Equation (17) is a nonhomogeneous massless Klein-Gordon
equation in curved space-time, for which g = det(gμν) and the
metric tensor in polar coordinates is defined as

gμν =

⎛
⎜⎜⎜⎜⎜⎝

−(c2 − v2)
... −vr −rvθ

· · · · · · · · · · · · ·
−vr

... 1 0

−rvθ

... 0 r2

⎞
⎟⎟⎟⎟⎟⎠

. (19)

This metric governs the propagation of the fluctuations
(sound waves) and depends on the velocity field, and speed
of sound thus the density of the condensate. Even though the
dynamics of the atomic Bose-Einstein condensates is driven
from a nonrelativistic equation, the behavior of the sound
waves is specified by a relativistic equation in a curved space-
time [8,10]. The homogeneous form of the Eq. (17) introduced
by Unruh [8] for a barotropic, inviscid, and irrotational fluid
establishes the connection between the propagation of the
scalar field in classical gravitational field and the wave sounds
in curved space-time. We will discuss later, but it is worth to
note, that the optical superradiance does not affect the effective
curved space-time.

To observe the certain properties of the space-time it is
better to write the metric from the metric tensor

ds2 = gμνdxμdxν

= (v2 − c2)dt2 − 2vrdrdt − 2rvθdθdt + dr2 + r2dθ2.

(20)

The ergoshpere radius can be easily found from this metric
and it is exactly where the temporal component of metric, i.e.,
g00 changes sign. However to find the event horizon one needs
to apply a coordinate transformation of form

dt −→ dt − vr

c2 − v2
r

dr,

(21)

dθ −→ dθ − vrvθ

r
(
c2 − v2

r

)dr,

which results in the metric

ds2 = −(c2 − v2)dt2 +
(

c2

c2 − v2
r

)
dr2

− 2rvθdθdt + r2dθ2. (22)

The metric in the new coordinates has an obvious singularity
at radial component which gives the radius of event horizon.

Now we need to specify the form of the flow velocity.
The spatial profile of the superradiance-generated vortex
is numerically determined in Ref. [26]. For our analytical
examination, we simply choose a draining bathtub profile,
which is a typical description of rotating acoustic black holes.
This model was first used in Ref. [10] for rotating acoustic
black holes, which is a (2 + 1)-dimensional flow with a sink or
source at the origin. We assume that the density and velocity
have pure radial dependency. The continuity equation with
irrotationality and incompressibility of the flow leads us to
write the velocity field as

v = A

r
êr + B

r
êθ , (23)

where A, and B are constants and can be defined in terms
of the black hole properties. The field equations derived from
conservation laws mentioned above also result in a position-
independent background density ρ0 throughout the flow, which
automatically gives the constant speed of sound according to
Eq. (16). Having the velocity field defined by Eq. (23), it can
be easily checked that the ergosphere and event horizon are
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formed at rerg, and rh, respectively

rerg =
√

A2 + B2

c
, rh = |A|

c
. (24)

The sign of A is of no importance in determining the
ergoregion, but it makes a difference when dealing with the
event horizon. For positive A the past event horizon is defined,
which means we work with an acoustic white hole, while
for negative A the future event horizon is defined this time,
which means we work with an acoustic black hole. We choose
A = −ac, and B = a2� where a is the radius of the event
horizon, and � is the angular velocity of the rotating black
hole [7]. We will see that the growth of the ergosphere with
increasing angular velocity of black hole will increase the
amount of acoustic superradiance from the vortex. Now, we
write the Klein-Gordon equation introduced above on this
background in the more explicit form of[

− 1

c2
∂2
t + 2a

r
∂t∂r − 2�a2

c2r2
∂t∂θ +

(
c2r2 − �2a4

c2r4

)
∂2
θ

+
(

1 − a2

r2

)
∂2
r + 2a3�

cr3
∂r∂θ + a2 + r2

r3
∂r − 2a3�

cr4
∂θ

]

× S1(r,t) = −∂tJ1(r,t) − ∇ · [vJ1(r,t)]. (25)

The homogeneous version of the equation above has been
solved analytically [4–6] and numerically [7] and the su-
perradiance has been observed. Since the superradiance is
the extraction of energy from vortex, the problem can be
reduced to find the reflection and transmission coefficients and
discuss the possibility of finding a reflection probability greater
than unity. The analytical method with some transformations
gives the result relatively easily, but the numerical solution
is not as easy. The method developed in Ref. [27] reduces
the Klein-Gordon equation to a set of first-order equations
by defining two conjugate fields; however, the resulting set
of equations itself requires many numerical calculations. The
method has been implied in Refs. [7,28] and the superradiance
state has been discussed in detail. In the case of our system
the problem becomes even more difficult since the equation
must be solved along with the linearized equations of motions
for δα1, δα2, and δα3. However, considering the dynamics of
the condensate throughout the optical superradiance, since the
α1 and α2 modes nearly vanish in this phase, one can neglect
the contribution from these modes. Therefore, the analytical
calculations reduce to solving Eq. (17), where the source term
is determined by Eq. (15).

IV. SUPERRADIANCE

The scattering properties of a sound wave from a
superradiance-induced vortex is described by analyzing the
massless Klein-Gordon equation (25). We separate the phase
fluctuations S1 into its variables by substitution of

S1(t ; r,θ ) = R(r)S(t ; θ ) = R(r)ei(nθ−ωt), (26)

which results in a nonhomogeneous second-order differential
equation for the perturbed phase. Here n is the azimuthal
quantum number with respect to the axis of rotation, and ω is
the sound wave frequency. We divide both sides of the resulting

equation by factor l = 1 − a2/r2 to obtain more familiar form
of

d2R(r)

dr2
+ P (r)

dR(r)

dr
+ Q(r)R(r) = G(t ; r,θ ), (27)

where

P (r) = 1

cr(r2 − a2)
[c(a2 + r2) + 2iωar2 − 2in�a3],

Q(r) = 1

c2r2(r2 − a2)
[n2�2a4 + ω2r4

− n2c2r2 − 2nω�a2r2 − 2inc�a3]. (28)

The source term in Eq. (25) includes the time and spatial
derivatives, where the time dependency of J1 in optical
superradiance state is governed by Eq. (15). We can write
J1(r,t) = G̃(t ; θ )J (r), where G̃(t ; θ ) has the simple time
dependency of the form eiωl t , with ωl = �3 + 2U0I

00
++/�.

Now, the source term in Eq. (27) can be then conveniently
expressed as

G(t ; r,θ ) = −1

lS(t ; θ )

[
∂t G̃(t ; θ ) + �a2

r2
∂θ G̃(t ; θ )

− G̃(t ; θ )
ca

r

d

dr

]
J (r). (29)

At the end of the previous section we discussed the dynamics
of the condensate throughout the optical superradiance and
emphasized that J1 is a very simple expression only carrying
φ0, and φ1 modes of Laguerre-Gaussian beam since only α3

survives in this phase. Thus, the position derivatives of J gives
a simple expression,

dJ (r)

dr
= d

dr
[φ0φ1] = d

dr

[(
r

a1

)
e

−r2

2a2
red

]

=
(

1

r
− r

a2
red

)
J (r), (30)

where a2
red = a2

0a
2
1/(a2

0 + a2
1) is the reduced width of the

Laguerre-Gaussian beam.
Now we introduce a new coordinate r̃ , known as the tortoise

coordinate [29] and use the definition dr = ldr̃ , which leads
us to a transformation relation of

r̃ = r − a

2
ln

∣∣∣∣ r + a

r − c

∣∣∣∣ . (31)

Note that this transformation maps the horizon at rh = a

to r̃ −→ −∞, and also maps r −→ ∞ to r̃ −→ ∞. These
mapping will be important when we check the behavior of
the system at its asymptotic points. In order to investigate the
possibility of the acoustic superradiance for our nonhomoge-
neous Klein-Gordon equation we follow a formal way used for
a homogeneous one in Refs. [4–6], in which the superradiance
is determined by the reflection and transmission coefficients.
In order to facilitate the calculations of these coefficients we
write the second-order differential equation (27) in the form
of the usual Schrödinger equation. We set R(r) = K(r)F (r),
which along with the coordinate transformation give us,

d2F (r̃)

dr̃2
+ D(r)

dF (r̃)

dr̃
+ W (r)F (r̃) = l2

K(r)
G(t ; r,θ ), (32)
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where

W (r) = l2

K(r)

[
d2K(r)

dr2
+ P (r)

dK(r)

dr
+ Q(r)K(r)

]
. (33)

Here K(r) is obtained from the elimination of the first
derivative term from differential equation Eq. (32), i.e., by
equating D(r) to zero,

dK(r)

dr
+ 1

2

[
P (r) + l

d

dr

(
1

l

)]
K(r) = 0. (34)

By solving this equation for K(r) and substituting P (r) from
definitions Eq. (28) one can obtain

K(r) = √
r exp

{(
ina�

c
+ 1

)
ln

(
1

r

)

− ia(ω − n�)

2c
ln[c2(r2 − a2)]

}
. (35)

We substitute K(r) in Eq. (33) to obtain

W (r) = 1

c2

(
ω − n�a2

r2

)2

− 1

r2

(
n2 − 1

4

)

+ a2

r4

(
n2 − 3

2

)
+ 5a4

4r6
. (36)

Eventually, Eq. (32) becomes

d2F (r̃)

dr̃2
+ W (r)F (r̃) = l2

K(r)
G(t ; r,θ ). (37)

We scale the radial coordinate with length of the horizon,
i.e., rnew = r/a, and the frequencies with sound wave fre-
quency, ωnew = aω/c, and �new = a�/c. However to avoid
using the new index we drop it and continue writing with old
parameters.

In the asymptotic region when r , and r̃ −→ +∞ the terms
with 1/O(r) in W (r) vanishes, and only the term with ω

survives. The source term also vanished in this region due
to the Gaussian term in J (r). Thus, Eq. (37) becomes

d2F (r̃)

dr̃
+ ω2F (r̃) = 0, (38)

which can be readily solved and written as a combination of
incident wave and reflected one

F (r̃) = Reiωr̃ + e−iωr̃ , (39)

so R is the reflection coefficient. Now let us check the behavior
of the differential equation around horizon when r −→ 1, and
r̃ −→ −∞. In this region the nonhomogeneous term vanishes
due to l, which is zero at horizon. Thus, Eq. (37) reduces to

d2F (r̃)

dr̃
+ (ω − n�)2F (r̃) = 0, (40)

for which the solution can be written in terms of transmission
wave as

F (r̃) = T ei(ω−n�)r̃ , (41)

where T is the transmission coefficient. From the conservation
law for current density we obtain the relation between

reflection and transmission coefficients

|R|2 = 1 +
(

n�

ω
− 1

)
|T |2, (42)

which leads us to the famous relation first obtained by Zel-
dovich [3] for the scattering of an electromagnetic wave with an
orbital momentum n and frequency ω from a cylinder rotating
with an angular frequency �. This relation indicates that
for ω < n�, an amplifications occurs in reflection coefficient
throughout the scattering, which is an evidence for the possi-
bility of the acoustic superradiance in our analog system. Here
� is related to the amount of angular momentum pumped to
the condensate to create a superradiance-induced vortex state.
Although Eq. (42) determines the region for superradiance it
does not give the details of the scattering and its dependency on
the sound wave frequency. Therefore we need a more detailed
investigation of the reflection and transmission coefficients
by solving the differential equation (27) explicitly. Previously
in this section in order to get a condition for superradiance,
we used the transformation R(r) = K(r)F (r) on Eq. (27) and
investigated the resulting equation in asymptotic limit where
the source term has no effect. Similarly now we apply another
transformation of the form R(r) = r3/2K(r)X(r) and applied
the result of the asymptotic limit to find the reflection and
transmission coefficients explicitly. Thus, Eq. (27) reduces to
a homogeneous differential equation

x(x + 1)
d2X(x)

dx2
+ (2x + 1)

dX(x)

dx

+ 1

4

(
u2

1

x
+ 1

x + 1
+ 1 − u2

2 + a2ω2

c2
x

)
X(x) = 0, (43)

where

u1 = aω

c

(
n�

ω
− 1

)
, u2

2 = n2 + 2a2ω2

c2

(
n�

ω
− 1

)
. (44)

Equation (43) is similar to the equation used by Starobin-
skii [17] to calculate the details of the amplification that occurs
for the reflection coefficient during a superradiance from a
rotating black hole. For sound waves with a wavelength λ much
larger than the radius of the horizon a, Eq. (43) reduces to the
Riemann-Papparitz equation [31] with two regular singular
point at x = 0, − 1, which has been investigated in details in
Ref. [17] for rotating black holes and used in Ref. [30] for the
acoustic superradiance from a vortex. Therefore, we assume
that a � λ, which result in

x(x + 1)
d2X(x)

dx2
+ (2x + 1)

dX(x)

dx

+ 1

4

(
u2

1

x
+ 1

x + 1
+ 1 − u2

2

)
X(x) = 0. (45)

The reflection coefficient can be calculated from this equation
through the transformation of this differential equation to
a hypergeometric form with known solutions [17,30]. The
solutions near the horizon are the superposition of ingoing
and outgoing parts, from which one can obtain the reflection
and transmission coefficients

|R|2 = 1 + 2aω

cu2|y1 − iy2|2
(

n�

ω
− 1

)
, (46)
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FIG. 1. The reflection amplitude |R|2 as a function of ω/n�.
(a) The reflection coefficient for n = 1,2. The amplification in
reflection coefficient increases by increasing the orbital angular
momentum. (b) The reflection coefficient for different values of
analog black hole angular frequency �. The increase in reflection
amplitude for large values of the angular frequency is more prominent
than that for the large values of the orbital angular momentum.

where

y1 = �(1 − iu1)�(u2)

�
(

u2
2 − i u1

2

)
�

(
1 + u2

2 − i u1
2

) , (47)

y2 = �(1 − iu1)�(−u2)

�
(−u2

2 − i u1
2

)
�

(
1 − u2

2 − i u1
2

) . (48)

The transmission coefficient can be obtained easily from
comparing Eq. (46) with Eq. (42). A detailed analysis of
the reflection coefficient in Eq. (46) reveals the advantage
of the investigation of the acoustic superradiance from an
optical-superradiance-induced vortex. We demonstrate this
in Fig. 1, which illustrates the amplification of reflection
coefficient in Eq. (46) thorough the scattering of a sound wave
from a vortex. Figure 1(a) compares the magnitude of the
acoustic superradiance for two different modes, i.e., n = 1,2,
while Fig. 1(b) shows the magnitude of the superradiance
for the first orbital angular momentum n = 1 with different
angular frequencies, i.e., � values. Comparing Figs. 1(a)
and 1(b) exhibits that the superradiance for large values of
angular frequency is more evident than the superradiance for
the large values in orbital angular momentum. Since in our
system the large amount of angular momentum is pumped
to the condensate to obtain a optical superradiance-induced

vortex the observation of acoustic superradiance throughout
an experiment would be more prominent.

V. SUMMARY AND DISCUSSION

For a superradiance phase with an induced topological
vortex in an atomic Bose-Einstein condensate we theoretically
reveal the acoustic superradiance. This phenomenon is the
analog of the Penrose process for rotating black holes [2,3].
The vortex state and superradiance phase are created by a
sudden transfer of an incident angular momentum to the
condensate [26]. In order to observe the optical superradiance
mutually with the acoustic superradiance we assume that
the condensate has gone through a phase transition to the
optical superradiance induced vortex state. Since the optical
superradiance phase happens with pumping a large amount
of angular momentum around the vortex core, the extracting
of energy from the ergoregion becomes easier. The effect of
phase transition does not appear in the effective geometry
of the vortex, but appears as a nonhomogeneous part in
the Klein-Gordon equation describing the propagation of the
sound wave in the introduced effective geometry, which is the
geometry of a rotating black hole. The draining bathtub model
fits the velocity field created by the optical superradiance. This
model introduces an event horizon and an ergoregion. It is
shown that the existence of the event horizon is not necessary
to observe the Penrose process [6]. However, since the optical
superradiance happens inside the event horizon the use of a
fitting velocity field becomes essential.

The acoustic superradiance is determined for the vortex
state as the amplification of the reflection coefficient, which
becomes larger than unity [4–6] in this phase. We analytically
show that the optical superradiance happens inside the effec-
tive event horizon and it does not affect the acoustic superradi-
ance. The solutions of the nonhomogeneous Klein-Gordon
equation in the asymptotic region gives the conservation
law for the current density, which lead us to the acoustic
superradiance mutually with optical superradiance. We ob-
tain the same condition already introduced in Refs. [3–5].
We also calculate the reflection coefficient and show that
the acoustic superradiance becomes more prominent for our
system since there is a large amount of angular momentum
in vortex state induced by optical superradiance. The acoustic
superradiance condition exhibits that it happens for nonzero
modes when the vortex angular frequency becomes larger than
the sound wave propagation frequency. The full numerical
solution of this problem would be illuminating to reveal the
details of the superradiance transitions more explicitly.
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