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Level-spacing statistics and spectral correlations in diffuse van der Waals clusters
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We present a statistical analysis of eigenenergies and discuss several measures of spectral fluctuations and
spectral correlations for the van der Waals clusters of different sizes. We show that the clusters become more and
more complex with increase in cluster size. We study nearest-neighbor level-spacing distribution P (s), the level
number variance �2(L), and the Dyson-Mehta �3 statistics for various cluster sizes. For large clusters we find
that although the Bohigas-Giannoni-Schmit conjecture seems to be valid, it does not exhibit true signatures of
quantum chaos. However, contrasting conjecture of Berry and Tabor is observed with smaller cluster size. For
a small number of bosons, we observe the existence of a large number of quasidegenerate states in low-lying
excitation which exhibits the Shnirelman peak in P (s) distribution. We also find a narrow region of intermediate
spectrum which can be described by semi-Poisson statistics whereas the higher levels are regular and exhibit
Poisson statistics. These observations are further supported by the analysis of the distribution of the ratio of
consecutive level spacings P (r) which is independent of unfolding procedure and thereby provides a tool for
more transparent comparison with experimental findings than P (s). Thus our detail numerical study clearly
shows that the van der Waals clusters become more correlated with the increase in cluster size.

DOI: 10.1103/PhysRevA.89.043607 PACS number(s): 03.75.Hh, 05.30.Jp, 05.45.Mt, 05.45.Tp

I. INTRODUCTION

Weakly bound few-body systems are being studied from a
long time back and have achieved a revival of interest recently
as the physics of such weakly bound systems can be investi-
gated experimentally in ultracold atomic gases [1]. Utilizing
the Feshbach resonance, the effective interatomic interaction
can be changed essentially to any desired values [2,3]. The
recent experiments on cold atoms also provide evidence of
the existence of large weakly bound clusters. Thus our present
study is motivated by the recent experiments on ultracold Bose
gas. We treat the three-dimensional bosonic cluster with maxi-
mum up to N = 40 Rb atoms interacting through two-body van
der Waals potential. Alkali-metal atoms, especially Rb atoms,
are good candidates for laser manipulation and for observing
Bose-Einstein condensate (BEC) [4]. At ultracold temperature
the interatomic interaction is fairly well represented by a single
parameter as , the s-wave scattering length. For our present
system we keep as = 100a0 which corresponds to the JILA
experiment [4]. Thus the system is weakly interacting, and
diffuse as the average size of the cluster increases with cluster
size. The binding of such an N -body cluster is provided by
the two-body van der Waals potential having a short-range
repulsive core below a cutoff radius and a −C6

r6 tail which
represents the long-range attractive interaction.

The stability of such N -body clusters, their energetics,
and various structural properties are recently studied [5]. We
propose the use of a two-body basis function to describe
various properties of bosonic clusters. With more than three
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particles the system becomes more complex as the number
of degrees of freedom increases. We have investigated corre-
lations between energies of the N and (N − 1) systems and
observe the generalized Tjon line [5] for the large cluster.
Now we consider the spectral statistics and spectral correlation
of the atomic clusters of different sizes as these contain
rich physics and also play a pivotal role in establishing the
universal properties of quantum systems. Berry and Tabor
conjectured that the fluctuation property of the energy levels
of a quantum system whose classical analog is regular, is
characterized by Poisson statistics [6]. Whereas the fluctuation
property of the energy levels of a quantum system whose
corresponding classical dynamical system is fully chaotic
obeys the Bohigas-Giannoni-Schmit (BGS) conjecture [7].
This tells that Gaussian orthogonal ensemble (GOE) or
Gaussian unitary ensemble (GUE) or Gaussian sympletic
ensemble (GSE) statistics of random matrix theory, depending
on time-reversal symmetry and rotational symmetry of the
system, will describe the fluctuation properties. However,
this conjecture is often interpreted in another way and the
observation of level repulsion in the spectrum is treated
as an indication of the nonintegrability of the system. The
Poisson distribution implies complete randomness in the
relative positions of energy levels as they are completely
uncorrelated. On the other hand Wigner distribution implies
strong correlation among the energy levels.

Earlier the spectral properties of many different quantum
systems like atoms, atomic nuclei, and quantum billiards have
been studied [8–16]. In addition, some attempts have been
made for noninteracting many-boson systems and interacting
bosonic systems [17–20]. Recently we have reported the level-
spacing distribution of ultracold interacting bosons trapped
in a harmonic potential [21–23]. We found an intriguing
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effect of both the interatomic interaction and the trap and
observed deviation from the BGS conjecture. In this paper
we are interested in a similar type of calculation in the
van der Waals bosonic clusters. Unlike the Bose-Einstein
condensate where the external trapping provides the stability
of the condensate, the van der Waals clusters are bound due to
the van der Waals interaction. In the very dilute condition one
may treat it as a uniform Bose gas. Apart from the experimental
interest, these kinds of systems are also challenging for the
following reasons. First, solving the many-body Schrödinger
equation itself is a challenging numerical task due to many
degrees of freedom, and the obvious question is what kind
of approximation will be valid for the description of such
clusters. Secondly, for large cluster size when the system
becomes very much correlated, one may expect a Wigner-type
spectral distribution. However, this needs an exhaustive study
as level repulsion in the energy spectrum may not always lead
to Wigner distribution which signifies chaos. This indicates
that one may need to use some deformed GOE type of
distribution for the correct description of a nonintegrable but
nonchaotic system. We propose to study several measures
of spectral fluctuations and spectral correlation to determine
the degree of influence of the interatomic interaction. This
kind of study is also relevant as the statistical fluctuation
can be directly observed experimentally in the context of
ultracold Bose gases. We calculate nearest neighbor level-
spacing distribution (NNSD) P (s), the level number variance
�2(L), and the Dyson-Mehta �3 statistics [24] for various
cluster sizes. However, all these measures require unfolding
of the spectrum to remove variation in the density-of-energy
levels in different parts of the spectrum. We can either unfold
the spectrum of each member of the ensemble separately and
form ensemble-averaged NNSD or a single unfolding function
can be used for all the members of the ensemble. Depending
on the unfolding procedure, the final outcome of NNSD may
vary. Moreover, a suitable unfolding function is not always
known a priori and generally is approximated by higher order
polynomials. Therefore, to verify the outcome of the NNSD,
we further analyze the distribution of quotients of successive
spacings P (r) which does not require any unfolding and is
independent of the energy level density.

The paper is organized as follows. In Sec. II, we introduce
the many-body potential harmonic expansion method. Sec-
tion III discusses the numerical results and Sec. IV concludes
with the summary of our work.

II. METHODOLOGY: MANY-BODY CALCULATION WITH
POTENTIAL HARMONIC BASIS

To study the spectral statistics and different spectral
correlations we need to calculate a large number of energy
levels of the diffuse Rb cluster. We approximately solve the full
many-body Schrödinger equation by our recently developed
potential harmonic expansion method. We have earlier applied
it successfully to study different properties of BEC [25–31] and
atomic clusters [5,32,33]. The methodology has already been
described in detail in our earlier works [34–36]. Hence here
we describe it briefly for interested readers.

We consider a system of N = (N + 1) Rb atoms, each
of mass m and interacting via two-body potential. The time-

independent quantum many-body Schrödinger equation is
given by⎡
⎣− �

2

2m

N∑
i=1

∇2
i +

N∑
i,j>i

V (�ri − �rj ) − E

⎤
⎦ �(�r1, . . . ,�rN ) = 0,

(1)

where E is the total energy of the system, V (�ri − �rj ) is the
two-body potential, and �ri is the position vector of the ith
particle. It is usual practice to decompose the motion of a
many-body system into the motion of the center of mass and the
relative motion of the particles in the center-of-mass frame. In
the absence of any confining potential the center of mass
behaves as a free particle in the laboratory frame and we set
its energy as zero. Hence, after elimination of the center-of-
mass motion and using standard Jacobi coordinates, defined
as [37–39]

�ζi =
√

2i

i + 1

⎛
⎝�ri+1 − 1

i

i∑
j=1

�rj

⎞
⎠ (i = 1, . . . ,N ), (2)

we obtain the equation for the relative motion of the atoms,[
−�

2

m

N∑
i=1

∇2
ζi

+ Vint(�ζ1, . . . ,�ζN ) − E

]
�(�ζ1, . . . ,�ζN ) = 0 .

(3)

Vint is the sum of all pairwise interactions. Now it is to be
noted that the hyperspherical harmonic expansion method
is an ab initio tool to solve the many-body Schrödinger
equation where the total wave function is expanded in the
complete set of the hyperspherical basis [37]. Although the
hyperspherical harmonic expansion method is a complete
many-body approach and includes all possible correlations,
it is highly restricted to N = 3 only. But for a diffuse cluster
like the Rb cluster, only two-body correlation and pairwise
interaction are important. Therefore, we can decompose the
total wave function � into the two-body Faddeev component
for the interacting (ij ) pair as

� =
N∑

i,j>i

φij (�rij ,r). (4)

It is important to note that φij is a function of two-body
separation (�rij ) only and the global hyperradius r , which
is defined as r = √∑N

i=1 ζ 2
i . Thus the effect of two-body

correlation comes through the two-body interaction in the
expansion basis. φij is symmetric under the exchange operator
Pij for bosonic atoms and satisfies the Faddeev equation,

[T − ER] φij = −V (�rij )
N∑

kl>k

φkl, (5)

where T is the total kinetic energy operator. In this approach,
we assume that when the (ij ) pair interacts, the rest of
the bosons are inert spectators. Thus, the total hyperangular
momentum quantum number, as also the orbital angular
momentum of the whole system, is contributed to by the
interacting pair only. Next the (ij )th Faddeev component
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is expanded in the set of potential harmonics (PH) [which
is a subset of the hyperspherical harmonic (HH) basis and
sufficient for the expansion of V (�rij )] appropriate for the (ij )
partition as

φij (�rij ,r) = r−( 3N−1
2 )

∑
K

P lm
2K+l

(
�

ij

N
)
ul

K (r). (6)

�
ij

N denotes the full set of hyperangles in the 3N -dimensional
space corresponding to the (ij ) interacting pair andP lm

2K+l(�
ij

N )
is called the PH. It has an analytic expression:

P l,m
2K+l

(
�

(ij )
N

) = Ylm(ωij ) (N )P
l,0
2K+l(φ)Y0(D − 3); D = 3N ,

(7)

Y0(D − 3) is the HH of order zero in the (3N − 3)-
dimensional space spanned by {�ζ1, . . . ,�ζN−1} Jacobi vectors;
φ is the hyperangle between the N th Jacobi vector �ζN =
�rij and the hyperradius r and is given by ζN = r cos φ.
For the remaining (N − 1) noninteracting bosons we define
hyperradius as

ρij =
√√√√N−1∑

K=1

ζ 2
K = r sin φ, (8)

such that r2 = r2
ij + ρ2

ij . The set of (3N − 1) quantum num-
bers of HH is now reduced to only 3 as for the (N − 1)
noninteracting pair,

l1 = l2 = . . . = lN−1 = 0, (9)

m1 = m2 = . . . = mN−1 = 0, (10)

n2 = n3 = . . . nN−1 = 0, (11)

and for the interacting pair lN = l, mN = m, and nN =
K . Thus the 3N -dimensional Schrödinger equation reduces
effectively to a four-dimensional equation with the relevant
set of quantum numbers: energy E, orbital angular momentum
quantum number l, azimuthal quantum number m, and grand
orbital quantum number 2K + l for any N . Substituting in
Eq. (4) and projecting on a particular PH, a set of coupled
differential equation for the partial wave ul

K (r) is obtained:[
−�

2

m

d2

dr2
+ �

2

mr2
{L(L + 1) + 4K(K + α + β + 1)}

−ER

]
UKl(r) +

∑
K ′

fKlVKK ′ (r)fK ′lUK ′l(r) = 0, (12)

where L = l + 3N−6
2 , UKl = fKlu

l
K (r), α = 3N−8

2 , and β =
l + 1/2.
fKl is a constant and represents the overlap of the PH for the
interacting partition with the sum of PHs corresponding to all
partitions [39]. The potential matrix element VKK ′ (r) is given
by

VKK ′ (r) =
∫

P lm∗
2K+l

(
�

ij

N
)
V (rij )P lm

2K ′+1

(
�

ij

N
)
d�

ij

N . (13)

Here we would like to point out that we did not require
the additional short-range correlation function η(rij ) for Rb
clusters as was necessary for dilute BEC. A BEC is designed

to be very dilute and hence confined by a harmonic oscillator
potential of low frequency (∼100 Hz). The average interatomic
separation is thus very large (∼20000a0) compared with
the range of atom-atom interaction (∼100a0). Moreover, the
kinetic energy of the atoms is extremely small. Hence the
effective interaction for large rij is controlled by the s-wave
scattering length (as) [40]. This is achieved by the inclusion of
the correlation function [35,36]. On the other hand, diffuse van
der Waals clusters are weakly bound by the actual interatomic
van der Waals potential (of range ∼ 10a0), without any
confinement. Hence no correlation function is needed. The
average interparticle separation is large enough, so that only
two-body correlations are expected to be adequate, at least for
light clusters.

III. RESULTS

A. Choice of interaction and calculation of
many-body effective potential

As pointed out earlier we choose the van der Waals potential
with a hard core of radius rc as the interaction potential,
V (rij )= ∞ for rij � rc and = −C6

r6
ij

for rij > rc. For Rb

atoms, the value of C6 is 2803 eV Å
6

[40]. The unmanipulated
scattering length corresponding to the Rb dimer is as = 100a0.
We obtain as by solving the two-body Schrödinger equation
for zero energy [36]. We adjust the hard core radius in the
two-body equation to obtain the dimer scattering length. In
Fig. 1 of Ref. [36], we see the value of as changes from
negative to positive passing through an infinite discontinuity
as rc decreases. Each discontinuity corresponds to one extra
two-body bound state. We observe that tiny change in rc across
the infinite discontinuity causes as to jump from very large
positive value to very large negative value. For our present
calculation, we tune rc such that it corresponds to the single
bound state of the dimer. Thus calculated rc is 15.18 Å for
the dimer scattering length of Rb atoms. With this set of
values of C6 and rc, we next solve the coupled differential
equation [12] by hyperspherical adiabatic approximation [41].
In hyperspherical adiabatic approximation, the hyperradial
motion is assumed slow compared to hyperangular motion. For
the hyperangular motion for a fixed value of r , we diagonalize
the potential matrix together with the hypercentrifugal term.
Thus the effective potential for the hyperradial motion is
obtained as a parametric function of r . For the ground state
of the system we choose the lowest eigenpotential ω0(r)
[corresponding eigencolumn vector being χK0(r)] as the
effective potential. We plot the effective potential ω0(r) as
a function of hyperradius r , at the dimer scattering length and
for various cluster size N = 3, 5, and 40 in Fig. 1.

With an increase in cluster size the depth of the eigenpo-
tential increases sharply which indicates stronger binding of
the cluster. The average size of the cluster also increases with
increases in N . The energy of the cluster is finally obtained by
solving the adiabatically separated hyperradial equation in the
extreme adiabatic approximation,[

−�
2

m

d2

dr2
+ ω0(r) − ER

]
ζ0(r) = 0, (14)

subject to appropriate boundary condition.
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FIG. 1. (Color online) Plot of the effective potential ω0(r) for
different cluster sizes, viz. N = 3 (a), N = 5 (b), and N = 40 (c).

In our earlier published work we have reported ground-
state and few low-lying excitations of the Rb cluster with
maximum size of N = 40. [5]. However, in the calculation
of level statistics and spectral correlation we also need higher
multipolar excitations. In our many-body picture the collective
motion of the cluster is described by the effective potential.

The excited states in this potential are denoted by Enl which
corresponds to nth radial excitation with lth surface mode.
Thus E00 corresponds to the ground state and En0 are the
different excitations for l = 0. To calculate the higher levels
with l 	= 0 we follow the next procedure. We have noted that
for l 	= 0, a large inaccuracy is involved in the calculation of
the off-diagonal potential matrix. As the main contribution to
the potential matrix comes from the diagonal hypercentrifugal
term we disregard the contribution coming from the off-
diagonal part. Thus we get the effective potential ωl(r) for
l 	= 0. Substituting ωl(r) in Eq. (14) we solve for different
radial modes and repeat the numerical procedure for various l

to obtain the higher multipolar excitations.
Before discussing the statistical behavior of the energy

spectrum we should discuss how accurate our calculated
energy levels are. It is to be noted that the potential harmonic
expansion method has been successfully applied in the calcula-
tion of collective excitations and thermodynamic properties of
trapped bosons [42]. For the investigation of thermodynamic
properties we need to calculate a large number of energy levels.
The calculated critical temperature and the condensate fraction
are in good agreement with the experimental results [42]. The
effect of two-body correlations on thermodynamic properties
of trapped bosons is also observed [42]. Very recently we
have also studied the energetics of diffuse 87Rb clusters [5]
and also compared with the well-studied He, Ne, and Ar
clusters. Thus the calculated energy levels are accurate for
further analysis. We also check for the convergence such that
the error is considerably smaller than the mean level spacings.

B. Level-spacing statistics for different cluster sizes

NNSD or P (s) distribution is the most common observable
which is used to study the short-range fluctuation. Now
to compare the statistical property of different parts of the
spectrum we need to unfold them. By unfolding, the smooth
part of the level density is removed; it basically maps the
energy levels to another with the mean level density equal to
1. For our present calculation we use polynomial unfolding
of sixth order. We observe that for small cluster size with
N = 3 and N = 5, as the effective potential is very shallow,
the number of energy levels is very small and not sufficient
for the calculation of NNSD. Instead, we also calculate the
many-body collective levels including higher order excitations
with different l. We then unfold each spectrum separately for
a specific value of l and then form an ensemble having the
same symmetry. From the unfolded spectrum we calculate the
nearest neighbor spacing s as Ei+1 − Ei and calculate P (s).
P (s) is defined as the probability density of finding a distance
s between two adjacent levels. Uncorrelated spectra obey the
Poisson statistics which gives exponential distribution P (s) =
e−s . Whereas for the system with time-reversal symmetry,
level repulsion leads to the Wigner-Dyson distribution P (s) =
π
2 se

−πs2

4 [43].
The P (s) distribution of the unfolded spectrum with cluster

size N = 3 is plotted in Fig. 2. We observe that P (s) = 0 for
very small s and also for large s. In our earlier calculation of the
87Rb diffuse cluster, we have calculated the several low-energy
excitations. We have observed that due to the heavier mass of
Rb atom, the kinetic energy 〈T 〉 of RbN clusters is small while
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FIG. 2. (Color online) Plot of P (s) distribution of (a) lowest
22 levels and (b) higher part of the spectrum (300 < levels < 400) of
the diffuse 87Rb cluster for N = 3. The green dashed curve in panel
(b) represents the Poisson distribution whereas the blue dotted curve
corresponds to the Brody distribution with the Brody parameter being
ν = 0.007.

the interaction energy 〈V 〉 is large. This implies that although
the system is tightly bound, it is less correlated for smaller
N . Thus unlike the trapped bosons, the smaller diffuse cluster
does not exhibit any degeneracy in the calculation of low-lying
excitations. It is reflected in Fig. 2(a) where we observe that
P (s) = 0 for very small s. The level spacing distribution for
higher levels is shown in Fig. 2(b) which indicates that for such
a small cluster, the energy levels are completely uncorrelated.
Although it looks very similar to the Poisson distribution the
peak value at s = 0 is less than 1. To determine how closely
the histogram matches with the Poisson distribution we fit it
with the Brody distribution [14],

P (ν,s) = (1 + ν)asν exp(−as1+ν), (15)

where a = [�( 2+ν
1+ν

)]1+ν and ν is the Brody parameter. Depend-
ing on the value of the Brody parameter ν, this distribution
interpolates between the Poisson distribution (ν = 0) and
the Wigner distribution (ν = 1). Here we found ν = 0.007.
This implies that there is negligible correlation between the
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P
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s

FIG. 3. (Color online) Plot of the P (s) distribution of the lowest
30 levels of the 87Rb cluster for N = 5.

energy levels and the system is very close to regular. Actually
for N = 3 there are only three interacting pairs and the net
attractive interaction is very weak.

Next to study the effect of interatomic interaction we
gradually increase the effective interaction. We can vary the
effective interaction either by tuning the scattering length
as or by changing the number of bosons. Here we increase
the number of bosons to N = 5. It is already known from
the earlier study of the 4He cluster that �E = EN+1 − EN

decreases smoothly as a function of N which indicates the
saturation in the density and predicts liquid-drop behavior in
the 4He cluster with larger N [5]. However, the diffuse Rb
cluster which is the system of our present interest is dilute
and less compact which indicates a sharp change in �E with
a change in cluster size. The average size of the cluster also
increases. Thus the cluster with N = 5 is more tightly bound,
stable, and more correlated compared with the cluster size
N = 3. Due to more correlation in the energy spectrum, we
can expect the very closely spaced energy levels which leads
to the quasidegeneracy. This is reflected in Fig. 3 where we
plot the P (s) distribution for the lowest 30 levels. The sharp
peak in the first bin near s = 0 clearly exhibits the signature
of quasidegeneracy. This peak is known as the Shnirelman
peak [44].

For a better understanding of the structure of the Shnirelman
peak, we plot the same histogram in Fig. 4 as in Fig. 3 in
finer details. Reducing the bin size gradually, a huge peak
appears in the first bin which demonstrates the existence of
global quasidegeneracy. The peak has a finite width which is
further associated with the Poisson tail. The resolution of the
peak is further studied as the integral level-spacing distribution
I (s) = NP (s) (here N being the number of levels), normalized
to unity. We plot I (s) as a function of ln s in Fig. 5. The linear
dependence between I and ln s is shown in the leftmost part of
Fig. 5 which represents the structure of the Shnirelman peak,
whereas the rightmost steep increase of I (s) corresponds to
the Poisson tail. However, for the higher levels we observe
that the system exhibits pseudointegrability. It is reflected in
Fig. 6(a) where we observe the semi-Poisson (SP) distribution.
For comparison, in the same figure we plot the analytic
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FIG. 4. (Color online) The structure of the Shnirelman peak
observed for the lowest 30 levels of the 87Rb cluster with N = 5
is shown in finer detail. The bin size in panel (a) is 0.2. In panel
(b) only the peak is further zoomed by taking the bin size 0.01.

expression of SP statistics given by P (s) = 4se−2s [45]. We
observe the level repulsion at smaller values of s (s � 1),
where P (s) ∝ s and asymptotic decay of P (s) is exponential.
The SP distribution is observed within a narrow intermediate
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FIG. 5. (Color online) Plot of the integral level-spacing distribu-
tion I (s) vs ln s for N = 5.
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FIG. 6. (Color online) Plot of the P (s) distribution for (a) middle
(40 < level < 80) and (b) higher (850 < level < 1000) levels for N =
5. The green dashed curve in panel (a) represents the semi-Poisson
distribution and that in panel (b) presents the Poisson distribution. The
blue dotted curve in panel (b) corresponds to the Brody distribution
with the Brody parameter ν = 0.025.

region between the quasidegenerate regime and the completely
integrable regime. P (s) distribution for the higher levels are
plotted in Fig. 6(b) which is again very similar to Poisson
distribution. We again fit the Brody distribution with the
histogram and find the Brody parameter ν = 0.025. The
observation of the SP distribution and increase in the value
of Brody parameter ν clearly manifests the enhanced effect
of interatomic correlation with an increase in cluster size.
However, we fail to give any physical reason which causes this
SP and Poisson statistics. As pointed out earlier, for smaller
cluster size only l = 0 effective potential is not enough to
calculate a sufficient number of levels for the study of P (s)
distribution. So the findings of SP statistics may be physically
acceptable, the origin of which are not clear to us, or they
may be due to the overlap of several l values. Thus to get
further insight we significantly change the cluster size to
N = 40 where only l = 0 effective potential is deep enough
to support a sufficient number of states for calculation of the
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FIG. 7. (Color online) Plot of the nearest neighbor level-spacing
distribution P (s) of the higher portion (160–200 levels) of the
spectrum of the diffuse van der Waals cluster for N = 40. The
red smooth histogram represents our numerical result and the green
dashed curve represents the Wigner distribution.

P (s) distribution. We plot the P (s) distribution in Fig. 7. We
observe a similarity with the Wigner distribution as the very
small value of P (s) near s = 0 signifies the level repulsion.
However, the peak at s = 1 overshoots 1. The large peak
at s = 1 signifies a large accumulation of levels with level
spacing s = 1. Although we tried to fit the histogram again
with the Brody distribution we failed to appropriately fit it.
Now it is worth mentioning that Guhr and Weidenmüller [46]
proposed a modified uniform spectrum in terms of a deformed
GOE, which combines uniform, GOE, and Poisson. As the
P (s) distribution of Fig. 7 is quite similar to Figs. 1–3 of
Ref. [46], the use of deformed GOE may be an ideal step
for future investigation. As Fig. 7 does not match with the
Wigner distribution we conclude that the Hamiltonian is
not chaotic. However, the deformed GOE-type distribution
signifies the system is strictly nonintegrable and exhibits strong
interatomic correlation. Thus, it is indeed required to calculate
the energy level correlation which we discuss in the following
section.

C. Energy level correlation

So far we have considered only the NNSD which is
commonly used to characterize the short-range fluctuations
in the spectrum. However, in order to confirm our findings
of the effect of correlation on the spectral properties and to
investigate how the correlation gradually builds in with the
increase in cluster size which makes the system too complex,
we study the long-range correlations of the spectrum. The level
number variance �2(L) is the most commonly used observable
to characterize correlations between the pair of levels. It mainly
determines the long-range fluctuations in the spectrum. It is
defined as the average variance of the number of levels in the
energy interval containing an average number of L levels and
is calculated as

�2(L) = 〈(N (E + L) − N (E) − L)2〉, (16)
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FIG. 8. (Color online) Plot �2(L) vs L for the (a) intermediate
(40 < level < 80) and higher (850 < level < 1000) part of the
spectrum for N = 5.

where 〈〉 represents the average over the energy value E and
N (E) determines the number of eigenenergy levels below E.
For the uncorrelated Poisson statistics �2(L) = L, whereas
for GOE, �2(L) increases logarithmically with L. From the
earlier study of level-spacing distribution it has been observed
that for N = 3 the system exhibits features which are very
close to the noninteracting limit. We have also observed the
Poisson distribution in the level statistics of higher levels.
However, the most interesting observation is the semi-Poisson
distribution for the intermediate part of the spectrum for
N = 5. The corresponding �2(L) is plotted in Fig. 8(a). It
approximately increases linearly as L/2 which is the value
of the number variance �2(L) of SP distribution. Then we
plot �2(L) for the higher part of the spectrum in Fig. 8(b). It
is approximately proportinal to L indicating that the system
is correlated but does not exhibit any level repulsion. This
further confirms the findings of the Poisson distribution in
the P (s) distribution. For the strongly correlated cluster
with N = 40 we observe that �2(L) approximately increases
logarithmically with L (Fig. 9). This feature is close to GOE
results. However, there are significant differences between our
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FIG. 9. (Color online) Plot �2(L) vs L for the spectrum of the
Rb cluster with N = 40.

numerical results and the Wigner surmise. This again indicates
that the system does not show full chaos although it exhibits
strong nonintegrability.

The other important observable to characterize long-range
correlation is �3 statistics [24]. Given an energy interval
[α,α + L] of length L, it is defined as the least square deviation
of the staircase function N̂ (Ei) from the best straight line
fitting:

�3(α; L) = 1

L
MinA,B

∫ α+L

α

[N̂(Ei) − AEi − B]2dEi.

(17)

It is customary to use the average values of �3(L). Thus
�3 statistics, averaged over energy intervals, measures the
deviation of the unfolded spectrum from the equidistant
spectrum and hence it gives information on the rigidity of
spectrum or spectral stiffness. For uncorrelated Poisson spectra
〈�3(L)〉 ∝ L whereas for Wigner spectra 〈�3(L)〉 ∝ log L.
Our calculated numerical results for N = 40 are shown in
Fig. 10. Although it looks similar to GOE distribution, it
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FIG. 10. (Color online) Plot 〈�3(L)〉 vs L for the spectrum of the
Rb cluster with N = 40.
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FIG. 11. (Color online) Plot of 〈�3(L)〉 vs L for (a) intermediate
(40 < level < 80) and higher part (850 < level < 1000) of the
spectrum for N = 5.

is significantly lower than the GOE results which confirms
our earlier observation for the large cluster. The approach
of 〈�3(L)〉 towards the GOE behavior is valid only up to
L ≈ 2. The similar kind of observation was made in Fig. 6 of
Ref. [46] where deformed GOE behavior is noted in 〈�3(L)〉.
It indicates that for large cluster size, the levels are strongly
correlated, whereas for smaller cluster (N = 5), we observe
that the 〈�3(L)〉 distribution gradually approaches to Poisson
as we move upward in the spectrum. For a small intermediate
region of the spectrum, 〈�3(L)〉 lies between the GOE and
Poisson distribution [Fig. 11(a)] whereas for the upper levels
it almost perfectly follows the Poisson distribution [Fig. 11(b)]
which indicates that the spectrum has turned soft.

D. Quotients of successive spacings

Before concluding the paper, we present in this section,
as a test of the observations made in Sec. III B, the results
of the analysis of the distribution of quotients of successive
level spacings [denoted by P (r)], a measure introduced
recently, that is independent of the unfolding function and
the unfolding procedure [47,48]. Note that in all the analysis
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presented in Secs. III B and IIIC, we have employed a
sixth-order polynomial for the density of levels for unfolding.
The P(r) distribution and the related averages allow for a
more transparent comparison with experimental results than
the traditional level-spacing distribution and this measure is
particularly important for many-body systems as the theory for
the eigenvalue (level) densities for these systems is usually not
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FIG. 12. (Color online) Distribution of the ratio of consecutive
level spacings P (r) of the spectrum of diffuse 87Rb for cluster sizes
(a) N = 3 with lowest 22 levels, (b) N = 5 with lowest 30 levels,
and (c) N = 5 with levels 40–80. Result for GOE (blue curve) is also
shown.

available. In the recent past, this measure was used in analyzing
many-body localization [47,49–51] and also in quantifying
the distance from integrability on finite-size lattices [52,53].
More recently, using P (r) it is established conclusively
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FIG. 13. (Color online) Distribution of the ratio of consecutive
level spacings P (r) of the spectrum of diffuse 87Rb for cluster sizes
(a) N = 3 with levels 300–400, (b) N = 5 with levels 850–1000, and
(c) N = 40 with levels 160–200. Results for Poisson (green curve)
and GOE (blue curve) are also shown.
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TABLE I. Values of averages 〈r̃〉 and 〈r〉 for various cluster size N .

〈r̃〉 〈r〉
N=3 Levels (1–22) 0.76 1.168

Levels (300–400) 0.34 204151

N=5 Levels (1–30) 0.48 6.18
Levels (40–80) 0.64 1.64

Levels (850–1000) 0.39 144078

N=40 Levels(160–200) 0.76 1.43

GOE 0.5359 1.75
Poisson 0.3863 ∞

that embedded random matrix ensembles for many-body
systems, generated by random interactions in the presence
of a mean field, follow GOE for strong enough two-body
interaction [54].

Given an ordered set of the energy levels En, the near-
est neighbor spacing sn = En+1 − En and the probability
distribution of the ratios rn = sn/sn−1 is P (r) subject to
normalization

∫
P (r)dr = 1. If the system is in the integrable

domain (described by Poisson NNSD), then the P (r) is
given by

PP (r) = 1

(1 + r)2
, (18)

and if the system is chaotic (described by GOE), then the P (r)
is given by Wigner-like surmise [48],

PW (r) = 27

8

r + r2

(1 + r + r2)5/2
. (19)

The average value of r, i.e., 〈r〉, is 1.75 for GOE and is ∞
for Poisson. It is also possible to consider r̃n = min(sn,sn−1)

max(sn,sn−1) =
min(rn,1/rn). The average value of r̃ , i.e., 〈r̃〉, is 0.536 for
GOE and 0.386 for Poisson.

Some results for P (r) vs r for the spectrum of the diffuse
87Rb cluster with the same cluster sizes as above viz.N = 3,
5, and 40, are shown in Figs. 12 and 13. Moreover, we have
also calculated the averages 〈r〉 and 〈r̃〉 and results are given
in Table I. For N = 3 with levels 1–22, there is a peak at
r ∼ 1 as seen from Fig. 12(a). Similarly for levels 300–400,
P (r) is close to the Poisson form as shown in Fig. 13(a).
These results are consistent with the NNSD results in Figs. 2(a)
and 2(b), respectively. In addition, the results for 〈r〉 and 〈r̃〉
given in Table I are also in agreement with these observations.
Turning to N = 5, with levels 1–30 the P (r) shows peaks
at r ∼ 0 and r ∼ 1 [see Fig. 12(b)] and for quantifying this
structure, it is necessary to derive P (r) that corresponds to
the Shnirelman peak. Going to levels 40–80, it is seen from
Fig. 12(c) that P (r) exhibits level repulsion with P (r) ∼ 0
for r ∼ 0 but the form of P (r) shows clear deviations from
the GOE result given by Eq. (19). In order to compare with
the conclusion drawn from NNSD in Fig. 6(a), it is necessary
to derive the formula for P (r) for pseudointegrable systems
(these systems give the semi-Poisson form for NNSD). Turning
to levels 850–1000, it is clearly seen from Fig. 13(b) that the
P (r) is close to Poisson and this is in complete agreement

with NNSD shown in Fig. 6(b). Furthermore, for N = 40 the
P (r) curve shows level repulsion and it is closer to GOE
than to Poisson [see Fig. 13(c)]. In addition, the values of 〈r〉
and 〈r̃〉 (shown in Table I) are close to GOE results. Thus
N = 40 example exhibits level repulsion as seen in the NNSD
result. Combining all these observations, we conclude that
the results deduced from NNSD analysis are consistent with
those obtained from P (r) analysis and thus the unfolding
procedure used in Secs. IIIB and IIIC can be considered to
be good.

IV. CONCLUSIONS

Study of energy level statistics plays an important role
in elucidating the universal properties of quantum systems.
Berry and Tabor conjectured that the eigenenergy levels of a
quantum system whose classical dynamics shows integrability,
must exhibit the fluctuation property as determined by the
uncorrelated Poisson statistics. This is in sharp contrast with
the BGS conjecture which asserts that the fluctuation property
of energy levels of a quantum system whose classical dynamics
should exhibit GOE (or GUE or GSE) statistics. However,
complicated quantum many-body systems often lie between
these two contrasting conjectures.

Thus the purpose of the present paper is to consider a
relatively complex quantum system whose experimental re-
alization is possible. The van der Waals bosonic cluster is such
a quantum system which starts to be more and more complex
with increase in cluster size. The above-mentioned contrasting
conjectures have been examined thoroughly by using various
statistical observables like NNSD, level number variance
�2(L), and the spectral rigidity �3(L). These observables
highlight the short- and long-range correlation, level repulsion,
level clustering, and how the features of the above observables
crucially depend on the cluster size are also focused. Our
detailed numerical analysis reveals that for the smaller cluster
when the system is very close to integrability, the Berry and
Tabor conjecture is followed. For the large cluster, although
we observe similar to the BGS conjecture, deviation occurs.
For large clusters the system becomes strongly correlated but
does not exhibit true chaos. However, our present study reveals
that the deformed GOE type of distribution may be suitable
for future investigation.
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