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Fermionic superfluid from a bilayer band insulator in an optical lattice
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We propose a model to realize a fermionic superfluid state in an optical lattice circumventing the cooling
problem. Our proposal exploits the idea of tuning the interaction in a characteristically low-entropy state, a band
insulator in an optical bilayer system, to obtain a superfluid. By performing a detailed analysis of the model
including fluctuations and augmented by a variational quantum Monte Carlo calculation of the ground state, we
show that the superfluid state obtained has a high transition temperature of the order of the hopping energy. Our
system is designed to suppress other competing orders such as a charge density wave. We suggest a laboratory
realization of this model via an orthogonally shaken optical lattice bilayer.
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I. INTRODUCTION

Quantum emulation of interesting condensed matter Hamil-
tonians using ultracold atom systems holds much promise
[1–5]. The pace of experimental progress has been impeded
by key problems which include simulation of electromagnetic
(gauge) fields, removal of entropy, etc. While the former
has seen spectacular recent progress [6–10], the longstanding
“cooling problem” of trapped lattice fermions has been more
difficult [11].

The cooling problem has been addressed in various ways.
One approach has been to find schemes to “squeeze out”
the entropy [12–15]. Others include exploiting metastable
states [16], using properties of the states (such as the Néel
state) to develop cooling protocols [17] (see Ref. [11] for
a review). A recent notable proposal is to use an additional
beam that helps to enlarge the region where a desired state is
stabilized [18]. Despite this, to the best of our knowledge, an
interesting many-body state such as an antiferromagnet is yet
to be realized in an optical lattice, while some signatures of
fermionic superfluidity have been reported [19].

We propose here an alternate strategy to address the entropy
problem which hinges on using a low-entropy noninteracting
state as a starting point. Such a low-entropy state, which will be
formed in the central region of a trap in a cold-atom system, has
the benefit that it allows for the spatial separation of the excess
entropy that will be accommodated in the periphery of the trap.
Upon tuning an interaction, the low-entropy state in the central
region is driven to an interesting many-body state which has
the desiderata of (i) a high characteristic temperature scale and
(ii) stability over other “uninteresting” competing states. Here
we suggest the use of a band insulator, a characteristically
low-entropy state in which we tune an attractive interaction
to produce a fermionic superfluid utilizing the above strategy.
Band-insulator–superfluid transitions have been investigated
earlier in other contexts [20,21]. Motivated by the experimental
work cited above [19], band-insulator–superfluid transitions,
in fermionic cold-atom systems, engendered by increasing the
lattice depth with concomitant multiband effects have been
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discussed [22–26]. In contrast to these works, our proposal
aims to obtain a superfluid in a deep lattice.

We propose and study a bilayer band insulator that
undergoes a transition to a superfluid upon tuning an attractive
interaction, attaining the above desiderata. The model is
designed so that competing phases, such as the charge density
wave (CDW), are avoided. This is demonstrated by a detailed
analysis including Gaussian fluctuations and variational Monte
Carlo simulations. We show that a “high-temperature” super-
conducting phase is possible in this system by estimating the
Berezinski-Kosterlitz-Thouless transition temperature TBKT.
In a regime of parameters, the system shows interesting
physics such as the “pseudogap phenomenon,” even at high
temperatures. We suggest a possible route to realize this in an
optical lattice.

II. BILAYER BAND INSULATOR

Our proposal for the realization of a two-dimensional (2D)
spin- 1

2 fermionic superfluid state hinges on a bilayer band
insulator. The configuration consists of two layers, A and B,
both of which have the same lattice structure (such as a square
or triangular lattice) and a 2D Brillouin zone (see Fig. 1). The
crucial ingredient is that the in-plane energy dispersion in the
two layers are of opposite signs, i.e., εA(k) = −εB (k) = ε(k)
for all k in the Brillouin zone. Interlayer hopping is described
by a hybridization function, h(k), which is such that h(k)
and ε(k) never vanish simultaneously. The kinetic energy of
the system is thus described by HK = ∑

kσ ε(k)(a†
kσ akσ −

b
†
kσ bkσ ) + (h(k)a†

kσ bkσ + H.c.), where a’s and b’s are spin-
1
2 fermion operators corresponding to the A and B layers,
respectively (σ = ↑ ,↓ is the spin). This leads to two (spin
degenerate) bands:

HK =
∑
kσ

e(k)(c†kσ ckσ − d
†
kσ dkσ ), (1)

where ckσ = f ∗
k akσ + g∗

kbkσ and dkσ = −gkakσ +
fkbkσ [fk,gk = 1√

2
(1 ± ε(k)

e(k) )1/2e±i arg h(k)/2] are, respectively,
“conduction” and “valence” band fermion operators, with
e(k) =

√
ε(k)2 + |h(k)|2. With a fermion density of one

particle per site on both the A and B layers, the ground state
is the filled valance band, i.e., a band insulator.
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FIG. 1. (Color online) Dispersion of the bilayer band insulator.
Bilayer dispersion before (left) and after (right) interlayer hybridiza-
tion. Insets show the schematic densities of states.

III. SUPERFLUID STATE IN THE BILAYER
BAND INSULATOR

We now introduce a local attractive interaction with
strength U (which may be tuned by a Feshbach resonance
[27]) as

HU = −U
∑

i

(a†
i↑a

†
i↓ai↓ai↑ + b

†
i↑b

†
i↓bi↓bi↑). (2)

A superfluid can be generated by starting from the band
insulator (U ≈ 0) and adiabatically increasing the magnitude
of the attractive interaction. To be specific, we choose a
particular model to illustrate the idea (see below for a possible
laboratory realization of this model). The bilayer system
has both A and B layers which are square lattices (of unit
lattice spacing) with nearest (t) and next-nearest (t ′) hopping
(t ′ = t/10 throughout) such that εA(k) = −εB(k) = ε(k) =
−2t(cos kx + cos ky) − 4t ′ cos kx cos ky . The hybridization
function h(k) = −th captures the hopping from adjacent A and
B sites. The resulting band structure is of the form in Eq. (1)
and has a band gap of εg = 2th. The band insulator obtained
with one particle per site per layer has a Cooper instability
[28] at a nonzero critical value Uc of U unlike in a metal
where Uc is zero. We find that 1

Uc
≈ 1

N

∑
k

1
e(k) ∼ 1

t
| ln t

εg
|

(see Fig. 2), where N is the number of sites per layer. The
instability is due to the fact that, at sufficiently large U , it
becomes feasible for a pair of fermions of opposite spin to
be promoted to a conduction band where they can “sample”
the attractive interaction [see Fig. 2(a)], eventually forming a
bound state. We find that for U � Uc, the binding energy of
the pair goes as (U − Uc), which may be contrasted with an
exponentially small value usually found [28] in a system with
a Fermi surface. The physics of such strong binding is due
to the modification of the density of states at the band edges
engendered by the hybridization. The resulting joint density
of states of particle-hole excitations is strongly enhanced (see
Fig. 1), g(ε) ∼ 1/

√
ε − εg , and it is this large enhancement

ε
CB

k
VB(a) (b)

U

FIG. 2. (Color online) (a) Schematic of Cooper instability.
(b) The critical value Uc that induces Cooper instability.

FIG. 3. (Color online) Dependence of zero temperature (a) su-
perfluid order parameter Δ and (b) “carrier density” n on U .

that provides for the strong binding as in other contexts [29].
Consequently we expect the system to also possess high
transition temperatures making it attractive for experimental
realization of an optical lattice superfluid.

We now study the properties of the lattice superfluid state
using functional integral techniques [30,31], by introducing
the action

S[ψ] =
∑
k,α

ψ�
ασ (k)

[−G−1
0 (k)

]
ψασ (k)

+
∑

k

[h(k)ψ�
1σ (k)ψ1̄σ (k) + g.c.]

− U

βN

∑
q,α

P �
α (q)Pα(q), (3)

where −G−1
0 (k) = (−ikn + αε(k) − μ), μ is the chemical

potential, k = (ikn,k) and (iq�,q) with ikn(iq�) = (2n +
1)π/β(2�π/β) being the Fermi (Bose) Matsubara frequencies,
and β = 1/T is the inverse temperature. We have introduced
Grassmann numbers ψασ where the flavor label α = ±1
stands, respectively, for the A and B layers, and P �

α (q) =∑
k ψ�

α↑(q + k)ψ�
α↓(−k).

The possibility of a superfluid state is investigated by in-
troducing Hubbard-Stratonovich pair fields 
α(q) to decouple
the interaction term (see Appendix A) in Eq. (3). The fermions
are then integrated out to obtain the action S[
] solely for

α(q). The uniform saddle point 
C

α (q) = Δδq,0, where Δ is
the superfluid order parameter, gives the gap equation

1

U
= 1

N

∑
k

tanh βE(k)
2

2E(k)
, (4)

where E(k) =
√

e(k)2 + Δ2. The model we consider here
has particle-hole symmetry which forces μ = 0 when the
occupancy is one fermion per site; thus a separate number
equation to determine μ is obviated. Figure 3(a) shows the
evolution of the zero-temperature ground state with increasing
U . At Uc, a quantum phase transition occurs ushering in a
superfluid state where Δ behaves as

√
U − Uc and monotoni-

cally increases with increasing U . The superfluidity arises from
the promotion of fermions to the conduction band; indeed,
n = 1

N

∑
kσ 〈c†kσ ckσ 〉 [see Eq. (1)], the number of fermions

promoted to the conduction band increases from zero at Uc as
n ∼ (U − Uc).

Having established the superfluid ground state and its
physical underpinnings, the natural question is regarding the
magnitude of the transition temperature of the superfluid
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FIG. 4. (Color online) Evolution of (a) superfluid density ρs and
(b) Leggett mode gap ωL as a function of U at zero temperature.

obtained. Two effects that destroy superfluidity are pair
breaking and phase fluctuations. Indeed, long-wavelength
phase fluctuations render our 2D superfluid lacking in true
long-range order at finite temperatures, i.e., in the Kosterliz-
Thouless phase. The temperature scale of pair-breaking TΔ

is set by the lowest temperature at which the saddle point
value of Δ vanishes and can be obtained by solving for
the temperature in the gap equation [Eq. (4)] with Δ = 0.
To investigate the role of phase fluctuations below TΔ and
estimate the transition temperature, we study the fluctuations
at the Gaussian level (see Appendix A) by expanding the
action S[
] about the saddle point with 
α(q) = 
C

α (q) +
Δ[ζα(q) + iθα(q)], where ζα(q) and θα(q) are real fields that
represent, respectively, the amplitude and phase fluctuations in
each layer. The fluctuations in each layer are coupled; a more
natural “normal mode” description is in terms of symmetric
and antisymmetric linear combinations of these modes. For
example, there are two phase modes—the symmetric mode
θs(q) ∼ [θ+(q) + θ−(q)] and the antisymmetric mode θa(q) ∼
[θ+(q) − θ−(q)], and there are two amplitude modes with
similar definition.

We find that both the amplitude modes are gapped, while
the symmetric phase mode is gapless and the antisymmetric
phase mode is gapped. Interestingly, the gapped antisymmetric
phase mode is analogous to the Leggett mode in multiband
superconductors [32,33]. We obtain the following effective
action for the phase modes by integrating out the ampli-
tude modes S[θs,θa] = ∫ β

0 dτ
∫

d2r 1
2 [(κs(

∂θs

∂τ
)2 + ρs(

∂θs

∂ r )2) +
(κa( ∂θa

∂τ
)2 + ρa( ∂θa

∂ r )2 + ωLθ2
a )], where τ is the imaginary time,

r is the position on the 2D plane, κ’s, ρ’s, and ωL are
determined by the saddle point solution. The most important
parameters (Appendix A) in this action are the phase stiffness
of the symmetric phase mode ρs , which is the superfluid
density, and ωL, the gap (or mass) associated with the anti-
symmetric Leggett mode. Figure 4(a) shows the dependence of
the zero-temperature superfluid density ρs on U . For U � Uc,
ρs ∼ U − Uc and has the same behavior as the number of
fermions excited to the conduction band. With increase of U ,
ρs attains a maximum and suffers a fall at larger values of U .
For U � t , we find that ρs ∼ t2

U
. This is due to the fact that the

system undergoes a “BCS-BEC” crossover with increasing U ,
and ρs is determined by the hopping amplitude of the bosonic
fermion pair at large U , which is ∼t2/U . The variation of ωL

with U is shown in Fig. 4(b), the key point to be noted is that
in the regime where ρs is the largest, the Leggett mode has a
large gap and does not participate in the low-energy physics.

FIG. 5. (Color online) (a) Determination of TBKT from the tem-
perature dependence of ρs . (b) Dependence of TΔ and TBKT on U .
Note the high transition temperature and the large pseudogap regime.
Here th = 0.9t .

The discussion above allows the estimation of the
Kosterlitz-Thouless transition temperature TBKT. We obtain
ρs as a function of T via our functional formulation using
the saddle-point value of Δ. Using the relationship [34]
ρs(TBKT) = 2TBKT

π
, we arrive at the transition temperature [as

shown in Fig. 5(a)] plotted in Fig. 5(b), which also shows the
temperature TΔ associated with pair breaking obtained from
Eq. (4). We see that the maximum value of TBKT is of the order
of the lattice hopping amplitude t (for a potential depth of
about 3 − 5ER (recoil energy), highest TBKT ≈ 0.1ER), and
in this sense we obtain high-temperature superfluidity. Note
that the optimum TBKT in our system is about twice larger than
that obtained in a single layer [35] attractive Hubbard model
[see Appendix B)]. The BCS side (U � Uc) is also a robust
superfluid due to the enhancement obtained by the divergent
density of states. Another attractive aspect of this system is
that one expects to see large pseudogap features even at high
temperatures [see Fig. 5(b)], and thus interesting physics can
be investigated in optical lattices even if the average entropy
of the system is not small.

The effect of quantum fluctuations are likely important due
to the reduced dimensionality [36]. To ensure that quantum
fluctuations only have a quantitative role and to ensure that
there are no competing orders such as a CDW intervening,
we conducted a detailed variational Monte Carlo [37–40]
calculation of the ground state (see Appendix C). Our vari-
ational ground state |�〉 = gD|ΔS,ΔCDW〉BCS is constructed
by introducing both the superfluid pair order ΔS and a
commensurate (π,π ) charge density wave order parameter
ΔCDW, and obtaining the BCS state |ΔS,ΔCDW〉BCS. The
Gutzwiller parameter g (>1) that promotes double occupancy
(D is the operator that counts the number of doubly occupied
sites) introduces quantum fluctuations of the local phase. Two
key results of our detailed study are the following: (i) For all
values of U within the range considered here, the optimal value
of ΔCDW is zero (also found in a saddle point theory); i.e., there
is no competing order that intervenes and hence the superfluid
state is stable, and (ii) quantum fluctuations do not change
the qualitative aspects of the results. Indeed, for the parameter
values shown in Fig. 6(a), we find Uc ≈ 4.5 is expectedly
larger than the value of 3.2 from the saddle point analysis
(Appendix C). The variational parameter ΔS [Fig. 6(a)] and
the superfluid order parameter � [Fig. 6(b)], which measures
the amplitude of injecting a pair at a large distance away
from the point of its removal, have precisely the behavior
as expected from the saddle point analysis. Superfluidity wins
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FIG. 6. (Color online) Results of variational Monte Carlo cal-
culations. Dependence of (a) variational parameters g and ΔS and
(b) superfluid order parameter � on U . th = 0.9t .

over other competing orders since the pairing channel has
the most divergent susceptibility due to the density of states
discussed earlier.

IV. POSSIBLE EXPERIMENTAL REALIZATION
AND DISCUSSION

Our proposed scheme can be realized by an “orthogonally
shaken bilayer,” depicted in Fig. 7. It is argued in Ref. [41] that
upon introducing a shake of the optical lattice, the amplitude
and the sign of the hopping can be controlled. It was shown that
if K (an energy scale) and ν are, respectively, the amplitude and
frequency of the shake, the effective hopping amplitude teff =
tJ0(K

ν
), where J0 is the Bessel function and t is the hopping in

the absence of the shake. This phenomenon has not only been
observed experimentally [42] but also has been recently used
to study many interesting quantum phases [43,44] with further
proposals for the generation of topological insulators [45,46].

Our proposed experimental setup consists of two adjacent
optical square lattices. The top layer A is obtained by
interfering two sets of counter-propagating laser beams in the
x and y directions; the x and y beams are noninterfering.
The relative phase of the two x laser beams is modulated so
as to obtain a shake, and the intensity of the x laser beams
and the amplitude of the modulation can be chosen such that
−tAx = tAy = t ; i.e., the hopping along the x direction has an
opposite sign to that in the y direction. In the layer B, the
beams along the y direction are shaken so that tAx = −tBy = t .
This provides a realization of a system with εA(k) = −εB (k).
The hybridization of the two layers can be controlled by the
distance between the two layers. This can be achieved by

FIG. 7. (Color online) Orthogonally shaken bilayer optical lat-
tice. The top layer A is shaken in the x direction, while the bottom
layer B is shaken in the y direction. By an appropriate choice of
laser intensities, amplitude, and frequency of the shakes, the band
dispersion in the layers can be made to have opposite signs to each
other. The layer hybridization can be controlled by the distance
between the layers.

using vertically confining beams as in Ref. [47] and creating
the two layers by “optical copying.” Optical copying will entail
splitting the x and y laser beams of the A layer and focusing
the split beams just below the A layer to produce the B layer
such that the x beam of the A layer plays the role of the y beam
of the B layer, and so on. This laboratory realization of our
proposal may require optics techniques that have been used
in the making of quantum gas microscopes [48], which will
allow for the control of the distance between the two layers.
The confining trap potential is to be designed such that a large
region near the trap center will be in a band-insulating state,
with the excess entropy trapped in regions at the periphery (see
Appendix D). Tuning of the attractive interactions [49] should
now drive the central band-insulating region to the superfluid
state. We hope that this work stimulates experimental research
on realizing such a bilayer band insulator system, even by
routes other than our proposal.
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APPENDIX A: GAUSSIAN THEORY OF THE
SUPERFLUID STATE

The Hamiltonian of our proposed bilayer band insulator
model consists of two parts H = HK + HU , where HK and
HU are defined in the main text.

In the functional integral framework, we write the action

S[ψ] =
∑
k,k′,α

ψ�
ασ (k)

[−G−1
0ασ,α′σ ′ (k,k′)

]
ψα′σ ′(k′)

− U

βN

∑
q,α

P �
α (q)Pα(q), (A1)

where

G−1
0 (k,k′) = {ikn1 ⊗ I − [αε(k)τz ⊗ σz − thτx ⊗ σz]}
kk′ .

(A2)

Here1 and τ ’s are, respectively, the identity and Pauli matrices
in 1 − 1̄ (A-B or + and −) space. Similarly I and σ ’s are the
identity and Pauli matrices in spin space. We note that the
1 − 1̄ and + and − notations for the layer index are used
interchangeably depending on typographical convenience.

We now decouple the four-fermion interaction term by
introducing a Hubbard-Stratonovich pair field, 
α(q). This
decoupling results in the action

S[ψ,
] =
∑
k,k′,α

ψ�
ασ (k)

[−G−1
ασ,α′σ ′(k,k′)

]
ψα′σ ′(k′)

+ 1

U

∑
q,α


�
α(q)
α(q), (A3)
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where G−1
ασ,α′σ ′(k,k′) = G−1

0ασ,α′σ ′ (k,k′) − 
(k,k′),


(k,k′)

=

⎡
⎢⎢⎢⎣

0 0 
+(k,k′) 0

0 0 0 
−(k,k′)

�

+(k,k′) 0 0 0

0 
�
−(k,k′) 0 0

⎤
⎥⎥⎥⎦,

(A4)

with 
α(k,k′) = 1√
βN

∑
q 
α(q)
q,k−k′ . The fermions are

integrated out to obtain the action only in terms of the pairing
field,

S[
] = 1

U

∑
q,α


�
α(q)
α(q) − ln det[−G−1(
)]. (A5)

We perform a saddle-point analysis with an ansatz 
C
α (q) =

Δ
q,0, where Δ is chosen to be real without loss of generality.
Within this ansatz, the Green’s function G(k,k′) has the form

G(k,k′) = 
kk′

(ikn)2 − E(k)2
{ikn1 ⊗ I

+ [ε(k)τz ⊗ σz − thτx ⊗ σz] + Δ1 ⊗ σz}, (A6)

where E(k) is defined near the gap equation [Eq. (4)]. The gap
equation is obtained by extremizing the action with respect
to Δ; Equation (4) is obtained after the necessary frequency
sums.

The important role of fluctuations is explored by a Gaussian
theory. We expand the action S[
] about the saddle point with

α(q) = 
C(q)α + ηα(q) and retain terms up to quadratic
order in the fluctuation ηα in the action (repeated α and β

indices are summed)

S[η] = Ssp + 1

2

∑
q

[η�
α(q)ηα(−q)]�(q)

[
ηβ(q)

η�
β(−q)

]
, (A7)

where

�(q) =
[
Cαβ(q) Dαβ(q)

Aαβ(−q) Bαβ(−q)

]
, (A8)

with

Cαβ(q) = 1

βN

∑
k

Gα↑,β↑(k + q)Gα↓,β↓(k) + 
α,β

U

= Bβα(q)

(A9)

and

Dαβ(q) = 1

βN

∑
k

Gα↑,β↓(k + q)Gα↓,β↑(k) = Aαβ(q).

(A10)

We now express the η fields in terms of two other real fields
ζ (amplitude fluctuation) and θ (phase fluctuation) as ηα(q) =
Δ[ζα(q) + iθα(q)], with ζ �(q) = ζ (−q) and θ�(q) = θ (−q),
to study both amplitude and phase fluctuations. The action in
terms of these two fields is

S[ζ,θ ] = Ssp + 1

2

∑
q

[ζ �
α (q)θ�

α(q)]�(q)

[
ζβ(q)

θβ(q)

]
, (A11)

where

�(q) =
[
�

αβ

ζζ (q) �
αβ

ζθ (q)

�
αβ

θζ (q) �
αβ

θθ (q)

]
, (A12)

�
αβ

ζζ (q) = Δ2[Cαβ(q) + Cαβ(−q) + Dαβ(q) + Dαβ(−q)],

(A13)

�
αβ

ζθ (q) = iΔ2[Cαβ(q) − Cαβ(−q)] = −�
αβ

θζ (q), (A14)

�
αβ

θθ (q) = Δ2{[Cαβ(q) + Cαβ(−q)] − [Dαβ(q) + Dαβ(−q)]}.
(A15)

As is evident, the phase and amplitude modes of each of the
+ and − layers are coupled with each other. It is more natural
to describe the amplitude and phase modes of each the + and
− layers in terms of “normal modes”—these are the symmetric
and antisymmetric modes of the phase and amplitude modes
of the two layers. Thus, the two phase degrees of freedom
are the symmetric mode θs(q) = [θ+(q) + θ−(q)]/2 and the
antisymmetric mode θa(q) = [θ+(q) − θ−(q)]/2. Similarly,
two amplitude modes can be expressed as the symmetric
mode ζs(q) = [ζ+(q) + ζ−(q)]/2 and the antisymmetric mode
ζa(q) = [ζ+(q) − ζ−(q)]/2. The action in terms of these
symmetric and antisymmetric ζ and θ fields is

S[ζs,ζa,θs,θa]

= 1

2

∑
q

[ζ �
s (q)ζ �

a (q)θ�
s (q)θ�

a (q)]�(q)

⎡
⎢⎢⎢⎣

ζs(q)

ζa(q)

θs(q)

θa(q)

⎤
⎥⎥⎥⎦, (A16)

where

�(q) =

⎡
⎢⎢⎢⎣

Ls(q) 0 Hs(q) 0

0 La(q) 0 Ha(q)

Ks(q) 0 Hs(q) 0

0 Ka(q) 0 Ha(q)

⎤
⎥⎥⎥⎦, (A17)

with Ls,a and Hs,a being appropriate linear combinations
of �’s defined above. Thus the action splits nicely into
the symmetric and antisymmetric modes, S[ζs,ζa,θs,θa] =
Sa[ζs,θs] + Ss[ζa,θa]; i.e., the symmetric and antisymmetric
modes do not interact with each other. After performing the
necessary frequency sums to obtain the expressions for the L’s,
H ’s, and K’s, we find that both symmetric and antisymmetric
amplitude modes are gapped. Also, the antisymmetric phase
mode is gapped and the symmetric phase mode is gapless.
Since the amplitude modes are gapped, we integrate them
out to obtain a “phase-only” action. This action (apart from
constants) is

Seff[θs,θa] = Ssp + 1

2

∑
q

θ�
s K̃s(q)θs + θ�

a K̃a(q)θa, (A18)

where K̃s = Ks − H 2
s

Ls
and K̃a = Ka − H 2

s

La
. For small q, we

find K̃s = ρsq2 − (iql)2κ and K̃a = K̃s + ωL, where ρs is the
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superfluid density, given by

ρs = 2Δ2

N

∑
k

vx(k)vx(k)

4E(k)2

×
[

2
∂nF (E(k))

∂E(k)
+ 1 − 2nF (E(k))

E(k)

]
, (A19)

where vx(k) = α∂e(k)/∂kx is the velocity and ωL is the gap
of the asymmetric phase (Leggett) mode, given by

ωL = 8t2
hΔ2

N

∑
k

1

4E(k)2

[
2
∂nF (E(k))

∂E(k)
+ 1 − 2nF (E(k))

E(k)

]
,

(A20)

with nF being the Fermi function. We do not show expressions
for κ and other quantities, all of which depend on the saddle-
point value Δ in analogous fashion as above. Equation (A18)
transformed to space and imaginary time is shown in the text,
with ρa = ρs and κa = κs = κ .

APPENDIX B: COMPARIAON OF BILAYER SYSTEM
WITH SINGLE-LAYER ATTRACTIVE HUBBARD MODEL

In this section, we present a comparison of the physics
of the bilayer system with a single-layer attractive Hubbard
model (AHM).

The key point to be noted is that our bilayer band insulator
system produces a system with a higher superfluid density. This
enhancement arises from the fact that the orthogonal phase
modes of our system are the symmetric and antisymmetric
modes. The antisymmetric mode, the Leggett mode, is gapped
and hence the low-energy physics is governed solely by the
symmetric mode. The symmetric mode corresponds to the
simultaneous twisting of the phase in two layers, each with
a filling of one particle per site. This then makes our ρs ≈
2ρAHM

s and engenders an enhanced Tc. Note also, that this is
also consistent with the following well-known sum rule which
states that, in a lattice, ρs ∼ 〈kinetic energy〉. Our system with
two layers has roughly twice the kinetic energy as a single-
layer AHM.

In Fig. 8, we compare the Tc of our system with AHM
caclulated with same formulation. We see the expected
enhancement of the TBKT of our bilayer system, over the

FIG. 8. (Color online) T
 and TBKT are for the bilayer system
with th = 0.9t . T AHM

BKT is for the single-layer AHM at half filling. Note
that the highest TBKT of the bilayer system is about a factor of 2 larger
than that obtained in the single-layer AHM.

AHM. We note here that the TBKT of the AHM model matches
published values [35].

The advantage of the bilayer system over the AHM for the
realization of an optical lattice superfluid is now evident. In the
AHM, the one-particle excitations are gapless in the absence
of U . Thus even in the starting state, the high initial entropy of
the system will be spread throughout the trap. In contrast, in
our proposal the central region of the trap will continue to be
a low-entropy state, and the added bonus of a high-transition-
temperature realization of the superfluid-pseudogap state is
made more favorable.

APPENDIX C: VARIATIONAL MONTE CARLO
CALCULATIONS OF THE GROUND STATE

To study the effects of quantum fluctuations, we do a
variational Monte Carlo (VMC) calculation by taking the
following as our variational wave function for the ground state:

|�var〉 = gDPN |ΔS,ΔCDW〉BCS. (C1)

Here g is the Gutzwiller factor,

D =
∑

i

(a†
i↑a

†
i↓ai↓ai↑ + b

†
i↑b

†
i↓bi↓bi↑) (C2)

is the number of doubly occupied sites, and PN is the
fixed electron number (N ) projection operator. The wave
function |ΔS,ΔCDW〉BCS is the ground state of the following
Hamiltonian which incorporates the pairing and CDW orders
simultaneously,

HMF =
∑
kσ

εk(a†
kσ akσ − b

†
kσ bkσ ) − th

∑
kσ

(a†
kσ bkσ + H.c.)

−ΔS

∑
i

(a†
i↑a

†
i↓ + b

†
i↑b

†
i↓ + H.c.)

−ΔCDW

∑
iσ

cos( Q.r i)(a
†
iσ aiσ − b

†
iσ biσ ). (C3)

Here Q = (π,π ) and the chemical potential μ = 0 as de-
manded by particle-hole symmetry. The above Hamiltonian
can be diagonalized via a Bogoliubov transformation and the
final form of the ground-state wave function is

|ΔS,ΔCDW〉BCS =
∏

k

4∏
n=1

(ukn + vknf
†
kn↑f

†
−kn↓)|0〉, (C4)

where ukn and vkn are dependent on the parameters ΔS and
ΔCDW, and fknσ ’s are the operators obtained after transforming
the original electron operators. Upon application of the
projection operator PN , the wave function is

|�var(g,ΔS,ΔCDW)〉 = gD

(∑
kn

φknf
†
kn↑f

†
−kn↓

)N/2

|0〉,

(C5)

which contains three parameters, e.g., g, ΔS , and ΔCDW. In
order to determine the ground state, we calculate the variational
energy,

E (g,ΔS,ΔCDW) = 〈�var|H|�var〉
〈�var|�var〉 , (C6)
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FIG. 9. (Color online) Comparison of analytical theory with the
VMC calculation of the order parameter. Uc in the VMC is larger
than that obtained in Uc with th = 0.9t .

using VMC and optimize it in the space of the above three
parameters. We do the calculations on a lattice of size 10 ×
10 × 2.

After careful optimization of the variational energy, we
find that up to U = 8t , the minimum energy is obtained when
ΔCDW = 0. Thus within this range of U , the CDW state is ruled
out as a competing order in the ground state in agreement
with the conclusion from the mean-field calculation. The
optimal values of g and ΔS as a function of U are shown
in Fig. 6(a). Once the wave function is optimized, we estimate
the pairing order parameter of the system by calculating the
pair correlation function F (r − r ′), given by

F (r − r ′) = 〈c†r↑c
†
r↓cr ′↑cr ′↓〉. (C7)

Here the operators crσ mean either arσ or brσ . The pairing
order parameter � is obtained from long-range behavior of
the pair correlation function as

�2 = lim
|r−r ′|→∞

F (r − r ′). (C8)

The pairing order parameter thus obtained is shown in Fig. 6(b)
as a function of U . It is interesting to note that though the
optimal ΔS is nonzero as soon as U > 0, the superconducting
order develops only after a critical value Uc.

Figure 9 shows a comparison of the order parameter �

as a function of U/t for the VMC and analytical theory. As
expected, we find that Uc/t |VMC(=4.5) > Uc/t |MFT (3.2), and
the qualitative aspect � has excellent agreement between the
two. This discussion produces the expected conclusion that
quantum fluctuations influence only the quantitative aspects,
i.e., a larger Uc, while the qualitative aspects are identical to
those obtained by the analytical theory.

APPENDIX D: DISCUSSION OF EXPERIMENTAL
REALIZATION

Our proposal for the realization of the fermionic superfluid
state relies on two aspects, namely, that the characteristic
temperature of the many-body state realized in the system
is large and also that the low-entropy state provides a method
to spatially accommodate the initial entropy in the periphery
of the trap. In the presence of the trapping potential, the state
realized in our system will correspond to the half-filled bilayer
in the central (inner) region of the trap, while the outer region
will be of lower density. Thus the outer “metallic” regions
with gapless one-particle excitations will have a higher entropy
density (due to its large specific heat), while the inner core will
be the band insulator with a low-entropy density. Ramping an
attractive interaction will drive the band-insulating region to a
superfluid state. The outer region will be in a normal state with
pairing fluctuations brought about by the attractive interaction.
This would then be analogous to the realization of a superfluid
in the continuum system in a trap where the inside core is
superfluid and the outside is normal [1].
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