
PHYSICAL REVIEW A 89, 043604 (2014)

Attractive Bose gas in two dimensions: An analytical study of its fragmentation and collapse
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An attractive Bose-Einstein condensate in two spatial dimensions is expected to collapse for supercritical
values of the interaction strength. Moreover, it is known that for nonzero quanta of angular momentum and
infinitesimal attraction the gas prefers to fragment and distribute its angular momentum over different orbitals. In
this work we examine the two-dimensional trapped Bose gas for finite values of attraction and describe the ground
state in connection to its angular momentum by theoretical methods that go beyond the standard Gross-Pitaevskii
theory. By applying the best-mean-field approach over a variational ansatz whose accuracy has been checked
numerically, we derive analytical relations for the energy, the fragmentation of the ground states, and the critical
(for collapse) value of the attraction strength as a function of the total angular momentum L.
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I. INTRODUCTION

One unique feature of ultracold trapped atomic gases is the
deterministic control that can be exerted—in the laboratory—
on the gas and its properties. The density of the gas, the
geometry of the trap, as well as the strength and sign of the
interaction have nowadays become fully controllable. Deeper
theoretical understanding and advanced experimental tools
allow one to change the sign of the interaction between
the bosonic atoms of the gas in a controllable manner, and
attractive Bose-Einstein condensates (BECs) can be formed
in the laboratory [1–3]. The novel collapse phenomenon,
which is absent in the repulsive gas, has given the attrac-
tive BEC a special position in contemporary research and
manifested itself in the fascinating colllapse and “Bosenova”
experiments [4,5].

Not accidentally, one of the first case studies of the occur-
rence of fragmentation in BECs was that of an attractive boson
gas in two spatial dimensions [6]. There the authors described
the bosonic gas with a many-body ansatz that appears to
be successful at least in the limit where the interparticle
interaction is very weak. One important result of this work
was to find the natural orbitals and their natural occupations
in a simple analytic expression. Based on this, it was derived
that for a given angular momentum L the ground state of
the system is fragmented. In other words, a nonvanishing
angular momentum of the system causes the bosons of the
gas to be distributed over a vast number of single-particle
states, rather than one. Thus, coherence is lost and this renders
the system not describable by the standard Gross-Pitaevskii
theory. In response to this finding it has been suggested that
the definition of the single-particle reduced density matrix
and the definition of Bose-Einstein condensation should be
modified [7] or that in the absence of symmetry (isotropy)
of the trapping potential the fragmentation will vanish [8].
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However, these do not clash with a main characteristic of the
attractive gas: the angular momentum L is imprinted in the gas
in a completely different—fragmented—way than that in the
repulsive case.

Still, the nonweakly attractive two-dimensional gas and its
collapse have not been scrutinized in the light of the above
findings. In three spatial dimensions, on the other hand, it
has been shown that fragmentation and participation of the
low-lying excited states [9] and the presence of total angular
momentum L [10] can postpone the collapse. In the present
work we examine the structure of the ground state of finite
systems with nonzero angular momentum (AM) and finite
nonweak interaction strength λ. We express the energy of
this ground state (GS) as a function of L and, moreover,
we find an expression for the critical (maximum allowed)
value λc of the interaction strength. The method used is the
best-mean-field (BMF) theory, which has been introduced
and described in Ref. [11]. The orbital basis consists of
modified Gaussian orbitals (scaled single-particle states of
the harmonic oscillator). Using that, we reveal the structure
of the ground state with L > 0: it is a distribution of the
bosons over the M orbitals that, above some L, differs
from the one derived in the many-body (MB) treatment [6].
However, the energy that we derive for this state can drop
lower than that of the GS of the above-mentioned work (also
others; see, for example, Ref. [8]). Asymptotically, in the
limit of very weak interaction strength λ and large particle
number N , our expression gives back the previously known
one.

The structure of this paper is the following. We introduce
the Hamiltonian of the system and the mean-field (MF)
ansatz in Sec. II. In Sec. III we derive an expression for the
energy of this ground state as a function of the AM L, for
any finite L and nonweak λ. We show that our expression
encompasses the energy known from previous asymptotic
MB and MF results. Additionally, and in connection to
this finding, in Sec. IV we derive an expression for the
critical value of the interaction strength as a function of
the AM L. In Sec. V we compare our results to previously
known ones. Lastly, we conclude and discuss the findings in
Sec. VI.
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II. THE SYSTEM

We consider the Hamiltonian H = H0 + λ0W with

H0 = 1

2

N∑
i

(−∇2
ri

+ r2
i

)
and W =

N∑
i<j

δ(ri − rj ) (1)

in dimensionless units where ω = � = m = 1. For λ0 < 0 the
above Hamiltonian describes a two-dimensional (2D) trapped
gas of attractive ultracold bosons. To represent the wave func-
tion of the system we use the general MF ansatz (Fock state)

|�〉 = Sφ1(r1) · · · φ1
(
rn1

)
φ2

(
rn1+1

) · · · φ2(rn1+n2 ) · · · φM (rN )

≡ |n1,n2, . . . ,nM〉, (2)

where S is the symmetrizing operator, accounting for the
bosonic nature of the wave function. The ansatz of Eq. (2)
describes a fragmented system of N particles, where ni of
them reside in the φi single-particle state (orbital), with
i = 1, . . . ,M ,

∑M
i ni = N . The total density (i.e., the

diagonal of the single-particle reduced density matrix) of this
state is ρ(r) = ∑M

i=1 ni |φi(r)|2. The total (expectation value
of) angular momentum of this state is L = ∑

i lini , where
li = 〈φi |L̂z|φi〉 is the orbital angular momentum of the orbital
φi . Generally, li is a function of the anisotropy of the trap. In
the case of an isotropically trapped gas, which we examine
here, the orbitals are expected to be eigenstates of the (single-
particle) operator L̂z(r) and hence the expectation values li
equal the eigenvalues li = 0,1,2, . . . . Evaluated with the above
ansatz [Eq. (2)] the total energy takes on the appearance [11,12]

E = 〈�|H |�〉=
M∑
i

⎛
⎝ρihi + λ0

2
ρiiwi,i + λ0

M∑
j �=i

ρijwi,j

⎞
⎠ ,

(3)

where hi = 〈φi |H0|φi〉, wi,j = 〈φiφj |φiφj 〉, and ρi = ni,

ρii = n2
i − ni and ρij = ninj are the diagonal matrix elements

of the single- and two-particle densities. The task of the
present work is to find the best mean field: the configuration
of Eq. (2) that corresponds to the lowest possible energy.

To represent the single-particle states or orbitals φi that the
bosons of the system occupy, we use the Gaussian solutions of
the 2D harmonic oscillator [13] that have been parametrized
with a variational parameter σ . The variation of this parameter
can capture the contraction and collapse of the gas due to
the attraction. This variational approach has been, in the past,
scrutinized and compared to numerical solutions and found
to provide a satisfactory approximation to the ground [14] as
well as nonground states [9] of the attractive gas. Moreover,
current preliminary numerical results suggest that the GS of
the gas indeed has a Gaussian-like profile for all allowed
interaction strengths, so that the σ -scaled Gaussian modes
is a justified approximation. In the following analysis we
choose two different but related orthonormal orbital subsets.
At first, we make use of the orbital basis {φlm},m = −l,−
(l − 2), . . . ,l − 2,l, consisting of the s-, p-, d-, and f -type
orbitals that solve exactly the 2D noninteracting problem.
The orbitals are scaled by a parameter σ which is to be
found variationally and hence optimizes the width of the
Gaussian. This particular scaling does not affect the orbital

angular momentum (OAM) {m} = {0,1,−1,2,0,−2, . . . } that
the orbitals carry, i.e., they are still eigenfunctions of L̂z(r).
Then, and in order to include higher AM, we switch to the
basis consisting of the single-particle functions with quantum
number m = l only. This basis, which is also referred to as the
lowest Landau level (LLL) [6], is explicitly written as

φm(r) = Nm

(
r

σ

)m

e−r2/(2σ 2)eimθ , (4)

where Nm = (πσ 2m!)−1/2 is the normalization constant and
σ > 0 the scaling parameter. Thus, picking up states only with
m = l makes the latter set (the LLL) a subset of the former
{s,p,d,f, . . . }. We demonstrate in the following that the BMF
for a given nonzero total AM L is the state that includes the
LLL only. That is, a variational calculation of the energy of a
state built over the orbitals of a general {s,p,d,f, . . . } basis
yields zero occupation numbers for the single-particle states
that do not belong to the LLL (non-LLLs). Furthermore, we
show that the L = 0 ground state, for any number of orbitals,
is a condensed coherent state, while a generic L > 0 state is in
principle energetically favorable if it is fragmented. However,
the fragmentation ratio is found not to be high.

The GS state of the attractive system is expected to
collapse if the parameter λ = |λ0|(N − 1) exceeds a critical
value λc [13,15,16]. The same holds true for excited states,
with the critical value for collapse λc now shifted to higher
values [10,17]. Here, the inclusion of the variational scaling
parameter into the orbitals allows for a good description of
the collapse of the condensate and does not constrain the
discussion to the limit where λ � 1, as was done in [6,18],
which is far from the collapse.

III. ENERGY OF THE GROUND STATES

By substituting the constraints N = ∑
ni, L = ∑

lini and
using the symbol αi = ni/N for the relative occupation, the
energy functional of Eq. (3) takes on the form

ε = E/N = (1 + L)h00 + λ

2
w00

(L2

2
− 1 − L − 2

2N

)

+
∑
lm

{
(l − m)h00 + λ

2

[(
2 − Lm + m − 2

2N

)
w00

+ 4(L − 1)w00,lm − 4Lw11,lm

]}
αlm

+ λ

2

∑
lm,l′m′

(K+
lm,l′m′ − K−

lm,l′m′)αlmαl′m′ , (5)

with λ = |λ0|N , L = L/N , h00 = (1 + σ 4)/(2σ 2),
w00 ≡ w00,00 = 1/(2πσ 2), and K+ = m(m

2 + 1)w00 +
4w00,l′m′ + 4mw11,l′m′ + 2wlm,l′m′(1 − δlm,l′m′) and
K− = mw00 + 4mw00,l′m′ the positive and negative prefactors
of the square terms αlmαl′m′ , respectively. The summations run
over −l � m � l, 0 � l � M excluding the pairs l = m = 0
and l = m = 1. It should be noted that we have changed the
representation from ni to αlm. The prefactors K+ and K−
depend solely on the indices lm and l′m′ and not on the AM
L. It is crucial here to explicitly consider the constants of
motion L and N in the above expression. To see that, consider
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a vanishing interaction λ = 0 or an infinitesimal one λ � 1.
Then the above expression for the energy yields immediately
that the optimal distribution is the one with m = l, that is,
the LLL. We ask: what is the optimal distribution of αlm that
minimizes the polynomial of Eq. (5) for some given finite
λ, L, and N . To answer this, we first consider only small
oscillations of the (non-negative) occupations αlm around 0.
Since 0 � αlm � 1, for all l and m we can truncate quadratic
terms at O(α2

lm) and O(αlmαl′m′) and study the behavior of the
linearized (in terms of αlm) energy.

A. Zero angular momentum

First, we focus on the states that possess no angular
momentum, i.e., L = 0. In that case the prefactor of αlm in
Eq. (5) becomes∑

lm

[
(l − m)h00 + λ

(
1 + m − 2

4N

)
w00 − λ2w00,lm

]
.

Its first term is always non-negative (l � m) while for the
integrals w00,lm we (numerically) found that 0 � w00,lm �
1
2w00, as long as lm �= 00. Recalling that λ > 0, we see that the
prefactor that multiplies λ will always be positive. Hence, any
nonzero value for the occupations αlm (excluding α00 and α11)
will only increase the energy and thus fragmentation is not
energetically favorable. That is, for all allowed λ the overall
GS of the system with vanishing AM is the condensed state
|	n0〉 = |N,0, . . . ,0〉. The energy of Eq. (5) for this GS is
ε0 = h00(σ ) − λ

2 w00(σ ). By optimizing the latter with respect
to σ we end up with the expression

ε0 = E0/N =
√

1 − λ

2π
, (6)

which is of course the Gross-Pitaevskii (GP) energy.

B. Finite angular momentum and lowest Landau levels

We now turn to the case of nonvanishing L. As we shall
see in this section, the presence of AM can change the picture.
First we show that the minimization of Eq. (5) yields an optimal

distribution of α’s (or ni’s) over the LLL only. We stress here
that the LLL has been widely used as a basis for the description
of the ground state with L > 0 and is known to be an adequate
approximation [19]. We provide, in addition and, to the best
of our knowledge for the first time, a variational argument for
the validity of the LLL. It is clear from Eq. (5) that the part
of the energy not depending on λ admits a minimum when
only the m = l single-particle states contribute to the energy
functional. The second term linear in αlm (with prefactor
−Lmw00) drops linearly with m and hence minimizes the
energy when m = max = l. For the matrix elements w00,lm

we have noticed (up to l = 3) that their value is minimal at
m = l, while the opposite holds true for the w11,lm elements.
That is, they are a nondecreasing function of m (for given l).
Taking into account the signs of each of the terms we see that
the total energy functional, in a first-order approximation to
α, admits a minimum when m = l. This means that only the
LLL orbitals can have nonzero occupations, for nonzero total
AM L. We verify this behavior, i.e., that in the GS with given
L only orbitals that are members of the LLL are occupied,
by including terms of second order as well. To do so, we first
examine the energy of the state |�〉 built over three orbitals
with different AM quantum numbers. Consider the permanents

|n0,n+,n−〉 ≡ |N (1 − L − 2α−), N (L + α−),Nα−〉, (7)

where n0, n+, and n− are, respectively, the occupations of the
φ00, φ11, and φ1−1 single-particle states (or, equivalently, the
s, p+, and p− orbitals) with n0 + n+ + n− = N , L = n+ −
n− is the total AM of the state, L = L/N is the non-negative
AM per particle, and α− = n−

N
. In this configuration the states

φ00 and φ11 comprise the LLL while the φ1−1 orbital is a
non-LLL state. We express the total energy as a function of
the occupations n+ and n− (or equivalently the parameters
L and α−) and the scaling parameter σ . By minimizing this
expression with respect to σ we obtain, in the large-N limit,
the expression for the total energy:

ε = E/N =
√

1 + L + 2α−
√

4π (1 + L + 2α−) + (L2 + 2Lα− + 2α2− − 2)λ

2
√

π
(8)

or, in the limit of weak interaction (λ � 1),

ε = 1 + L + 2α− + L2 + 2Lα− + 2α2
− − 2

8π
λ + O(λ2). (9)

It is easily seen in the last two equations that any nonzero
value of the parameter α− will increase only the total
energy and this demonstrates that the non-LLL orbital (here
α−) is not energetically favored for a given L > 0. The
above expressions for the energy are given for brevity
in the presentation in the large-N limit only. However,
the situation is not different if one considers the full
expression.

To give some more weight and generality to this claim, we
have examined the states |	n10〉 which are built over the M =
10 σ -scaled orbitals {s,p+,p−,d2+,d0,d2−,f3+,f+,f−,f3−}.
We calculated the energy and minimized it simultaneously
with respect to the occupations αi = ni/N, i = 3, . . . ,10,
and σ for given L > 0 and large N . We found again—both
analytically in the large-N limit and numerically—that for
all allowed λ, any nonzero occupations of the non-LLL
orbitals {p−,d0,d2−,f+,f−,f3−} will increase only the total
energy ε[|	n10〉]. Hence, the occupation of any non-LLL is
not energetically favorable and indeed the best mean field,
for given L, comprises the LLL only. This is demonstrated
in Fig. 1. In the left panel, we plot the total energy per
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FIG. 1. (Color online) The LLL is the optimal basis for a given nonzero AM L. The left panel shows the total energy per particle ε for
λ = 5 and L/N = 0.6 as a function of each of the six (relative) occupations αi of the non-LLL, while all the rest are kept to zero. Any variation
of these occupations increases the total energy of the system. In the right panel we plot, for comparison, the dependence of the energy, for the
same total AM, on the occupations of the LLL with m = 2 (orange, lower line) and m = 3 (black, upper line). A clear minimum can be seen
at a nonzero value of α. All calculations are done at the optimal values of σ for N = 6000 particles.

particle of the system as a function of each of the six relative
occupations of the orbitals that do not belong to the LLL,
while the remaining five of them are set to zero. In the shown
case (λ = 5, L = 0.6) any variation of the non-LLL occupation
increases the energy. In contrast, on the right panel, we plot the
energy ε versus the occupations αLLL, with quantum numbers
l = m = 2 and l = m = 3, respectively. It can be seen clearly
that there is a minimum of the energy at a nonzero value of
either of the two αLLL.

a. Ground state for given L. Having found that indeed the
BMF is built over the LLL orbitals solely, we consider hereafter
permanents of Eq. (2) built over the LLL only [Eq. (4)]. With
this choice, i.e., m = l and hence, using one index m only for
each orbital φm, the energy functional of Eq. (5) becomes

εLLL = (1 + L)h0 + λ

2
w0,0

(
L2/2 − 1 − L − 2

2N

)

+ λ

2

∑
m

[(
2 − Lm + m − 2

2N

)
w0,0

+ 4(L − 1)w0,m − 4Lw1,m

]
αm

+ λ

2

∑
m,m′

(K+
m,m′ − K−

m,m′ )αmαm′ , (10)

and the matrix elements now take on the explicit form

hi = (1 + i)
1 + σ 4

2σ 2
and wi,j = (i + j )!

21+i+j i!j !

1

πσ 2
. (11)

Our task now is to find the set of parameters {ni,σ } that, for
a given L, minimizes the total energy per particle ε. We have
examined and compared the energies of all different possible
Fock states built over M = 13 LLL orbitals, with OAM m =
0, . . . ,12, for a particle number up to N = 18. Interestingly,
we found that above some critical value Lc for the AM the
optimal occupations, i.e., the distribution of occupations that

minimizes the energy, is given by

n0 = N − 2, n1 = 1, nm = δm,L−1,
(12)

m = 2, . . . ,M = L,

where δi,j is the usual Kronecker delta. The same state in a
Fock representation reads

|N − 2,1,0, . . . ,0,1,0, . . . 〉, (13)

i.e., only the m = 0, m = 1, and m = L − 1 orbitals are
populated. We found that this is the optimal distribution of
occupations, independent of L, as long as this is larger than
the approximate value1 Lc � 2

√
N . For values lower than Lc

either the permanent |N − L,L,0, . . . 〉 or the permanent |N −
(L − 1),L − 2,1,0, . . . 〉 is the optimal distribution, depending
on the value of L < Lc.

There is a simple reasoning why such an unexpected
distribution of the bosons among three orbitals only is found
to be optimal. Both the prefactor of αm as well as that
of αmα′

m in Eq. (10) admit a maximum at m = M − 1. In
other words, the interaction energy is minimized when the
“furthest” orbital is occupied. Due to the attraction, the bosons
like to sit close to each other, even in the presence of AM.
By exciting only one or two bosons in orbitals with the
appropriate OAM, the system achieves the desired nonzero
AM L at the lowest energetic cost possible. So, for a given
AM L, one boson occupying the orbital with OAM m = L is
expected to make up the energetically preferable configuration.
Assuming2 here and hereafter that L > 2, the energy of such
a configuration, as can be directly derived from Eq. (3), is
εe = h0(L + 1) + λ0

N
[ (N−1)(N−2)

2 w0,0 + 2(N − 1)wL,0]. How-
ever, one can show that if the system excites two bosons,
instead of one, to the m = 1 and m = L − 1 orbitals, the

1Precisely, this critical value is the solution of L2
c − Lc − 4N + 4 +

23−Lc (Lc + 2N − 4) = 0.
2So that the system has the minimum required amount of quanta of

AM.
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resulting energy will be lower than the previous case. This
additional lowering of the energy comes from the exchange
energy [included in the last term of Eq. (10)] between the
two fragments φm=1 and φm=L−1. The energy is now given
by εBMF = h0(L + 1) + λ0

N
[ (N−2)(N−3)

2 w0,0 + 2(N − 2)w0,1 +
2(N − 2)w0,L−1 + 2wL−1,1] and is indeed the ground-state
energy for some given L. Substituting the matrix elements
in the last expression of the energy we get finally

εint = −λ
w0,0

2N

(
N − 2 + 22−L 2N + L − 4

N − 1

)
, (14)

with h0 = 1+σ 4

2σ 2 and w0,0 = 1/(2πσ 2). We minimize the total
energy

ε = E/N = ε0 + εint, (15)

where

ε0 = (1 + L) h0(σ ) (16)

with respect to σ to arrive at the expression for the optimal
energy of an attractive system with a given number of quanta
of AM L = NL. To keep clarity in the presentation we give
here only the expression in the limiting case where N � 1 and
L = L/N is fixed, while the full expression can be found in
the Appendix. This reads

εint = − λ

4π
√

1 − λ
2π(L+1)

. (17)

And the optimal value for the parameter σ , i.e., the optimal
width of the orbitals as a function of the interaction strength
and the AM is given by

σ0 =
(

1 − λ

2π (L + 1)

)−1/4

, (18)

also in the large-N limit. We arrive here at a simple expression
for the energy and the single-particle states of moderately
and strongly3 attractive systems, with L = LN quanta of
angular momentum. From Eq. (17) one immediately derives
the asymptotic relation for λ � 1 or, equivalently, for large L.
This reads

εint = − λ

4π
(19)

and coincides with the expression given in Refs. [6,8]. What
we see is that the energy given in the above references is
the large-N , low-λ limit of Eq. (17). Moreover, for large N ,
the energy of Eq. (17) is always lower than the asymptotic
expression −λ/4π , since it takes into account corrections of
finite interaction strength λ beyond first order.

Finally, the total energy per particle, in the large-N limit,
reads

ε = (L + 1)

√
1 − λ

2π (L + 1)
. (20)

3Relatively strong λ0, of course, so long as the condensate is
noncollapsed.

The full expression for any N is shown in the Appendix. It
is interesting to note that the resulting optimized energy, as
given above, does not equal the sum of the noninteracting plus
the interaction energy. They are rather connected through the
relation

∂εtotal

∂λ
= 1

λ
εint. (21)

This nonlinearity stems directly from the optimized orbitals;
the interaction will change the shape of the orbitals and this
will in turn alter the kinetic and potential energies.

b. Quantized vortices. A well-studied rotating collective
excitation of the quantum gas is the vortex state (see, for
instance, the review of Refs. [20,21], and references therein).
A quantized vortex is the coherent state where all particles of
the system are in the excited orbital φm ∼ rmer2/(2σ 2)+imθ with
some vorticity m ∈ N. Here again, σ is the scaling parameter.
However, a vortex is a highly excited state of the attractive gas
with given total angular momentum L = mN , as can be seen
from the comparison of energies of the ground state found
above and the vortex. Its σ -optimized energy is easily found
to be

εVOR = (L + 1)

√
1 − λ �(L + 1

2 )

2π3/2(L + 1)L!
, (22)

where �(· · · ) is the Gamma function. This energy is always
higher than that of Eq. (20). The vortex state implies a “hole”
in the density of the gas and hence—considering the attractive
nature of the interaction—is energetically expensive. The
distributions and densities of the m = 1 vortex and of the
ground state of Eq. (13) are compared in Fig. 2.

IV. STABILITY OF THE GROUND STATES

Next, we calculate the stability of the ground states
found above for some given AM L (or L = L/N). In other
words, we are interested in the maximum or critical value
of the interaction parameter λ = |λ0|(N − 1) such that the
condensate exists in a noncollapsed state. This is estimated
as the maximum value of λc such that there is a well-defined
global minimum of the energy as a function of the scaling
parameter σ that determines the width of the Gaussian profiles
of the orbitals (scaled LLLs). We calculate this value by setting
to zero the first and second derivatives of the energy ε(σ ) of
Eq. (15) with respect to σ . We arrive at the expression

λc = 2L+1(N − 1)(N + L)π

4L + [8 + 2L(N − 1)](N − 2)
, (23)

which for N � 1 yields:

λc � 2(L + 1)π = (L + 1)λGP, (24)

where λGP = λc(L = 0)|N�1 = 2π is the critical λ of the
GP condensed ground state with zero AM. So, as long as
N is sufficiently large, in practice above a few hundreds
of particles, the critical interaction parameter λc increases
linearly with the AM L. Equations (23) and (24), together
with Eqs. (17) and (20), are the main results of this work. It
should be noted that the corresponding critical value for λ of
a vortex state of vorticity L is higher than the one given above
for the GS. Precisely, from Eq. (22) we immediately obtain
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λVOR
c = 2π

√
π (L+1)L!
�(L+ 1

2 )
. The fact that λVOR

c > λc comes as no

surprise, since a vortex state is a highly excited state of the
attractive system.

V. COMPARISONS WITH KNOWN RESULTS

Finally, we compare the energies and occupations obtained
in the preceding sections with known results obtained at the
MB level. In the work of Wilkin et al. [6], as well as that of
Jackson et al. [8] the following result is given for the total
energy of a weakly attractive system:

εW = L + 1 − λ

4π
. (25)

It is interesting that this result is obtained within both a MB
approach [6] and a MF ansatz [8]. Wilkin et al. [6] start by

FIG. 2. (Color online) Distributions of the occupation numbers
(upper panel) and density ρ(r), i.e., the diagonal of the single-particle
reduced density matrix (lower panel) for three different states, all with
L = 1 and N = 12. The blue (solid, thick) line corresponds to the
ground state of Eq. (13), the red (dashed) line to the ground state
found in Ref. [6], and the green (dotted, fade) to the vortex state [see
Eq. (22)].

writing the (not normalized) solution of the problem as

ψW = rL
c e− ∑N

i r2
i /2, (26)

where rc is the center-of-mass coordinate, and find that the
natural orbitals φm of the system are the LLL states. That is,
single-particle states φm ∝ re−r2/2+imθ , which unlike our cal-
culations, are not scaled. The respective natural occupations,
for N particles and L total AM, are found to be [6]

ρm = (N − 1)L−mL!

NL(L − m)!m!
. (27)

The interaction energy of such a configuration equals the
interaction energy of the nonrotating system, i.e., εint,W =
− λ

4π
. In the more recent treatment of Ref. [8] the authors built

up a GP ansatz out of the fragments φm and their occupations
found in Ref. [6]. Specifically, they expressed the GS of the
gas with total AM L as ψJ = ∑

ciφi , where ci are the large-N
and large-L limits of the occupations ρm of Eq. (27) and the
orbital basis {φi} is again the LLL. The energy thus obtained
exactly equals that of Eq. (25). We immediately see that the
energy found in both of the above approaches is the same as the
vanishing-λ limit of Eq. (17). Hence, we are able to reproduce
the known result and, moreover, give higher-order corrections
due to the finite interaction strength λ. In Fig. 3 we plot the
occupations of the LLL states for N = 12 and different values
of L, as calculated in our BMF approach and compare them to
those of Eq. (27).

VI. DISCUSSION AND CONCLUSIONS

We have theoretically demonstrated herein, and in agree-
ment with earlier work, that an attractive gas with given angular
momentum per particle prefers to fragment over a finite set of
single-particle states (orbitals). To determine these states we
used scaled Gaussian functions with certain angular momenta
that form the so-called lowest Landau level and, moreover, a
variational argument was given to justify the use of the LLL.
Based on these states a multiorbital mean field was constructed
to calculate the total energy, the fragmentation, and the stability
of the ground states.

We arrived at the result that, for given total AM L

larger than a critical value, only two of the excited shape-
optimized orbitals are populated and these carry all the angular
momentum of the system. Specifically, for L � 2

√
N , there is

only one particle with a single quantum of angular momentum
and another one with the rest L − 1 [see Eq. (13)]. Our
results are valid for weak but also moderately large interaction
strength λ. The inclusion of the σ parameter gives an extra
flexibility to our ansatz [Eq. (4)] and allows for a description
of the collapse. The accuracy of this ansatz has been checked
numerically. The ground state of the system has the appearance
of a Gaussian distribution for all allowed interaction strengths
and the agreement with the employed variational ansatz has
been found to be satisfactory. While the predicted λc is shifted
to higher values in the variational treatment, qualitatively (and
quantitatively up to a finite moderately large value of λ) the
numerical and analytical approaches agree (see also Ref. [10]).
With that ansatz we calculated the energy of the ground state
possessing some finite angular momentum per particle L as a
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function of L and λ. This finding constitutes a generalization
of the previously known result: indeed, from a first-order
expansion for small λ we got back the relation for the energy
as first presented by Wilkin et al. and later on by Jackson
et al., at the many-body [6] and Gross-Pitaevskii [8] levels,
respectively.

The inclusion of scaled orbitals in our variational multior-
bital approach was a crucial step and allowed us to calculate
the finite-λ corrections to the stability and energy of the 2D
attractive gas. Due to this correction the total energy can
drop lower than that predicted in the many-body analysis of
Ref. [6]. The deviation of our predictions for the distribution
of the occupations, above a critical AM, from that predicted
in Ref. [6] should be attributed to the different approaches
followed. Herein, we followed a MF approach with a truncated
(to M = 13 orbitals) Hilbert space. A complete study of the 2D
attractive gas requires though a (numerically) exact analysis
for all allowed λ. Such a study would shed more light on

the structure of the many-body (ground or excited) states, the
exact shape of the single-particle states and their respective
occupations, as well as on the quantum fluctuations, which
are, by definition, left out in a mean-field description and are
known to grow large for growing λ [10]. It would thus be
decided whether the occupations of the LLL for given AM,
found here, persist at the MB level. Such a treatment can be
accomplished, e.g., by the usage of the multiconfigurational
time-dependent Hartree method for bosons (abbreviated as
MCTDHB) [12,22], which is the subject of future work.

Concerning many-body computations, the choice of an
adequate orbital basis is crucial. In other words, what is
the optimal number of orbitals that should be included in
a many-body study so that the calculation is converged?
Although a thorough discussion of this fundamental numerical
issue goes beyond the scope of the present work, we comment
on the use of the Dirac δ distribution as the two-body
interaction pseudopotential in many-body (i.e., beyond mean-

FIG. 3. (Color online) Occupation numbers of the ground state for different values of L, as found within the BMF theory (blue solid) and
as given by Wilkin et al. [6] (red dashed). The agreement is good for an approximate value of L � 0.5. Above this value the two distributions
take on completely different appearances, even though the energies of the configurations are almost equal. For instance, for a weak interaction
λ = 0.01 the energy difference of the two is �E ∼ 10−4. The number of particles here is N = 12.
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field) theoretical approaches. It was recently shown [23] that
the use of a (nonregularized) Dirac δ pseudopotential in a
system of two interacting ultracold bosons in two dimensions
leads to very slow convergence of the ground-state energy to
that of the noninteracting ground-state energy, for any value
of the repulsive interaction strength, and to minus infinity
for any value of the attractive interaction strength. Thus, the
truncation of Hilbert space becomes problematic. In such a
case, a narrow Gaussian model for the two-body interaction is
a suitable choice for the many-body study [23].

Lastly, we note that the present findings, together with
these of Ref. [24], could play a significant role in vortex
engineering in ultracold atomic gases. The modulation or
change in sign of the scattering length could prove helpful
in controlling the way the cloud absorbs angular momentum
from its environment so that vortex clusters and giant vortices
can form and be manipulated. Such engineering could find
application in exploring the more complex turbulent atomic
gas with large number of vortices, relatively recently achieved
in the laboratory [25].
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APPENDIX: FULL EXPRESSION FOR THE ENERGY
OF THE 2D GAS

We give the full expressions of the total and interaction
energy for a 2D attractive system, as calculated within the
BMF theory. The total energy, optimized for σ for any L > 2,
N and λ is

εf = (L + 1)

√
1 − λ

2π (L + 1)
A(L,N ), (A1)

where

A(L,N ) = 1 − 2

N
+ 22−L 2N + L − 4

N (N − 1)
(A2)

and L = L/N . For N → ∞ we get A → 1 and εf → ε, i.e.,
the above expression reduces to the energy of Eq. (20). The
optimum σ , i.e., the value σ0 where the total energy obtains a
minimum is

σ0 = 4

√
1 − λ

2π (L + 1)
A(L,N ). (A3)

The optimized interaction energy reads

εint,f = − λA(L,N )

4π

√
1 − λA(L,N)

2π(L+1)

. (A4)

Similarly, this is the general expression for the energy as given
in Eq. (17) but without having taken the large-N limit. Note
that the above represents the ground-state energy as long as
L > Lc, as explained in the main text.
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