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Materials with nontrivial lattice geometries allow for the creation of exotic states of matter like topologically
insulating states. Therefore searching for such materials is an important aspect of current research in solid-state
physics. In the field of ultracold gases there are ongoing studies aiming to create nontrivial lattices using optical
means. In this paper we study two species of fermions trapped in a square optical lattice and show how nontrivial
lattices can emerge due to strong interaction between atoms. We theoretically investigate regimes of tunable
parameters in which such self-assembly may take place and describe the necessary experimental conditions.
Moreover, we discuss the possibility of such emergent lattices hosting topologically insulating states.
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I. INTRODUCTION

Complex systems are characterized by a large number
of locally interacting elements with properties that cannot
be derived as a sum of local individual elements [1]. In
such systems spontaneous self-assembly [2] takes place and
emergent structures are formed from disorder due to the
cooperative effect of the interacting system. Such emergent be-
havior of complex systems is responsible for many organized
structures found in many-body physics, chemistry, biological
systems, etc. In the present paper we show that cooperation of
interaction and orbital effects in a lattice can result in nontrivial
emergent structures (lattices) with topological order.

Nontrivial lattice geometries are at the heart of various
exotic phenomena in many-body physics. One promising
playground for the realization of such exotic lattices and
states is ultracold gases trapped in lattice potentials [3]. This
is due to the high degree of experimental controllability
and tunability that ultracold systems exhibit. In this field, a
variety of nontrivial lattice geometries was experimentally
created by using counter-propagating laser beams in different
configurations [4–7]. These lattices can be than used to
realize exotic states by introducing tunable long-range hopping
amplitudes [8–12]. Particularly interesting is the possibility
of creating topologically insulating states [13–15] that allow
for a robust transport of charges (matter) on the boundary
and thus have potential applications in spintronics, quantum
computing [16], and spintomics [3].

In this paper we propose an alternative route to the creation
of nontrivial lattice geometries. Our system consists of strongly
attractive two-species fermions trapped in a square optical
lattice. We show that the strong interaction and orbital effects
can give rise to the emergence of nontrivial lattice structures
and pseudospin degrees of freedom by self-assembly of an
ultracold gas. The emerging lattice is characterized by topo-
logically protected band crossing points. This effect is counter-
intuitive, as strong attraction in general destroys topological
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order. As an example of topological properties, we discuss the
appearance of interaction-driven topological insulating states:
the quantum anomalous Hall (QAH) state, characterized by
a spontaneously broken time-reversal symmetry with a gap
in the bulk and quantized Hall conductivity; and the quantum
spin Hall (QSH) state, which can be identified as two copies of
QAH states, which, on the whole, preserves the time-reversal
symmetry.

Our proposal shows that nontrivial topological properties
are induced by the interplay between strong interactions and
orbital effects. One feature of the present proposal is that
our system can contain self-generated impurities, domain
structures, etc., due to the spontaneous nature of our emergent
lattice. The presence of such imperfections is crucial to observe
phenomena such as edge currents and Hall plateaus. This is
in contrast to optically created frustrated lattices, where one
has to impose additional nontrivial potential to create such
imperfections.

II. MODEL

We consider a mixture of two-species ultracold fermionic
atoms trapped in an optical lattice potential Vσ,latt =
Vσ,x sin2(πx/a) + Vσ,y sin2(πy/a) + Vσ,z sin2(πz/a), where
σ =↑ and σ =↓ denote the species and Vσ,x(y)(z) are the
corresponding lattice depths for σ -fermions along the x,
y, and z directions, respectively. The lattice constant a is
given by the trapping laser wavelength, a = λ/2. For the
two-dimensional (2D) geometry we choose V0 = V↓,x = V↓,y ,
V1 = V↓,z = V↑,x(y)(z), and V1 � V0, so that the ↓-fermions
can effectively move in the x-y plane with the z motion frozen.
Since the ↑-fermions move in a deeper lattice, in the first
approximation we can neglect the tunneling of these particles.
For simplicity, we consider the case in which fermionic masses
are equal, m↓ = m↑, which implies equal recoil energies
ER = ERσ = π2

�
2/2mσa2. In this paper we look into a

spin-imbalanced situation with fillings n↓ = 1 and n↑ = 1/2.
It is worth mentioning that such attractive fermion mixtures
have already been realized in optical lattices for studying
superfluidity [17], anomalous transport [18,19], etc.
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Atoms of different types interact with each other via s-wave
scattering with strength as . If the interaction is strongly
attractive (as � 0), the ↑- and ↓-fermions tend to pair
and form composites with creation operator b̂

†
i = ŝ

†
↑iŝ

†
↓i and

corresponding number operator n̂B
i [20–22]. Here ŝ

†
σ i and ŝσ i

are the creation and annihilation operators of the σ -fermions
in the respective s bands. The composite density is the same
as the ↑-fermion density, i.e., in our case, n↑ = nB = 1/2.
Such composites are considered static due to the smallness
of the tunneling of the minority component. The excess
↓-fermions with filling m = n↓ − n↑ = 1/2 can tunnel from
one site to another. Recently it has been noted that in the
strong-interaction regime, the standard Hubbard models have
to be modified due to both intra- and interband effects [23–26].
Taking these effects into account we construct a minimal model
for the composites and the excess ↓-fermions by including the
occupation of the s and p bands and the renormalization of the
interactions.

III. MODIFIED HAMILTONIAN

The inclusion of the p bands allows one ↓-fermion to
occupy the same site as a composite. The single-particle
tunneling Hamiltonian then reads

Ht = −J0

∑
〈ij〉

ŝ†i ŝj + J1

∑
δ

∑
〈ij〉δ

p̂
†
δip̂δj, (1)

where δ = x, y and ŝ
†
i , ŝi, p̂

†
δi, p̂δi are the creation and

annihilation operators of the ↓-fermions in the s and p

bands, respectively. J0,J1 > 0 are the single-particle tunneling
amplitudes in the s and p bands respectively, and 〈ij〉x(y)

denotes the nearest-neighbor sites along the x(y) direction.
The on-site Hamiltonian for the excess ↓-fermions and the

composites including the s and p bands is given by

Hint = −|U2|
∑

i

n̂B
i (1 − n̂xi)(1 − n̂yi)

− |U3|
∑

i

n̂B
i (n̂xi + n̂yi) − |δU3|

∑
i

n̂xin̂yin̂
B
i

+E1

∑
i

(n̂xi + n̂yi), (2)

where n̂x(y)i = p̂
†
x(y)ip̂x(y)i. The renormalized self-energy of

the composite is given by U2, whereas U3 is the strength of
the renormalized on-site interactions between a composite
and a ↓-fermion in the px (py) orbital at a given site.
δU3 denotes the effective three-body interaction between one
composite and two ↓-fermions each in the px and py orbitals.
The origin of the effective three-body interaction comes from
the excitations to higher bands. Such higher-body interactions
like δU3 have been probed in ultracold atom experiments [27]
and are different from the few-body phenomena like three-
body bound states arising in Efimov physics [28]. We find that
δU3 is small compared to other parameters, so we neglect it at
first. Then the energy cost for an excess ↓-fermion to occupy
the p band of a composite occupied site is given by

� = E1 + (U3 − U2) (3)

and can be reduced as one increases the attractive scattering
length. When � is small or negative, the ↓-fermions can
occupy the p orbital of a site with a composite.

Next we consider two modifications originating from the
nearest-neighbor scattering due to the interaction between
the excess ↓-fermions and the composites. The first of the
modifications mixes the s and p bands and can be written as

H01 = J01

∑
δ=x,y

∑
〈ij〉δ

ζiδ,jδ
p̂
†
δin̂

B
i ŝj + H.c., (4)

where J01 denotes the interaction-induced interband tunneling
and ζiδ,jδ

= (−1)iδ−jδ reflects the staggered nature of the s-p
tunneling matrix. This process is shown in Fig. 1(b), where
a ↓-fermion in the s orbital is scattered to the p orbital of
the neigboring site due to the interaction with a composite.
Such natural nonlocal hybridization betweens-p bands due to
interaction-induced tunneling is an important feature of the
strongly interacting gases in lattices. It is worth stressing that
such processes are usually neglected in the literature. Another
feature of such s-p hybridization is that, due to parity, any
tunneling processes like p̂

†
yin̂

B
i ŝj vanishes for i = (ix,iy) and

j = (ix ± 1,iy).
The second modification describes the interaction-induced

tunneling in the p band, expressed as

HT = J11

∑
δ

∑
〈ij〉δ

p̂
†
δi

(
n̂B

i + n̂B
j

)
p̂δj, (5)

where J11 denotes intraband interaction-induced tunneling for
px (py)-fermions along the x (y) direction. HT gives the most

FIG. 1. (Color online) One-dimensional schematic representa-
tion of the system considered. A larger (red) sphere refers to a
↑-fermion and a smaller (blue) sphere represents a ↓-fermion.
(a) Top: One creates a band insulator for ↓-fermions and a half-
filled system for ↑-fermions in the presence of weak interactions.
Bottom: Increasing the attractive scattering length as leads to the
emergence of composites that form a checkerboard structure and the
remaining ↓-fermions move between s and p orbitals (blue spheres
and dumbbells). (b) The interaction-induced s-p band hybridization
tunneling element corresponding to Hamiltonian (4). (c) Effective
tunneling in the p band when two composites occupy neighboring
sites.
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FIG. 2. (Color online) Comparison of different energy scales
present in the system as a function of the effective interaction strength.
Color lines represent different hopping parameters. The black line
with circles represents the energy difference between the state of
a system with half-filling of a ↑-fermion (E) and a state with one
↑-fermion more than half-filled (E+1). Energies are in units of ER ,
and lattice depths are V0 = 4ER and V1 = 20ER .

important contribution to the renormalization of intraband
tunneling [26]. Tunneling in the p band is possible only
when two neighboring sites are occupied by composites [see
Fig. 1(c)], as this process conserves energy. For as < 0, the
interaction-induced tunneling J11 is negative and the effective
tunneling in the p band (given by J1 + 2J11) decreases
with increasing attraction. Thus in the region where |J01| ∼
|J1 + 2J11|, the excess ↓-fermions prefer a configuration with
alternating sites occupied by composites [Fig. 1(b)]. The
relevant tunneling parameters and interaction parameters are
controlled only by the effective interaction α = as/a and the
lattice depths. Their derivation using Wannier functions is
discussed in Appendixes A and B. The magnitudes of the
various tunneling amplitudes and � are shown in Fig. 2.

It is worth noting here that the total Hamiltonian has features
similar to those of the Falicov-Kimball (FK) model. The

FK model describes interaction between localized classical
modes and itinerant quantum modes of a system. It was first
proposed to study metal-insulator transitions in mixed valence
compounds of rare earth and transition metal oxides [29] and to
study crystallization [30]. However there exists one important
distinction between the FK model and our present study.
Namely, FK models do not possess the correlated multiorbital
tunneling processes. In the system that we investigate these
processes not only are present but also play a crucial role.

IV. DYNAMICAL LIEB LATTICE

In this section, we discus the possible ground-state struc-
tures of our system characterized by the total Hamiltonian H =
Ht + HT + H01 + Hint. The total Hamiltonian H does not
contain composite tunneling and the commutator [n̂B

i ,H ] = 0.
Therefore nB

i = 0,1 becomes a good quantum number. We
find the ground state of the system by comparing the energies
of different configurations of nB

i over the entire lattice. The
search space is too large to compare the energy of every single
configuration. Therefore we locate a good approximation to
the global optimum by using simulated annealing [31,32]
(For details see Appendix C). We find the lowest energy
configurations of the composites for various parameters on
a 12 × 12 lattice with periodic boundary conditions. While
calculating the energy for every single configuration, we take
into account weak attraction between the orbitals [Eq. (2)]
using the Hartree-Fock approximation. The resulting phase
diagram for the composites is shown in Fig. 3(a). We
distinguish the following phases for the composites: (i) a
checkerboard structure with period 1 [CH1; Fig. 3(b)], (ii)
a mixed phase characterized by the absence of any periodic
structure, and (iii) a phase-separated state characterized by
the clustering of the composites to one region of the lattice.
The mixed phase occurs in the region where the energy cost
to occupy the p orbital is low compared to that of other
tunneling processes. Thus it is possible that the mixed phases
contain self-generated disorder due to the composite density
dependence on the tunneling processes. We have checked the
existence of the mixed phases and obtained phase boundaries

FIG. 3. (Color online) (a) Phase diagram for the configurations of the composites. The largest (red) region denotes the period 1 checkerboard
(CH1) configuration for the composites. The black region denotes the phase-separated state; the yellow region, the mixed phase. The shallow
lattice parameter is V0 = 4ER . (b) Distribution of the composites in the CH1 phase. Filled (open) circles denote the presence (absence) of a
composite. (c) Orbital degree of freedom for the excess ↓-fermions in the CH1 lattice. Colored circles denote s orbitals. Horizontal (vertical)
dumbbell shapes denote px(py) orbitals. Basis states for the blue (red) lattice are denoted A,B, and C (A′,B, and C). The corresponding
sites in the CH1 structure are shown in Fig. 2(b). (d) Ground-state phase diagram for excess ↓-fermions corresponding to the composite CH1
phase. Phases are shown as a function of the dipolar strength D and contact interaction strength α for V0 = 4ER . The upper (blue) region
denotes the spin-nematic (SN) phase, whereas the lower (green) region denotes quantum anomalous Hall and quantum spin Hall (QAH/QSH)
phases.
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also for lattice sizes of 8 × 8 and 16 × 16 and the phase
boundaries remain qualitatively unchanged.

The CH1 region is the most interesting one with respect
to the generation of nontrivial topological lattices. In the
parameter regime, for lattice depth V1 � 35ER with V0 =
4ER , we find that the CH1 region becomes the ground state.
In the rest of this paper we concentrate on this particular
parameter space. The presence of the CH1 region can be
qualitatively predicted for � � 0 and it can be easily shown
that the CH1 structure has the lowest energy provided that
2J 2

01/|�| > |J1 + 2J11|/π . On the other hand, for � > 0, the
CH1 structure has the lowest energy as long as J 2

01/|�| 
= 0.
We also note that the origin of the CH1 structure is different

from the origin of the antiferromagnetic Neel phase for the
repulsive Fermi-Hubbard model. For repulsive fermions, the
Neel state arises in the balanced mixture due to the lowering
of energy in the form of second-order exchange processes due
to tunneling induced-localized creation of pairs. On the other
hand, in the present case, the excess fermions are delocalized
over the whole lattice. Then the CH1 structure appears as
a result of the minimization of the total kinetic energy of
the delocalized excess ↓-fermions. Moreover, we examine the
energy cost related to the addition of the minority component.
In Fig. 2, we plot the energy cost to dope the CH1 phase with
an additional minority component for lattice depths V0 = 4ER

and V1 = 20ER . The energy cost is denoted E+1 − E. We see
that in the regime of � < 0 it costs additional energy of the
order ∼|�| to dope with a minority component. In the regime
of negative �, this energy cost, E+1 − E, is much larger than
the other tunneling processes (Fig. 2). The CH1 phase is then
robust against small doping of minority components.

Now, we focus our attention on the behavior of the
excess mobile fermions. The excess fermions move on
the CH1 structures created by the composites. Considering
the distribution of the orbitals that excess fermions can
occupy, the motion of these particles can be divided into two
sublattices, shown in blue and red in Fig. 3(c). In order to see
this, let us consider the empty site A, shown in the composite
structure in Fig. 3(b). The s orbital at this site [shown as the
blue site denoted A in Fig. 3(c)] can be occupied by an excess
fermion. Then the fermion occupying site A can move to either
the px orbital of the B site or the py orbital of the C site under
the influence of Hamiltonian (4). This is due to the fact that both
site B and site C are occupied by composites as denoted by dark
circles in Fig. 3(a). Then due to the absence of any tunneling
matrix element between the px orbital at site B (py orbital of
site C) and the s orbital at site A′, the excess particles will only
move in the blue sublattice as shown in Fig. 3(c). Similarly,
one can construct the red sublattice geometry. This takes place
because of the directional nature of the interorbital tunneling
J01 in Hamiltonian (4) and the absence of any on-site orbital
mixing term in (2) due to parity and fermionic statistics. Each
of the sublattices in Fig. 3(c) can be characterized by three basis
sites, denoted A, B, and C (for the blue lattice) and A′, B, and C
(for the red lattice). Both the red and the blue sublattices have
the structure of a Lieb lattice [33]. Let us denote the excess
↓-fermions moving in the blue sublattice 	1 = [ŝA,p̂yB,p̂xC]
and those in the red sublattice 	2 = [ŝA′,p̂xB,p̂yC]. We can
see that, due to the interaction, we induce 1 pseudospin degree
of freedom in the form of orbitals in different sublattices. Their

motion is governed by the Hamiltonian

H = J01

⎡
⎣∑

〈ij〉x
ζix ,jx

ŝ
†
Aip̂xCj +

∑
〈ij〉y

ζiy ,jy
ŝ
†
Aip̂yBj

+
∑
〈ij〉x

ζix ,jx
ŝ
†
A′ip̂xBj +

∑
〈ij〉y

ζiy ,jy
ŝ
†
A′ip̂yCj + H.c.

⎤
⎦

+�
∑

i,τ=B,C

(n̂τxi + n̂τyi) − |δU3|
∑

i,τ=B,C

n̂xτ in̂yτ i. (6)

Here the first term (inside the bracket) in Eq. (6) is a
reformulation of H01 from Eq. (4). The second term refers to
the energy cost of the p-orbital atoms occupying a site already
taken by a composite. The third term describes effective on-site
interactions between red and blue fermions at sites B and C.
Now, let us focus on the single-particle dispersion relation.
Diagonalizing the single-particle part of Hamiltonian (6), we
get

εk ∈ {�,�/2 ±
√

(�/2)2 + 4J 2
01[sin2 kxa + sin2 kya]}, (7)

where the momentum k = (kxa,kya) belongs to the reduced
Brillouin zone (−π/2,π/2). The dispersion relation in Eq. (7)
is plotted in Fig. 4 for three values of �. The dispersion
contains a quadratic band crossing point (QBCP) for � 
= 0

FIG. 4. (Color online) Dispersion relations of the Lieb lattice, as
expressed in (7), for three values of � with lattice depths V0 = 4ER

and V1 = 20ER .
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with one of the dispersive bands touching the flat band at
momentum (0,0). For � = 0, three bands touch each other
at the momentum (0,0), with the upper and lower band
having linear dispersions in the vicinity of this point. For
simplicity let us consider only the case where � < 0. We
can write an effective two-band Hamiltonian H = d0I +
dzσz + dxσx , where σx(z) are the Pauli matrices, I is the
identity matrix, d0 = −(J 2

01/�)(cos 2kxa + cos 2kya), and the
vector �d = (dx,dz) = −(J 2

01/�)(4 sin kxa sin kya, cos 2kxa −
cos 2kya). In this limit, the particles occupy only sites B
and C of the lattice and the population at sites A and A′ is
negligible. For excess fermion filling m = 1/2, the dispersive
band is filled and any excitation to the next flat band remains
localized in space. This makes the system an insulator. The
next dispersive band is separated by an energy gap of �

at k = (0,0). We introduce a normalized vector d̂ = �d/

√
| �d|

(mapping from the Brillouin zone to a two-sphere) and define
the Berry phase as

B =
∫

d2k d̂ · [∂kx
d̂×∂ky

d̂], (8)

with the integration over the Brillouin zone. The vector �d
acts like an effective magnetic field and the corresponding
Berry phase is given by ±2π . The appearance of the nonzero
Berry phase makes the QBCP topologically stable. Moreover,
at excess fermion filling m = 1/2, the lower band is completely
filled. The system remains insulating with the topological
lower band filled. In this regard, the Lieb lattice is different
from the honeycomb lattices, where near the band crossing
points (Dirac points), there are linear dispersion relations.
Because of the presence of the dispersive band at the crossing
point, unlike the Dirac point, the system is unstable towards
topologically insulating states even for the introduction of very
small spin-orbit coupling.

We would like to point out that such emergent nontrivial
lattice structures are not possible even if one realizes CH1
structures in different systems such as dipolar systems and
atomic mixtures [34]. Even in the Falicov-Kimball model,
due to the absence of such interorbital hybridization, a CH1
structure cannot give rise to a nontrivial lattice geometry for
mobile fermions. Summarizing, in this section we have shown
that, due to interaction-induced tunneling, one can generate
topologically protected exotic lattices starting from trivial
geometries.

V. PROPOSED EXPERIMENTAL REALIZATION

For experimental realization of the present proposal, we
consider a band insulator for ↓-fermions and half-filling for
↑-fermions trapped on a square lattice where the interspecies
interaction is weak. Such species-dependent lattices have
been experimentally realized to study glassy behavior, as in
Ref. [36]. Then by increasing the scattering length in the
attractive regime via Feshbach resonance (or confinement-
induced resonance), one can reach the regime of a dynam-
ical Lieb lattice. As one gets to the region with � ≈ 0,
the Lieb lattice emerges due to the CH1 structure of the
composites. To experimentally detect this phase, one can
probe the excitation spectrum of the mobile fermions using

Bragg spectroscopy [37,38] or by using momentum-resolved
intraband transitions [7]. Such measurements can show the
signature of the Lieb lattice structure by showing the presence
of a QBCP and the curvature of various bands. Addition-
ally, measurement of the density-density correlations from
the expansion of the minority component can give a signature
for the CH1 structure [39] arrangement of the composites. The
appearance of the CH1 structure over a wide range of lattice
depths and scattering lengths, as shown in Fig. 3(a), indicates
that this result is stable under small changes of parameters.

Next, we briefly discuss the role of tunneling of the mi-
nority ↑-fermions for experimental realization. The effective
tunneling strength (denoted J↑) of the ↑-fermions includes
both single-particle tunneling and contributions from the
interaction. To reach the CH1 configuration, the tunneling of
the ↑-fermions is important, as it helps to scan the large set
of possible configurations for the composites. In the present
situation [as depicted in Fig. 1(a)] for a relatively weak
interaction (� > 0), due to the high-density imbalance, almost
every composite has an excess ↓-fermion as a nearest neighbor.
Therefore, due to tunneling of the minority component, a
composite can effectively move to a neighboring site that
already contains excess ↓-fermions. Thus the time scale
required to reach the CH1 lattice configuration is set by the
minority component tunneling rate. Moreover, to generate
long-range order over the entire system, one needs many
such tunneling events. Subsequently the time scale to form
the entire CH1 configuration will be set by the corresponding
Lieb-Robinson bound. In that situation, within the time scale
allowed by the loss rates, domains of CH1 order with different
orientations will be created. For lattice depths V0 = 4ER and
V1 = 20ER and interaction strength as/a = −0.5, we have
found that the time scale for the CH1 pattern to occur is of
the order of ∼1 ms. It is worth nothing that the situation here
is different from the spin-balanced case. In the spin-balanced
situation, the composites can only have a vacant neighbor
where they can hop via a slow second-order process with
strength ∼J0J↑/|U2|, resulting in a slower redistribution of
the pairs [18,35]. Due to the presence of hopping of the
↑-fermions, our calculations in the previous section are valid as
long as J↑ � {|J01|,J0,J1 + 2J11}. We have calculated that the
various tunneling terms of the excess fermions (especially J01)
are at least one order of magnitude larger than J↑. Because of
the separation of tunneling scales between the excess fermions
and the composites, one can use a Born-Oppenheimer-like
approximation and recover the FK-like Hamiltonian discussed
in the present and previous sections.

Regarding the relevant atomic species for such experiments,
one such choice could be a fermionic 6Li species or fermionic
40K. For a lattice constant of a = 500 nm, the corresponding
scattering length is of the order of as ∼ −300 nm. This has
been achieved in lithium mixtures in Refs. [40–42] and in
fermionic potassium mixtures in Ref. [43]. The other option is
a mass-imbalanced mixture. In that case the effective scattering
length is scaled and α ≈ (as/a)(1 + m↓/2m↑) for the same
parameters as used in the case of equal mass. Thus, if one
traps 40K in the weaker lattice of V0 = 4ER↓ (↓-fermions)
and 6Li in the stiffer lattice of V1 = 20ER↑, then the Lieb
lattice phase can be obtained for a scattering length of as

(KLi) ≈ −80 nm. Such a strongly attractive scattering length
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can be experimentally realized using the narrow Feshbach
resonance for a 40K-6Li mixture by tuning the magnetic field
at the milligauss accuracy [44]. The possible temperature
range to achieve a Lieb lattice structure is determined by the
bandwidth of the excess mobile fermions. For a scattering
length of as/a ∼ −0.5, the Lieb lattice phase is achievable as
long as the temperature is lower than J01 ∼ 0.1ER . For lithium
mixtures this translates to a temperature scale of ∼100 nK and
for potassium-lithium mixtures the corresponding temperature
is ∼20 nK.

One important process that can hinder experimental real-
ization of the present scheme is the heating due to photon
scattering in a deep optical lattice for ↑-fermions. It is known
that the optical lattice depth is proportional to ∼(δω)−1 and
the photon scattering rate is proportional to ∼(δω)−2, where
δω is the detuning of the laser frequency. For a far-detuned
laser creating a shallow optical lattice for ↓-fermions, from
Ref. [45] we took the heating rate, Ṫ↓ ≈ 10−4ER/ms for 6Li
and ≈5.10−5ER/ms for 40K for a laser wavelength of 1064 nm.
Then using the relation among the lattice depth, photon scatter-
ing rate, and detuning, one can find an estimate for the heating
rate in the deeper lattices from the ratio, Ṫ↑/Ṫ↓ ≈ (V1/V0)2.
For lattice depths of V1 = 20ER and V0 = 4ER we find that
Ṫ↑ ∼ 0.002ER/ms for 6Li and Ṫ↑ ≈ 0.001ER/ms for 40K. As
the bandwidth of the Lieb lattice is of the order of ∼0.1ER ,
this restricts the duration of the experiments to ∼100 ms for
both lithium and potassium mixtures. The limiting effect of
radiative losses, in principle, could be eliminated by using
alkaline-earth atoms, like ytterbium. Ytterbium does not allow
for magnetic Feshbach resonances but can permit confinement-
induced resonances in ultratight traps [46]. Yet another, so
far relatively unexplored, option would be to use alkali–earth
alkali mixtures like ytterbium-lithium [47]. Recently it has
been proposed that due to hyperfine coupling between the
electron spin and the nuclear magnetic moment, magnetic
Feshbach resonance (width ∼2.8 mG) will occur between
ground-state fermionic ytterbium and lithium atoms [48].

Next, we examine the effect of two-body and three-
body inelastic loss processes. Due to the anticommutation
relation between fermions of the same species (irrespective
of the orbitals they occupy), the three-body loss from s-wave
collisions vanishes. Then two-body collisions become the
dominant loss process. To look into a particular example,
we choose a 40K-6Li mixture, where two-body losses occur
due to spin relaxation [49]. We define the two-body decay rate
as L = L2

∫
Ws

i,↓(�r)Ws
i,↑(�r)dr , where WM

i,σ (�r) are Wannier
functions at site i, for a species σ on a band M , and L2 denotes
the two-body loss rate. Then the particle loss rate is given
by N (t) = N (0) exp[−Lt], and the corresponding lifetime is
∼L−1 ∼ 1 s for L2 ∼ 10−13 cm3/s and a lattice constant of
a ∼ 500 nm. Also, for Feshbach resonances in ground-state
alkali-earth alkali mixtures [48], such two-body loss processes
will be absent.

We conclude this section by discussing briefly the effect
of impurities which can appear in experimental realizations
of CH1 structures. Such impurities can appear in the form of
excess composites or missing composites in CH1 structures.
These defects are reminiscent of the interstitial defects in
solid-state crystals. The presence of such defects will create
local regions with tunneling between p-p orbitals of strength

∼Jp = J1 + 2J11 or tunneling between s-s orbitals of strength
∼J0. In the limit of dilute impurities, one can estimate the
effective impurity strength as gimp ∼ nimpmax[J 2

p,J 2
0 ]/W 2,

where nimp is the impurity density with nimp � 1/2 and W

is the bandwidth of the clean lattice. From Eq. (7) we see that
when � ∼ 0, the bandwidth is given by W ∼ J01, and when
� � 0, the bandwidth changes to W ∼ J 2

01/�. Now as long
as gimp � 1, one can recover the clean limit of the dispersion
relation with the density of states for the flat band showing
a width of the order of gimp [50]. Assuming an impurity
concentration of nimp = 0.05, we find that gimp ∼ nimp = 0.05
for � = 0 and gimp ∼ 2nimp = 0.1 for � ≈ 2J01 for as/a ∼
−0.7 for the parameters shown in Fig. 2. Thus we find that
dilute impurities will have negligible effects on the properties
of Lieb lattices.

VI. DYNAMICAL TOPOLOGICAL INSULATORS

The dynamical realization of a Lieb lattice opens up an
alternative way to study the possibility of generating integer
quantum Hall effects with cold-atom systems. One possible
way to generate quantum Hall states such as QAH and QSH
states in nontrivial lattices is by inducing effective spin-orbit
coupling [51,52]. Such coupling can be achieved through
optical means [53], by lattice shaking [54], or dynamically
by including long-range interactions [56,57]. In our proposals
we use the last of these methods and effective spin-orbit
coupling is induced by the mean-field effect of the long-range
interaction.

Models with long-range interactions are usually hard to
implement in an experimentally realizable system, as the on-
site interaction has to be of the same order of magnitude as
the long-range part [58]. To investigate this possibility in our
system we add an extra magnetic dipolar term (restricting its
range to next-nearest neighbors) for the excess ↓-fermions,

Hfull = H + Hdd,
(9)

Hdd = Udd

∑
i,τ

n̂xτ in̂yτ i + Uxy

2

∑
〈〈i,j〉〉,τ 
=τ ′

n̂xτ in̂yτ ′j

+ Uxx

2

∑
〈〈i,j〉〉,τ

[n̂xτ in̂xτ j + n̂yτ in̂yτ j],

where Udd is an on-site dipolar interaction, Uxy is an interaction
between particles in px and py orbitals at sites B and C,
respectively, and Uxx is a next-nearest-neighbor interaction
between particles in px and px orbitals (also between py and py

orbitals) at sites B and C. 〈〈i,j〉〉 denotes next-nearest-neighbor
p-orbital sites. We additionally introduce the dimensionless
dipolar interaction strength D = μ0μ

2m↓/2�
2a, where μ is

the magnetic dipole moment of the atoms and μ0 is the
vacuum permeability. The dipole-dipole interaction has the
form Udd(r) = D(1 − 3z2/r2)/r3, where r is the inte-particle
distance. Effectively the fermions have a 2D nature so all
the dipolar interaction terms are repulsive. For experimental
realization, the suitable candidates are fermionic 161Dy, which
is experimentally available in a quantum degenerate state [59],
and fermionic 167Er [60]. Dy and Er could also be suitable due
to the possibility of achieving lattices with laser wavelengths
of ∼400 nm as discussed in Ref. [59]. This reduces the s-wave
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scattering length needed to achieve the emergent Lieb lattice
phase to as ∼ −100 nm. Although, due to the presence of
a zoo of Feshbach resonances in these atoms, one probably
needs high tunability of the magnetic field. One can also use
polar molecules provided that the short-range interaction is
modified, for instance, using confinement-induced resonances.

Due to the strong attractive contact interaction |U |, the
effect of dipolar terms on � is negligible. Moreover, we neglect
the effective long-range repulsion between the composites,
which can further stabilize the dynamical Lieb lattice phase.
Then within the weak-coupling limit the mean-field parame-
ters can be defined:

〈p̂†
xBip̂yCj 〉 = 〈p̂†

yBip̂xCj 〉 = iχQAH,

〈p̂†
xBip̂yCj 〉 = −〈p̂†

yBi p̂xCj 〉 = iχQSH, (10)

〈n̂xBi〉 − 〈n̂yCj 〉 = 〈n̂xCi〉 − 〈n̂yBj 〉 = χSN,

where χQAH denotes the order parameter for the QAH state.
QAH is characterized by a loop-current, broken time-reversal
symmetry, and topologically protected chiral-edge states. The
QSH-state order parameter χQSH can be thought of as two
copies of QAH which, on the whole, conserve time-reversal
symmetry [55]. This state contains helical edge states as
shown in [61]. We see that the mean-field effect of the
interaction effectively creates a spin-orbit coupling. The last
order parameter χSN refers to the spin-nematic (SN) state. It
breaks C4 symmetry between the blue and the red sublattices
and constitutes an anisotropic semimetal [57]. Near the QBCP,
the mean-field energy is then given by

Emean = −
∑

k

Ek +
[
Uxy + Udd − |δU3|

4

]
χ2

SN + Uxyχ
2,

(11)
where the dispersion relation is given by Ek =√

[(k2
y − k2

x) − (Uxy + Udd−|δU3|
4 )χSN]2 + 4k2

xk
2
y + U 2

xyχ
2, and

the order parameter χ = χQAH or χ = χQSH. Then we find
various order parameters by minimizing the mean-field energy
Emean. We have calculated how these order parameters change
with interaction strength α = as/a and dipolar strength D.
The obtained phase diagram is presented in Fig. 3(d). We
see that for a lower dipolar strength D one can stabilize
quantum Hall states, whereas for a higher dipolar strength,
the SN state minimizes the energy. This can be qualitatively
explained by the fact that for weaker values of D, the repulsive
dipolar on-site energy (Udd) in Eq. (9) is compensated by
the effective on-site attraction δU3 in Eq. (6). Consequently,
the mean-field physics is dominated by the long-range part
of the dipolar terms, which results in stabilization of the
QAH and QSH states. Even a low dipolar strength will
make the system unstable towards the QAH and QSH
states, but the gap in the bulk will be exponentially small.
In that case, one needs very low temperatures to observe
such phases. On the other hand, for a much higher dipolar
strength, the repulsive on-site energy dominates the other
interactions, which, in turn, stabilizes the SN phases. Within
the mean-field ansatz, (10), both QAH and QSH have the same
energy, although this degeneracy can be broken by including
higher order exchange interactions [56]. The corresponding
mean-field transition temperature to the QAH and QSH

state is given by Tc ∼ (4J 2
01/�) exp[−J 2

01/2Uxy�] ∼ 0.01ER

for D = 0.29 and α = −0.7. This dipolar strength can be
reached in fermionic dysprosium with lattice constant of
a = 500 nm and in fermionic erbium with a lattice constant of
a = 300 nm.

VII. CONCLUSION

In conclusion, we have presented a theoretical proposal
on how frustrated lattices can be created as an effect of self-
assembly of cold atoms. We believe that our proposal opens up
another fascinating route for experimental and theoretical stud-
ies of frustrated systems. The proposed scheme is very general
and can be extended to other lattice structures even in three
dimensions. Moreover, by varying the fermionic densities one
can get different composite structures where different lattice
geometries can be realized by the moving excess ↓-fermions.
On the other hand, our proposal gives potential facilitation for
the experimental realization of topological insulator. Namely,
it does not involve additional optical components other than
the ones needed for creating the parent lattice.
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APPENDIX A: DERIVATION OF J01 AND J11 IN THE
MODIFIED HAMILTONIAN

Here we describe the procedure to calculate the terms in
the modified Hubbard model in Eqs. (1), (2), and (3). The
fermions are moving in the potential

Vσ,latt = Vσ,x sin2(πx/a) + Vσ,y sin2(πy/a)

+Vσ,z sin2(πz/a),

where σ = ↑,↓ denotes the two species fermions and Vσ,x(y)(z)

are the corresponding lattice depths for σ -fermions along the
x, y, and z directions, respectively. To create a 2D geometry, we
choose V0 = V↓,x = V↓,y , V1 = V↓,z = V↑,x(y)(z), and V1 �
V0, which means that the ↓-fermions can effectively move in
the x-y plane with the z motion frozen. The contact-interaction
Hamiltonian is given by

Hcon = g

2

∑
σ 
=σ ′

∫
�̂†

σ (�r)�̂†
σ ′(�r)�̂σ ′(�r)�̂σ (�r)d�r, (A1)

where the field operators �̂†
σ (�r) and �̂σ (�r) denote the creation

and destruction operators at position �r for fermionic species σ .
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We also assume, for simplicity, that the mass of the two species
is the same, m↑ = m↓ = m. The contact interaction is given by
g = 4π�

2as/m. From that, we construct the Wannier functions
WM

i,σ (x,y,z) = ω
mx

ix ,σ
(x)ω

my

iy ,σ
(y)ωmz

iz,σ
(z) localized at site i =

(ix,iy,iz), which correspond to band M = (mx,my,mz) [62].
Due to strong trapping along the z direction, we only take into
account the lowest level in that direction. By expanding the
field operators in the Wannier basis, we derive the parameters
for the Hubbard model. In particular, the integrals used to
calculate the s-p hopping term J01 and the correlated hopping
term in the p band J11 are

J01

ER

= 8π2as

a

∫
drW100

i,↓ (r)
[
W000

i,↑ (r)
]2W000

j,↓ (r),

(A2)
J11

ER

= 8π2as

a

∫
drW100

i,↓ (r)
[
W000

i,↑ (r)
]2W100

j,↓ (r),

where ij denote the nearest-neighboring sites along the x

direction. As depicted in Figs. 1(b)and 1(c), the effective
tunneling in the p band is given by Jp = J1 + 2J11. Subse-
quently, corresponding to the Hamiltonian in Eq. (2), we plot
the magnitudes of the corresponding parameters in Fig. 5. We
see that with increasing attraction, the effective hybridized
tunneling J01 becomes comparable to the tunneling in the
p band, denoted Jp. Additionally, we plot the energy cost
� [as defined after Eq. (2)] as a function of the effective
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FIG. 5. (Color online) Important parameters in this paper: the
energy cost |�|/ER (dashed black line) and the relative strength
of the s-p-band tunneling and the effective tunneling in the p band,
J01/|Jp| [solid (blue) line], as a function of the effective interaction
strength α = as/a. We fix the ↓-fermion lattice depth V0 = 4ER and
the ↑-fermion lattice depth V1 = 30ER , for which we see from Fig. 2
that the CH1 state is stable. For low α, � is positive. As α becomes
more negative, � decreases. For α � −0.56, � becomes negative
and its absolute value increases. From the solid (blue) curve we
also see that with an increase in |α|, the effective p-band tunneling
decreases and s-p tunneling increases, resulting in an increase in the
ratio J01/Jp . Around α ∼ −0.6 the contributions of all tunneling
processes become of the same order of magnitude, facilitating the
stability of the CH1 phase in the paper.

interaction as/a in Fig. 5. For small |as |/as , the energy cost �

is positive. As one increases the attraction, � decreases, and
for as/a � −0.56, � becomes negative. Now the appearance
of the CH1 state is favored when the s-p tunneling strength
becomes of the same order of magnitude as the tunneling in
the p band with J01 ≈ Jp = J1 + J11 for � � 0. From Fig. 5
we see that around |α| ∼ 0.5–0.6 both the tunnelings have the
same order of magnitude, facilitating the checkerboard phase.

APPENDIX B: DERIVATION OF U3 AND U2 IN THE
MODIFIED HAMILTONIAN

Next we describe the procedure for generating the effective
interactions U2 and U3 in the modified Hamiltonian, Eq. (2).
As described, one of the main parameters which controls the
transition is the energy cost � = E1 − |U3| + |U2|. Thus the
main quantity to consider is the difference U3 − U2. To do that
we expand (A1) in terms of the Wannier functions at site i,

Hi =
∑

MNPQ

fMNPQĉ
†
M,ib̂

†
N,,ib̂P,,iĉQ,,i

+
∑
M

Ec
Mĉ

†
M,iĉM,i +

∑
M

Eb
Mb̂

†
M,ib̂M,i, (B1)

where MNPQ are the band indices and ĉ
†
M,i and ĉM,i denote

the creation and annihilation operators for ↓-fermions at site i
and band M . Similarly, b̂

†
N,i and b̂N,i denote the creation and

annihilation operators for ↑-fermions at site i and band N . Ec
M

and Eb
M are the single-particle energies for ↓ and ↑-fermions,

respectively, at band M . The effective strengths fNMPQ are
given in terms of the Wannier functions as

fMNPQ

ER

= 8π2as

a

∫
d rWM

i,↓(r)WN
i,↑(r)WP

i,↑(r)WQ
i,↓(r).

Now to determine U2, first we assume that the particles
occupy the lowest band. Then we calculate the effect of higher
bands within the second-order perturbation theory by taking
into account transitions to higher bands. Then the Hamiltonian
is

H2 = −|f0000|ĉ†0,ib̂
†
0,ib̂0,iĉ0,i +

∑
M

Ec
0 ĉ

†
0,iĉ0,i

+
∑
M

Eb
Mb̂

†
0,ib̂0,i,

(B2)
H2pert =

∑
M>0

fM000ĉ
†
M,ib̂

†
0,ib̂0,iĉ0,i

+
∑

M>0N>0

fMN00ĉ
†
M,ib̂

†
M,ib̂0,iĉ0,i,

where in the diagonal term H2, the first term is the interaction
energy of the fermions in the lowest band, and the next two
terms denote the single-particle energies of the lowest bands
for the c- and b-fermions. In the perturbative Hamiltonian
H2pert, the first term denotes the transition of fermion species
c (=↓) to higher levels due to the interaction, whereas the
last term denotes the process where both c-fermions (=↓) and
b-fermions (=↑) are transferred to an excited state. Then for
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perturbation theory to be valid, the first condition is∣∣∣∣ fM000(
Ec

M − Ec
0

) + |f0000| − |fM00M |

∣∣∣∣ � 1,

(B3)∣∣∣∣ fMN00(
Ec

M − Ec
0

) + (
Eb

N − Eb
0

) + |f0000| − |fMNNM |

∣∣∣∣ � 1.

To look into their properties, first we note that
|fMNNM |,|fM00M |,|fM000|,|fMN00| < |f0000|, as the interac-
tion in the lowest band, has the strongest value. In addition,
(Ec

M − Ec
0) > 0, (Eb

N − Eb
0 ) > 0 for band indices M,N >

0. So the denominators are always positive and we have
numerically checked that the fractions are much less than
unity. This situation is drastically different for repulsive
interactions, where the denominator can indeed vanish, making
the perturbation theory invalid. Then within second-order
perturbation theory we can write the two-fermion interaction

energy:

U2 = −|f0000| −
∑
M>0

f 2
M000(

Ea
M − Ea

0

) + |f0000| − |fM00M |

−
∑

MN>0

f 2
MN00(

Ea
M − Ea

0

)+(
Eb

N − Eb
0

) + |f0000| − |fMNNM | .

(B4)

Similarly, one can write the Hamiltonian pertaining to the
situation where there are two ↓ (c) particles, one at the s band
and another at the px band, and one ↑ (b) fermion at the s

band. The corresponding interaction energy U3 is written in
second-order perturbation as

U3 = −|f0000| − |f1001| −
∑

M 
=[0,1]

f 2
M000(

Ec
M − Ec

0

) + |f0000| − |fM00M | −
∑

M 
=[0,1]

f 2
M001(

Ec
M − Ec

1

) + |f1001| − |fM00M |

−
∑

M 
=[0,1]N>0

f 2
MN00(

Ec
M − Ec

0

) + (
Eb

N − Eb
0

) + |f0000| + |f1001| − |f1MM1| − |fMNNM |

−
∑

M 
=[0,1]N>0

f 2
MN01(

Ec
M − Ec

1

) + (
Eb

N − Eb
0

) + |f0000| + |f1001| − |f0MM0| − |fMNNM | , (B5)

where the band index 1 = (100) denotes the px band. The
individual series in Eqs. (B4) and (B5) do not converge with
respect to the summation over band indices M and N, and one
needs to regularize the interaction at higher energies. But in this
paper we are only interested in the difference in energy U3 −
U2 which converges as one takes bands with higher energies.
In our parameter regime U3 − U2 converges for band indices
M = 15. Convergence of the differences between the energies
is also discussed in Ref. [63] using the harmonic approximation
for the lattice sites.

APPENDIX C: NUMERICAL METHODS

To search for an optimal configuration of composites we
use the simulated annealing method. This technique takes
random walks through the problem space at a successively
lower temperature-like parameter. The probability of accepting
a configuration is determined by the Boltzmann distribution,
which allows getting out of the local minimum. We start
our calculations from the phase-separated configuration, and
the configuration for each next step is chosen by randomly
changing the places of nc composites, where nc � NL/6 for
NL is the size of the lattice. Parameters in the calculations
obviously depend on the lattice size. For an 8 × 8 lattice we
have used the following: the initial temperature-like control
parameter is lowered over time by use of the cooling schedule
T (t + 1) = T (t)/μT , where μT = 1.008; it starts at T (0) =
0.009 and continues to T (t) < 1.0e − 6. For each step we
try ntries = 150 configurations and for each temperature we
perform niters = 200 iterations. The parameters for a 12 × 12

(16 × 16) lattice are μT = 1.002 (1.001), ntries = 400 (600),
and niters = 500 (800) iterations. Initial and final temperatures
are the same for every lattice size. Simulated annealing gives
us an approximate solution that, with a high probability,
is the global minimum. However, it may happen that the
obtained configuration is a local minimum. Hence, to eliminate
such solutions, we perform a second check: We group all
the obtained configurations for different lattice depths and
interaction strengths and we treat this set as a new problem
space. The small size of this space allows us to individually
compare the energies of every configuration.

APPENDIX D: EFFECT OF THE TUNNELING OF
↑-FERMIONS IN DEEPER LATTICES

In this section we study the effect of tunneling of ↑-fermions
on the Lieb lattice phase. We are especially interested in the
case with � < 0. The corresponding tunneling Hamiltonian
fore ↑ fermions is written as

H↑t = −J 1
↑

∑
〈ij〉

ŝ
†
↑i + J 2

↑
∑
〈ij〉

ŝ
†
↑i(n̂↓i + n̂↓j )ŝ↑j, (D1)

where ŝ
†
i and ŝi are the creation and annihilation operators for

↑-fermions at the s band and J 1
↑ is the corresponding tunneling

amplitude. The interaction-induced tunneling of ↑-fermions
at the s band is denoted J 2

↑ . When the band is filled for ↓-
fermions, then approximately each neighbor of an ↑-fermion
is filled by a ↓-fermion. Then the total tunneling is given by

J↑ = J 1
↑ + J 2

↑ .
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In the case where � < 0, but small, the Lieb lattice structure
is definitely stable, provided |J01| � J↑. This is the case
in the strongly attractive limit, as even for V1 = 10ER

and V0 = 4ER , |J01|/J↑ ∼ 8 with as ∼ −0.6. In the case
where � � 0, each composite occupied site is also occupied
by a ↓-fermion in the p orbital. Then the Lieb lattice

structure is again stable, provided J01/� � J↑/E1, which
is also satisfied, as the energy gap of the p orbital (E1) is
much higher than � due to the attractive interaction. This
condition can be proved trivially by looking into the second-
order energy conserving processes which can delocalize the
composite.
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