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Asymmetric photoelectron momentum distributions due to quantum interference
in strong-field ionization by a few-cycle pulse
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We calculate the left-right asymmetry of the photoelectron momentum distributions generated in a hydrogen
atom exposed to an intense few-cycle laser pulse as a function of both the carrier-envelope phase and
the laser intensity. We present results of the numerical solution of the three-dimensional time-dependent
Schrödinger equation, semiclassical simulations accounting for both laser and Coulomb fields, and the strong-field
approximation. We predict pronounced oscillations of the asymmetry parameter as a function of the intensity for
a particular range of the carrier-envelope phase. In order to reveal the mechanism underlying these oscillations,
we investigate in detail the electron momentum distributions in the one-dimensional case. We show that quantum
interference among a large set of both bound and continuum field-free states is responsible for the oscillatory
behavior of the left-right asymmetry.
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I. INTRODUCTION

In strong-field physics, it has become possible to control,
manipulate, and monitor electron dynamics in real time
[1]. These new research directions result from remarkable
developments in laser technology during the past two decades,
in particular from the ability to shape and control intense
near-infrared laser pulses consisting of only a few optical
cycles, i.e., a few femtoseconds (see Ref. [2] for a review). The
electric field of such pulses can be represented as a product of
the monochromatic (carrier) wave and the envelope function.
In addition to its duration, a few-cycle pulse is characterized
by the phase of the carrier with respect to the maximum of the
envelope, i.e., the carrier-envelope phase (CEP). Experimental
evidence of the significance of the CEP was obtained in Ref. [3]
for above-threshold ionization (ATI) as a violation of inversion
symmetry of the photoelectron angular distribution.

The reason for the asymmetric emission of electrons
liberated by a few-cycle pulse becomes particularly clear in
the tunneling regime. Indeed, tunneling is a highly nonlinear
process, and only a few central half cycles of the pulse
contribute substantially. The heights of these relevant half
cycles, and thus the ionization probabilities, depend on the
CEP. In contrast to this, the CEP of a long pulse has no
significant effect on photoelectron spectra due to the inversion
symmetry of a monochromatic field (and of an atom).

The CEP was not controlled in the experiment of Ref. [3],
but shortly thereafter remarkable progress was achieved in
stabilization of the CEP (see Refs. [4–9]), and the CEP has
now become a new important controllable laser parameter.
A general theoretical framework for the analysis of CEP
effects was presented in Ref. [10] and the case of ionization
by circularly polarized light was characterized in Ref. [11].
The CEP of a few-cycle pulse affects many strong-field
phenomena in atoms and molecules: high-order ATI (see
Ref. [12] and references therein), high-harmonic generation
(HHG) [4,13–19], nonsequential double [20–23], sequential

multiple ionization [24,25], and dissociation [26]. Ionization
is the initial step in these processes. Therefore, the study of the
CEP effect on strong-field ionization generated by a few-cycle
pulse is particularly important.

A detailed study of the asymmetry in the low-energy part of
photoelectron spectra was carried out in Refs. [27–29]. Three
different intensity regimes in which the asymmetry behaves
differently were identified in Ref. [28]. They include what we
refer to as the subtunneling regime between the multiphoton
and tunneling regimes, with the Keldysh parameter 1 < γ < 2
[30]. Here, γ = ωκ/F0 in atomic units, where ω is the carrier
angular frequency, F0 is the field strength, and κ = √

2Ip with
Ip being the ionization potential. It was shown that in the sub-
tunneling regime, which corresponds to the intensity range of
(0.2–1.0) × 1014 W/cm2 for hydrogen, the left-right asymme-
try shows a stable and very simple behavior. In particular, the
asymmetry depends very little on the laser intensity in this in-
tensity range, although some oscillations were revealed. These
oscillations were attributed to resonances that were Stark
shifted in different ways at different intensities [28]. However,
the intensity dependence of the asymmetry was investigated
in Refs. [27–29] only for a few fixed values of the CEP.

The left-right asymmetry was calculated as a function of
both the CEP and laser intensity in Ref. [31] by solving the
time-dependent Schrödinger equation (TDSE) in the same
subtunneling intensity range for a one-dimensional (1D) model
atom. It was found that the asymmetry exhibits a nontrivial
behavior: For some values of the CEP, the left-right asymmetry
shows deep oscillations as a function of the laser intensity,
while for others it does not, i.e., the photoelectron momentum
distribution restores its symmetry at some intensities within the
subtunneling region. As a result of this intricate dependency,
the two-dimensional (2D) plot of the left-right ratio of the
energy-integrated photoelectron yield bears resemblance to
a chessboard (see Fig. 2.6. of Ref. [31] and Fig. 2 below).
Furthermore, the evolution of the 2D plot of the left-right ratio
with increasing pulse duration is also surprising: At some
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FIG. 1. (Color online) Two-dimensional photoelectron momen-
tum distribution for kz = 0 for ionization of H by a Ti:sapphire laser
pulse (λ = 800 nm) with a duration of np = 4 cycles, field strength
of F0 = 0.04 a.u. (5.6 × 1013 W/cm2), and CEP of ϕ = 0.83π .
The Keldysh parameter is γ = 1.4. The color density is plotted in
logarithmic scale.

intensities, the asymmetry parameter increases, whereas at
other intensities, it decreases or even vanishes. To the best
of our knowledge, the results of Ref. [31] have not been
satisfactorily explained so far, and similar investigation for
a real three-dimensional (3D) atom has not been carried out.

In this paper, we revisit the ionization dynamics induced
by a few-cycle pulse in the subtunneling regime, in order
(i) to calculate the left-right asymmetry as a function of
CEP and laser intensity, (ii) to obtain deeper insight into
the physical mechanism responsible for the oscillations of the
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FIG. 2. (Color online) Asymmetry of the photoelectron momen-
tum distributions as a function of the CEP and field strength for the
hydrogen atom at a wavelength of 800 nm. (a),(d) The asymmetries
calculated from the solution of the 3D TDSE. (b),(e) The same
asymmetries calculated using the semiclassical two-step model.
(c),(f) The SFA results. (a)–(c) and (d)–(f) correspond to the pulse
duration np = 2 and np = 4, respectively. The point corresponding
to the photoelectron momentum distribution of Fig. 1 is indicated by
a white square in (d).

asymmetry parameter, and (iii) to understand the evolution of
the left-right asymmetry with increasing pulse duration. Our
analysis is based on the numerical solution of the 3D TDSE,
the strong-field approximation (SFA) [30,32,33], and the two-
step semiclassical model [34,35]. In order to unambiguously
identify the mechanism responsible for the oscillations of the
asymmetry, we also consider the ionization of a 1D model
atom. Indeed, the physics governing the formation of the
momentum distributions will be the same as in the 3D case,
and, in the 1D model, the huge computational effort associated
with the continuous scan of results with both CEP and intensity
is reduced to a manageable size. For the calculations in the 1D
case, we use the same tools as in 3D: TDSE, 1D counterpart
of the SFA, and semiclassical simulations.

The paper is organized as follows. In Sec. II, we calculate
and discuss the asymmetry parameter as a function of CEP
and laser intensity for the real 3D atomic hydrogen. In
Sec. III, we investigate the asymmetry in the 1D case, analyze
the formation of the momentum distributions, and reveal
the physical mechanisms underlying the intricate behavior
of the left-right asymmetry. The conclusions of the paper are
given in Sec. IV. Atomic units are used throughout unless
indicated otherwise.

II. LEFT-RIGHT ASYMMETRY IN THREE DIMENSIONS

Before showing and discussing the results of our calcula-
tions, we briefly sketch the techniques used. Let us define a
few-cycle laser pulse linearly polarized along the x axis in
terms of a vector potential A (t):

A(t) = (−1)np+1 F0

ω
sin2

(
ωt

2np

)
sin(ωt + ϕ)ex, (1)

where ex is a unit vector, F0 is the field strength, and np is
the number of cycles within the pulse present at t = 0 . . . T0.
Here, T0 = (2π/ω) np, where np is the number of cycles (here
2 or 4).

A. Time-dependent Schrödinger equation in three dimensions

For atomic hydrogen, the TDSE in the velocity gauge is
given by

i
∂

∂t
	(r,t) =

[
− 1

2
∇2 − iA(t) · ∇ − 1

r

]
	(r,t), (2)

where the wave function is expanded in spherical harmonics,

	(r,t) =
lmax∑
l=0

m=l∑
m=−l

flm(r,t)

r
Ylm(θ,ϕ). (3)

A grid-based split-step method [36] is employed in the
numerical procedure (see Ref. [37] for details). To find the
initial state, we use the imaginary-time propagation with
an equidistant radial grid consisting of 16 384 points and
extending to rmax = 1000 a.u., maximum angular momentum
lmax = 40, and a time step of 0.005 a.u. When the wave
packet 	(r,t) at the end of the laser pulse T0 is known, the
photoelectron momentum distribution is given by

∂P

∂kx∂ky∂kz

= ∣∣〈	C−
k

∣∣	(r,T0)
〉∣∣2

. (4)

043431-2



ASYMMETRIC PHOTOELECTRON MOMENTUM . . . PHYSICAL REVIEW A 89, 043431 (2014)

Here, 	C−
k is a continuum scattering wave function of

asymptotic momentum k, which is obtained by solving the
time-independent Schrödinger equation subject to incoming
wave boundary conditions. An example of a momentum
distribution obtained from a numerical solution of the TDSE
is shown in Fig. 1 for kz = 0. In order to be able to see the
momentum distribution at higher k, we need to block out
the low-energy part of the distribution. Thus we remove the

low-energy part of momentum distributions
√

k2
x + k2

y < k0 as

in Ref. [38] (k0 = 0.08 a.u. in our calculations). It is clearly
seen that the distribution is highly asymmetric with respect to
kx .

We define the asymmetry of the momentum distribution as

R = P+ − P−
P+ + P−

. (5)

Here, P− = ∫
kx<0(dP/dkxdky)dkxdky and P+ =∫

kx>0(dP/dkxdky)dkxdky are the populations of the
half planes kx < 0 and kx > 0 (both for fixed kz = 0),
respectively.

B. Semiclassical simulations in three dimensions

In our semiclassical approach to strong-field ionization,
we follow Refs. [39,40]. Here we repeat the main points. In
semiclassical simulations, the trajectory and momentum of an
electron are calculated using Newton’s equation of motion,

d2r
dt2

= −F (t) − r
r3

, (6)

where F (t) is the electric field of the laser pulse. In order to
solve Eq. (6), we need the initial velocity of the electron and
the starting point of its trajectory. To obtain the latter, i.e.,
the tunnel exit point, we use the separation of the tunneling
problem for the Coulomb potential in parabolic coordinates
[41]. Note that for potentials with a non-Coulombic short-
range part, this separation is approximate [42]. We also include
the Stark shift of the energy level, which affects both the tunnel
exit point and the ionization probability. The multielectron
polarization effect (see Refs. [39,42–45]) is obviously absent
for the H atom. We assume that the electron starts with zero
initial velocity along the laser field v|| = 0, and nonzero initial
transverse velocity v0⊥. Both the velocity and the time of
ionization t0 are distributed according to the static ionization
rate [46–48] in the tunneling regime:

w(t0,v0) ∼ exp

(
− 2κ3

3F

)
exp

(
− κv2

0⊥
F

)
, (7)

with F = F (t0). For simplicity, we omit the preexponential
factor in Eq. (7). Although this factor can affect the total
ionization yield by changing it by several orders of magnitude,
for atoms it only slightly affects the shape of the momentum
distribution, and thus the asymmetry.

In our calculations, we use 1.5 × 106 trajectories weighted
by Eq. (7). In order to solve Newton’s equation of motion
(6), we use a fourth-order Runge-Kutta method with adaptive
step size [49]. We follow the procedure of Refs. [50,51] and
exclude the trajectories that have a negative energy at the end
of the laser pulse. This should be done in order to account

for the possible population of Rydberg states. Furthermore,
we take into account the motion of electrons with positive
energies in the Coulomb field after the end of the pulse. The
asymptotic momentum of an electron can be calculated from its
momentum q = q (t0,v0⊥,T0) and position r = r (t0,v0⊥,T0) at
the end of the laser pulse (see Refs. [39,51]),

k = k
k(L × a) − a

1 + k2L2
, (8)

where L = r × q and a = q × L − r/r are the angular mo-
mentum and Runge-Lenz vector, respectively, and the absolute
value of the asymptotic momentum k can be found from the
energy conservation: q2/2 − Z/r = k2/2.

C. Strong-field approximation in three dimensions

In the lowest-order SFA of Ref. [30], the ionization
amplitude is given by

Mk =
∫ T0

0
〈	k(r,t)|VF (t)|	0(t)〉, (9)

and the momentum distribution is obtained as the norm squared
of this amplitude. In Eq. (9), 	0 (t) = �0 (r) exp (−iE0t) is the
wave function of the initial bound state, VF (t) = r · F (t) is the
interaction operator in the length gauge (see Refs. [32,33] for
velocity gauge versions of the SFA), and

	k(r,t) = 1

(2π )3/2
exp

{
i[k + A(t)] · r

− i

2

∫ t

[k + A(t ′)]2dt ′
}

(10)

is the Volkov wave function in the same gauge normalized
such that 〈	k(r,t)|	k′(r,t)〉 = δ(k − k′). After some transfor-
mations using the Schrödinger equation (see Refs. [52,53] for
details), the amplitude can be rewritten as

Mk =
∫ T0

0

{
E0 − 1

2
[k + A(t)]2

}
�̃(k + A(t))

× exp[if (t)]dt, (11)

where

�̃(q) =
∫

e−iq·r�0(r)dr (12)

is the Fourier transform of �0 (r), and

f (t) = 1

2

∫ t

[k + A(t ′)]dt ′ − E0t (13)

is a rapidly oscillating function. This rapidly oscillating phase
implies that the amplitude of Eq. (11) can be evaluated
accurately using the saddle-point method. The saddle-point
equation reads

[k + A(t)]2 + κ2 = 0. (14)

For the ground (1s) state of hydrogen, �0(r) =
(2/

√
4π ) exp(−r), and, therefore, �̃(q) = 4

√
4π/(1 + q2)2.

Substituting this expression into Eq. (11) and taking into
account that E0 = −0.5 a.u., we obtain

Mk = −2
√

4π

∫ T0

0

exp[if (t)]

[k + A(t)]2 + κ2
dt. (15)
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The integrand of Eq. (15) is singular at the saddle points, so
that the method has to be modified (see Ref. [52] for details).
The modified saddle-point solution for the integral (15) reads

Mk =
∑
tS

2π3/2i

f ′′(tS)
exp[if (tS)], (16)

where the summation is carried out over all the saddle points
tS corresponding to a given final momentum k. The saddle
points are found with the Newton-Raphson method [49] in the
complex plane. As in Ref. [53], the initial approximation for
the solution of Eq. (14) is found by considering the behavior
of |f (t)|−1/2 for each momentum k.

D. Left-right asymmetry

The left-right asymmetry parameter R [Eq. (5)] calculated
for hydrogen over the range of intensities is shown in Fig. 2 for
two different pulse durations as a function of the CEP. The first
column of Fig. 2 shows the results of the numerical solution
of the TDSE, whereas the second and the third columns
correspond to the results of the semiclassical simulations and
the SFA, respectively. We remind the reader that in this paper
we focus on the subtunneling regime with field strengths
0.025 < F0 < 0.055 a.u.

First we turn our attention to Figs. 2(a) and 2(d). In
the low-intensity part, where F0 � 0.03 a.u., the asymmetry
parameter demonstrates irregular behavior as a function of
the CEP for both np = 2 and np = 4. For H, the fields
F0 < 0.03 a.u. correspond to γ > 1.9, i.e., the multiphoton
regime. In the multiphoton regime, lowest-order perturbation
theory has been used to analyze the origin of the left-right
asymmetry [54,55]. The criterion for the applicability of
the two-step model developed in Ref. [40] shows that the
semiclassical model is not valid in this intensity range. This
inapplicability manifests itself in the change of the behavior
of R around F0 = 0.03 a.u. [compare Figs. 2(e) and 2(b)].

It is seen in Fig. 2(d) that for np = 4, the asymmetry
shows clear oscillations as a function of the laser intensity
for a fixed CEP. Note that the semiclassical simulations, even
accounting for the Coulomb potential, cannot describe these
oscillations of the asymmetry; see Fig. 2(c). It is interesting
to note that the two-step model accounting for both laser and
Coulomb fields shows a good quantitative agreement with the
TDSE result when describing the dependence of the left-right
asymmetry on the CEP for some fixed laser intensities; see
Ref. [29]. This shows that some physical mechanism other
than the Coulomb attraction of the continuum electron to
the ion is responsible for the change of the symmetry of
momentum distributions and, therefore, for the oscillations
of R. Finally, and in accord with Refs. [28,29], the SFA
is also inapplicable for the description of the asymmetry
[see Figs. 2(c) and 2(f)] of momentum distributions in the
low-energy part of the ATI spectrum. However, this is not the
case for high-order ATI. The SFA amplitude accounting for
the rescattering term describes the left-right asymmetry of the
photoelectron spectrum well enough, provided the asymmetry
is defined only for high-energy plateau of the spectrum but not
for its low-energy part.

III. ANALYSIS OF THE LEFT-RIGHT ASYMMETRY IN A
ONE-DIMENSIONAL MODEL

The momentum distributions are numerically much faster
to calculate in a 1D model than in the 3D case, and the analysis
of the origin of the asymmetry is also simpler (see below). For
our analysis, we apply the same methods as in the 3D case in
Sec. II: direct numerical solution of the TDSE, semiclassical
simulations, and 1D counterpart of the SFA. As in Sec. II, let
us first discuss these methods in more detail.

A. One-dimensional time-dependent Schrödinger
equation in coordinate space

In the length gauge, the 1D TDSE for an electron in the
laser pulse reads

i
∂

∂t
	(x,t) =

{
− 1

2

∂2

∂x2
+ V (x) + F (t)x

}
	(x,t). (17)

Here, V (x) is a binding potential and F (t) is the laser field. As
the binding potential, we use the soft-core Coulomb potential,

V (x) = − Z√
x2 + a2

, (18)

with a = 1.0 and Z = 1.0 as in, e.g., Ref. [56]. These parame-
ter values are used throughout the paper. We mention, however,
that with values a = 1.0 and Z ≈ 0.7795 the ground-state
energy becomes E0 = −0.50 a.u. as in real (3D) hydrogen
atom.

In order to solve Eq. (17), we follow the approach of
Refs. [56,57], where the TDSE is solved on a grid, and
derivatives are approximated by finite differences. We use a 1D
box centered at x = 0 and extending to ±Xmax. For the time
propagation, we use a standard Cranck-Nicholson scheme (see,
e.g., Ref. [49]). Although we impose zero boundary conditions
at x = ±Xmax, we do not allow the wave packet to approach
the boundary by using a sufficiently large box size. As in the
3D case, the smaller grid spacing requires a smaller time step
for a stable solution. Typically, our grid consists of 128 000
points and extends up to Xmax = 4000 a.u., and the time step is
t = 7 × 10−4 a.u. The most straightforward way to calculate
1D momentum distributions can be expressed as follows (see
Ref. [58]):

dP

dkx

= lim
t→∞ |〈	kx

(x)|P̂C	(x,T0 + t)〉|2. (19)

Here, 	kx
(x) = exp (ikxx) /

√
2π is a plane wave with mo-

mentum kx , and P̂C = 1 − ∑
n |	n〉 〈	n|, where the sum is

taken over all the bound states. In practice, t = 3T0 is enough
to get a stabilization of the momentum distribution with an
uncertainty of less than 1%. The left-right ratio P+/P− is in
agreement with Fig. 2.6 in Ref. [31], when it is calculated for
the same few-cycle pulse defined via its electric field with the
Gaussian envelope

F (t) = F0 exp

(
− 2 ln 2

τ 2
t2

)
cos(ωt + ϕ), (20)

and for same binding potential, V (x) = −0.7795/
√

x2 + a2
0 .
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B. Semiclassical simulations in one dimension

The semiclassical simulations in 1D are performed simi-
larly to the 3D case. Newton’s equation of motion now reads

d2x

dt2
= −F (t) − dV (x)

dx
. (21)

As in the 3D case, we assume that the electron has zero initial
velocity in the direction of the laser field, ẋ (t0) = 0. The tunnel
exit point x(t0) is found from the following equation:

V (x) + F (t)x = E0. (22)

The time of the ionization is again distributed in accord with
the static tunneling rate,

w(t0) ∼ exp

(
− 2κ3

0

3F

)
, (23)

with F = F (t0) and κ2
0 /2 = E0. In contrast to the 3D case, we

need fewer (∼1.0 × 105) trajectories to resolve 1D momentum
distributions because there is no sampling over the transverse
initial momenta. We propagate the ensemble of trajectories
after the end of the laser pulse until the electron momentum
distribution converges. Typically, 8–10 laser periods are
enough.

C. Strong-field approximation in one dimension

We introduce the SFA in 1D similarly to the 3D case [cf.
Eq. (9)]:

Mkx
=

∫ T0

0
〈	kx

(x,t)|VF (t)|	0(x,t)〉, (24)

where 	0 (x,t) = φ0 (x) exp (−iE0t) is the initial wave func-
tion, VF (t) = xF (t) is the interaction operator, and

	kx
(x,t) = 1

(2π )1/2
exp

{
i[kx + Ax(t)]x

− i

2

∫ t

[kx + Ax(t ′)]2dt ′
}

(25)

is the 1D analog of the Volkov state, normalized such that
〈	kx

(x,t)|	k′
x
(x,t)〉 = δ(kx − k′

x). The same transformations
as in the 3D case lead to the following expression for the
ionization amplitude:

Mkx
=

∫ T0

0

{
E0 − 1

2
[kx + Ax(t)]2

}
φ̃0[kx + Ax(t)]

× exp[if (t)]dt, (26)

where

φ̃0(q) =
∫

e−iqxφ0(x)dx (27)

is the Fourier transform of the initial bound state φ0 (x), and

f (t) = 1

2

∫ t

[kx + Ax(t ′)]2dt ′ − E0t. (28)

The saddle-point equation in 1D reads similar to the 3D case;
see Eq. (14). It is easy to verify that the Fourier transform of
Eq. (27) is again singular at the saddle points. However, and in
contrast to the 3D case, we do not have any analytic expression

for the initial bound state φ0 (x). Therefore, we calculate the
integral in Eq. (26) numerically. Since the integrand is a
highly oscillating function, the standard methods of numerical
integration are inefficient. Thus, it is reasonable to use a
numerical method specially adapted to the evaluation of highly
oscillating integrals. Let us first rewrite Eq. (26) as follows:

Mkx
= 1

ω

∫ ωT0

0
F (ωt) exp[izF ξ (ωt)]d(ωt), (29)

where

F (ωt) =
{

1

2
[kx + Ax(t)]2

}
φ̃0(kx + Ax(t)), (30)

ξ (ωt) = f (t)/zF , and zF = F 2/ω3 � 1. Following the ap-
proach of Refs. [59,60], we use the transformation x = ξ (ωt)
to yield an integral of the form

Mkx
= 1

ω

∫ ωT0

0

F [ξ−1(x)]

ξ ′[ξ−1(x)]
exp[izF x]dx. (31)

Since the saddle-point equation for integral (26) does not
have real solutions, ξ ′ (ωt) has no zeros on the interval of
integration, and the integral of Eq. (31) is nonsingular. This
integral can be easily calculated using Filon’s integration
formula [61]. It should be stressed that the same integration
technique can also be applied to calculate the usual SFA
ionization amplitude in 3D. The numerical calculation of the
highly oscillating integral in Eq. (11) takes only a few minutes
on a single 2.7 GHz processor.

D. Asymmetry in one dimension

The asymmetry parameters calculated for the 1D model
atom with the binding potential of Eq. (18) with Z = 1 and
with same pulse durations as in Fig. 2 are shown in Fig. 3.
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FIG. 3. (Color online) Asymmetry of the photoelectron momen-
tum distributions as a function of the CEP and field strength for
a 1D model atom with soft-core potential given by Eq. (18) and
for a wavelength of 800 nm. (a)–(c) and (d)–(f) correspond to the
pulse durations np = 2 and np = 4, respectively. (a) and (d) show
the asymmetries calculated from the solution of the 1D TDSE. (b)
and (e) present the asymmetries calculated using the two-step model.
(c) and (f) depict the results of the 1D SFA.
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Note that in the 1D case, the asymmetry oscillations are
very sensitive to both the envelope of the laser pulse and
the binding potential. As in the 3D case, the two-step model
in the combined ionic potential and the electric field of the
pulse is not capable to describe the intensity dependence of
the asymmetry parameter; see Figs. 3(b) and 3(e). The same
is true for the SFA, which (i) predicts qualitatively different
behavior of the asymmetry as a function of laser intensity and
CEP, and (ii) substantially underestimates the asymmetry of
the distributions [see Figs. 3(c) and 3(f)]. However, Fig. 3
does not give much insight into the mechanism underlying the
complex behavior of the asymmetry as one could expect.

In view of the failure of the two-step model and the SFA,
it appears reasonable to expect that the participation of atomic
resonances in the ionization dynamics is responsible for the
intricate oscillations of the asymmetry. Indeed, this hypothesis
might explain the behavior of R with a decrease of the
pulse duration, as well as its sensitivity to the parameters of
the potential and to the envelope function. In order to
investigate this suggestion, we monitor the populations of the
ground state and of the few first excited states during the laser
pulse for a fixed CEP with ϕ = 0 and several different field
amplitudes, for which the asymmetry R has different signs.
Surprisingly, it is found that the populations do not exhibit any
notable resonancelike behavior.

1. Role of the continuum

In order to shed light on the oscillations of R, in Figs. 4(a)
and 4(b) we plot the ionized part of the momentum-space
wave function during the laser pulse for a fixed CEP with
ϕ = 0.83π and for two different field amplitudes F0 = 0.076
a.u. and 0.079 a.u. corresponding to asymmetries R = −0.04
and R = 0.02, respectively. The corresponding momentum
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FIG. 4. (Color online) (a),(b) Ionized part of the wave function in
momentum space during the laser pulse defined by the vector potential
(1) for 1D model atom [Eq. (18)], and (c),(d) momentum distributions
at the end of the pulse in Eq. (1). The areas contained within the
dashed lines in panels (a) and (b) correspond to the bound-state part
of the wave packet. Panels (a) and (c) correspond to F0 = 0.076 a.u.,
whereas (b) and (d) show results for F0 = 0.079 a.u. The wavelength
is λ = 800 nm, the pulse duration is np = 4, and the CEP is ϕ =
0.83π .

distributions at the end of the pulse (t = T0) are shown in
Figs. 4(c) and 4(d). Note that these distributions are similar
to those at t → ∞: The calculations show that there is no
substantial exchange of the population between the kx < 0 and
kx > 0 semiaxes after the laser field is switched off. It is seen
in Figs. 4(c) and 4(d) that the momentum distribution dP/dkx

is nonzero at approximately the same interval k ≈ 2.0 a.u.
for both kx < 0 and kx > 0. Thus the sign of the asymmetry is
determined by the position of the maximum of the distribution
[cf. Figs. 4(c) and 4(d)].

In order to analyze the effect in more detail, we turn to the
TDSE in the momentum space and velocity gauge,

i
∂φ̃(kx,t)

∂t
= k2

x

2
φ̃(kx,t) + kxAx(t)φ̃(kx,t)

+
∫ ∞

−∞
V (kx,k

′
x)φ̃(k′

x,t)dk′
x, (32)

where φ̃ (kx,t) is the momentum-space wave function, and

V (kx,k
′
x) = 1√

2π

∫
V (x) exp[i(kx − k′

x)]dx (33)

is the kernel of integral-differential equation (32). For brevity,
we omit infinite integration limits in Eq. (33) and in the
following. The corresponding time-independent equation in
the absence of the laser field reads

k2
x

2
φ̃(kx) +

∫
V (kx,k

′
x)φ̃(k′

x)dk′
x = Eφ̃(kx). (34)

Since the eigenstates φ̃m (kx) of the field-free Hamiltonian
form a complete set, the wave function φ̃ (kx,t) at any time t

can be written as

φ̃(kx,t) =
∑
m

cm(t)φ̃m(kx) exp(−iEmt), (35)

where Em is an eigenvalue corresponding to the eigenvector
φ̃m (kx). Note that the coefficients cm of the expansion of
Eq. (35) are generally complex. By inserting Eq. (35) into
Eq. (32), taking into account Eq. (34), and integrating over kx ,
we obtain

i
dcn

dt
=

∑
m

cm(t)FnmAx(t) exp[−i(Em − En)t]. (36)

Here, Fnm is a matrix element of momentum operator k̂x

between the states m and n:

Fnm =
∫

φ̃n(kx)kxφ̃m(kx)dkx. (37)

Note that since we impose zero boundary conditions, the
eigenfunctions φ̃n (x) are real and, therefore, φ̃∗

n (kx) ≡ φ̃n (kx).
In order to solve Eq. (34), we use a 1D box centered at

kx = 0 and extending to Kmax = 10 a.u. The grid in momentum
space consists of 5000 points. The basis we use in the
expansion [Eq. (35)] consists of 1500 eigenstates, in which
50 correspond to bound states and the rest form a discretized
continuum.

The solution of Eq. (36), i.e., the set of complex coef-
ficients cm(t), yields the wave function in Eq. (35). From
the computational point of view, Eq. (37) does not give any
advantages compared to the direct solution of the TDSE
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either in coordinate or momentum space. First, to achieve
convergence, we need to have a large number of basis functions
in the expansion of Eq. (35), typically m = 1000–1500.
Second, owing to the large number of equations needed,
Eq. (37) demonstrates rather unstable behavior for some
laser-atom parameters. In order to solve Eq. (37), we used
the implicit (backward) Euler method (see, e.g., [49]) instead
of the conventional Runge-Kutta method with an adaptive
step-size control. However, the implicit Euler method requires
the solution of a system of linear algebraic equations at each
time step, and the matrix of this system is neither tridiagonal
nor sparse.

Let us denote the phase of the coefficient cm(t) by αm, i.e.,
cm(t) ≡ |cm(t)| exp (iαm). Now, Eq. (35) can be rewritten as

φ̃(kx,t) =
∑

m=m0

|cm(t)|φ̃m(kx) exp(iβm), (38)

where βm = αm − Emt . Numerical solution of Eq. (36) shows
that for the parameters of Fig. 3, the contributions of almost
all continuum states to the sum of Eq. (43) are of the same
order of magnitude, and only terms with m � 1000 can be
neglected. Note that the summation in Eq. (38) starts from
some m0, which corresponds to the first positive eigenvalue
Em0 > 0 (m0 = 51 for Kmax and number of grid points we
used). In order to obtain the momentum distribution, we have
to calculate |φ̃(kx,t)|2 at t → ∞:

|φ̃(kx,t)|2 =
∑

m=m0

|cm(t)|2φ̃2
m(kx)

+
∑
m=m0
n>m

2|cm(t)||cn(t)|φ̃m(kx)φ̃n(kx)

× cos(βm − βn). (39)

It is obvious that not all of the terms in Eq. (39) will contribute
to the asymmetry of the distribution. Although φ̃m (kx) is an
even function for odd m, and an odd function for even m,
|φ̃(kx)|2 (as well as |φ̃(kx)|) is an even (symmetric) function
for any m. Therefore, only some of the interference terms [i.e.,
some terms of the second sum on the right side of Eq. (39)] are
asymmetric, provided that φ̃m (kx) φ̃n (kx) is an odd function.
This, in turn, implies that φ̃m (kx) is an odd function, and
φ̃n (kx) is an even function, or vice versa. For an odd
function φ̃m (kx) φ̃n (kx), the integrals

∫
kx<0 φ̃m (kx) φ̃n (kx) dkx

and
∫
kx>0 φ̃m (kx) φ̃n (kx) dkx have the same absolute values

but different signs. As a result, asymmetric contributions to
both

∫
kx<0 |φ̃(kx,t → ∞)|2dkx and

∫
kx>0 |φ̃(kx,t → ∞)|2dkx

have different signs but equal absolute values. The analysis
presented here provides decisive evidence that quantum
interference is responsible for the left-right asymmetry.

Below we derive a formula, which allows one to calculate
the sign of the asymmetry, provided the solution of the TDSE
given by Eq. (36) is known. Let us denote P+ ≡ S0 + 

and P− ≡ S0 − , where S0 is an equal, i.e., symmetric
contribution to the areas under the curve |φ̃(kx,t → ∞)|2 for
both kx < 0, and kx > 0. Then the asymmetry is calculated as

R = 

S0
, (40)

and, therefore, the sign of R is determined from the sign of

=
∑
m=m0
n>m

2|cm(t)||cn(t)| cos(βn − βm)
∫

kx>0
φ̃m(kx)φ̃n(kx)dkx.

(41)

Note that for each n in Eq. (41), we should consider n =
m + 1,m + 3,m + 5, . . .. Furthermore,∣∣∣∣

∫
kx>0

φ̃m(kx)φ̃m+1(kx)dkx

∣∣∣∣ >

∣∣∣∣
∫

kx>0
φ̃m(kx)φ̃m+3(kx)dkx

∣∣∣∣
>

∣∣∣∣
∫

kx>0
φ̃m(kx)φ̃m+5(kx)dkx

∣∣∣∣ > · · · , (42)

since φ̃m+k (kx) “moves away” from φ̃m (kx) with increasing
k, and their overlap decreases. Therefore, the main con-
tribution to the asymmetry for fixed m is given by the
interference term proportional to φ̃m(kx)φ̃m+1(kx). For exam-
ple,

∫
kx<0 φ̃51 (kx) φ̃52(kx)dkx ≈ −0.5000,

∫
kx<0 φ̃51 (kx) φ̃54

(kx)dkx ≈ 0.0057,
∫
kx<0 φ̃51 (kx) φ̃56 (kx) dkx ≈ −0.0029, etc.

Therefore, the main contribution to the asymmetry for fixed
m is given by the term proportional to φ̃m (kx) φ̃m+1 (kx).
This allows us to estimate the asymmetric contribution to the
population

∫
kx>0 |φ̃(kx,t → ∞)|2dkx as

 ≈
∑
m

2�m|cm(t)||cm+1(t)| cos(βm − βm+1), (43)

where �m = ∫
kx>0 φ̃m(kx)φ̃m+1(kx)dkx , provided that |cm(T0)|

|cm+1(T0)| � |cm(T0)||cm+3(T0)| � |cm(T0)||cm+5(T0)| � · · · ,
which is true for the parameters used in Fig. 3 [note that
according to Eq. (36), the coefficients cm(t) are constant
at t � T0]. Note that Eq. (43) does not have any predictive
power: in order to obtain the sign of the asymmetry, one has to
solve TDSE first. However, Eq. (43) can be used to calculate
the sign of the asymmetry parameter R if the coefficients cm(t)
are known. For example, for F0 = 0.076 a.u. and 0.079 a.u.
(and for a fixed CEP of ϕ = 0), the estimate of Eq. (43) gives
 = −3 × 10−4 and  = 3 × 103, respectively, and thus
reproduces the correct signs of R. Note that the statements
in the above analysis about the overlaps between field-free
basis states do not depend on the laser parameters; only the
expansion amplitudes cn(t) do.

2. Role of the bound states

The analysis presented above is insufficient to understand
the role of the bound states in the formation of the asymmetry.
Indeed, is there interference of only the continuum channels or
is the asymmetry induced by the bound part of the wave packet
that is carried into the continuum during the laser pulse? In
order to answer this question, we next consider the solution
of the TDSE with all of the continuum states and only some
of the bound states included in the expansion of Eq. (35). The
asymmetry as a function of the CEP and laser intensity is
shown in Fig. 5 for different number of bound states taken into
account. This figure should be compared with Figs. 3(d)–3(f).
As one could expect, the low-intensity part of Fig. 5(a) (with
only the ground state) is similar to the result of the two-step
model [cf. Fig. 3(e)], whereas its high-intensity part slightly
resembles the SFA result [cf. Fig. 3(f)]. In the sequence of
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FIG. 5. (Color online) Asymmetry of the photoelectron momen-
tum distributions as a function of the CEP and field strength for a 1D
model atom with soft-core potential given by Eq. (18) at a wavelength
of 800 nm and for np = 4. (a) The asymmetry when only the ground
state is included. (b) The case when the ground state and first excited
state are taken into account. (c) The asymmetry when the ground
state and the first through fourth excited states are included. (d)–(f)
The inclusion of the ground state and all the excited states up to the
10th, 20th, and 30th state, respectively. In all cases (a)–(f), all of the
continuum states are taken into account in Eq. (35).

Figs. 5(a)–5(f), we clearly find gradual convergence into a
pattern that is similar to the full result in Fig. 3(d). Hence, in
order to reproduce the intensity dependence of R correctly,
it is necessary to take into account a large number of bound
states up to the Rydberg regime. In fact, the energies of the
20th and 30th excited states in the potential of Eq. (18) with
Z = 1.0 are only −4.72 × 10−3 a.u. and −2.22 × 10−3 a.u.,
respectively. To see the asymmetry oscillation as a function of
the pulse amplitude more clearly, Fig. 6 shows cuts of Fig. 5

−1

−0.5

0

0.5

1

R

0.04 0.06 0.08 0.10 0.12
−1

−0.5

0

0.5

1

F0 (a.u.)

R

0.04 0.06 0.08 0.10 0.12
F0 (a.u.)

 

 
ground
up to 10th
up to 30th

(a) (b)

(d)(c)

FIG. 6. Asymmetry of the photoelectron momentum distributions
as a function of the field strength for a 1D model atom with the
potential of Eq. (18) at a wavelength λ = 800 nm for some fixed
values of CEP: (a) ϕ = 0, (b) ϕ = π/2, (c) ϕ = 3π/2, and (d)
ϕ = 2π . The dashed, thin solid, and thick solid curves show cuts
of Figs. 5(a), 5(d), and 5(f), respectively.
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FIG. 7. Photoelectron momentum distributions calculated using
the two-step model for ionization of a 1D model atom [Eq. (18)] by
a pulse with a duration of (a) np = 2 and (b) np = 4. The dashed
and solid curves correspond to F0 = 0.05 a.u. and F0 = 0.09 a.u.,
respectively. The wavelength is λ = 800 nm and the CEP is ϕ =
1.38π .

at some fixed values of the CEP: ϕ = 0, π/2, 3π/2, and 2π .
In conclusion, the oscillations of the asymmetry parameter
as a function of the laser intensity are a result of a complex
interference effect, in which both bound and continuum states
are involved.

3. Effect of the pulse length

The disappearance of the asymmetry oscillations with
decreased pulse duration [cf. Figs. 2(a) and 2(d)] can be
understood on the basis of the two-step model with the
Coulomb field. Momentum distributions calculated using the
two-step semiclassical model are shown in Figs. 7(a) and 7(b)
for two different pulse durations (np = 2 and 4) and field
strengths (F0 = 0.05 and 0.09 a.u.).

It is seen that at low intensity, the distributions consist of
only one maximum (centered at some kx > 0) for both pulse
lengths. Moreover, in both cases, the second maximum of
the distributions corresponding to kx < 0 appears at higher
intensities. However, its height and width are substantially
different depending on the pulse duration: this second max-
imum is much smaller for the shorter pulse because of the
more intensive population of the Rydberg states. Indeed, in
accord with the scaling obtained in Ref. [51], the number of
electrons captured into the Rydberg states after the end of
the pulse increases with the decreasing pulse duration. As a
result, even a substantial interference effect cannot lead to
a significant change of the asymmetry of the photoelectron
momentum distributions generated by such a short pulse,
and the Coulomb attraction [28,29] is the only mechanism
determining the asymmetry in this case.

IV. CONCLUSIONS

In conclusion, we have revisited the left-right asymmetry
of the photoelectron momentum distributions generated by
an intense few-cycle laser pulse in the subtunneling regime,
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where 1 < γ < 2. We have investigated the asymmetry as a
function of both the absolute phase and laser intensity for
the atomic hydrogen using ab initio numerical solution of the
3D TDSE, semiclassical simulations based on the two-step
model accounting for both the laser field and the Coulomb
field of the ion, and the SFA. We have shown that in the
well-studied intensity region of 0.3–1.0 × 1014 W/cm2, the
left-right asymmetry exhibits nontrivial behavior, which was
discussed earlier in the case of ionization of a one-dimensional
model atom [31]. In particular, our TDSE calculations demon-
strate distinctive oscillations of the asymmetry parameter as
a function of the intensity for a fixed CEP: at some laser
intensities, the asymmetry turns to zero, i.e., photoelectron
momentum distributions restore their symmetry. It is shown
that these oscillations cannot be described within the SFA,
which is in qualitative agreement with the conclusions of
Refs. [27–29]. However, they also cannot be described by
the semiclassical simulations, even when both laser field and
the Coulomb potential of the ion are taken into account.
This implies that the asymmetry in the subtunneling intensity
regime appears not only due to the Coulomb attraction of an
ionized electron.

In order to reveal the physical mechanism responsible
for this intricate change of the asymmetry of momentum
distributions, we have investigated the same effect in a one-

dimensional model. Here we have applied the same methods,
namely, TDSE (both in coordinate and momentum space),
one-dimensional counterpart of the SFA, and semiclassical
two-step model with both fields. By solving the momentum-
space TDSE in a basis of eigenfunctions of binding potential,
we have revealed the mechanism of the formation of the photo-
electron momentum distributions and of their asymmetry. We
have shown that the quantum interference of a large number
of bound and continuum states underlies the oscillations of
the left-right asymmetry with the intensity variation at a fixed
CEP.
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[4] A. Baltuška, T. Udem, M. Uiberacker, M. Hentschel, E.
Goulielmakis, C. Gohle, R. Holzwarth, V. S. Yakovlev, A.
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