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Nondipole effects in the angular distribution of photoelectrons in two-photon two-color
above-threshold atomic ionization
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Expressions for the angular distribution of photoelectrons produced in two-photon two-color atomic ionization
are obtained within the statistical tensor formalism, taking into account a full multipole expansion of the radiation
in electric and magnetic moments. The general expressions are reduced to a simpler form for a particular geometry
used in experiments with XUV + optical radiation beams and analyzed within the first-order nondipole corrections
for different polarization states of the photons. As a numerical example, the Ne 1s above-threshold ionization
by two-color radiation is considered within the second-order perturbation theory. A large forward-backward
asymmetry in the photoelectron angular distribution is predicted.
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I. INTRODUCTION

Multiphoton atomic ionization has been studied extensively
for decades. These studies are important for the fundamental
understanding of nonlinear processes and also for applications.
The modern theory describing nonlinear photoprocesses was
developed for atoms in strong optical or UV laser fields and is
based on the electric dipole (E1) approximation for the atom-
field interaction. It is believed that the dipole approximation
is appropriate for fields of moderate intensity when the
radiation wavelength is much larger than the size of the atom,
provided the dipole transitions are not forbidden by selection
rules. Ionization probabilities and angular distributions of
electrons emitted in multiphoton ionization processes are
discussed within the dipole approximation in many review
papers and monographs, for example [1–5]. Until recently,
however, the study of nondipole (retardation) effects in atomic
multiphoton ionization was restricted to the special case of
resonant ionization by a monochromatic field in the optical
region, with emphasis to ionization close to resonance with
a discrete atomic level ([6–9] and references therein). With
the advent of free-electron lasers (FELs) generating intense
short-wavelength femtosecond pulses, nonlinear processes in
the XUV and x-ray wavelength range became accessible
experimentally [10], thus stimulating further investigations of
the nondipole effects in the nonlinear processes.

Since the early years of quantum mechanics ([11] and
references therein), it is known that for atomic hydrogen the
retardation corrections to the single-photon absorption cross
section, which is due to the A · p term of the Hamiltonian
(where A is the vector potential in the Coulomb gauge and
p is the electron momentum operator), become noticeable
only at near-relativistic energies. On the other hand, due to
interference between partial-wave amplitudes, which does not
occur in the total cross section, these corrections modify
the photoelectron angular distribution (PAD) at much lower
energies than they affect the angle-integrated cross sections.
Turning to heavier atoms, it is known that in ionization of
some subshells already at photon energies of a few hundred
eV, in special cases even less, the angular distribution and
spin polarization of the photoelectrons in single-photon atomic
ionization are affected significantly by interference between
the electric dipole and electric quadrupole (E2) amplitudes

[contributions from magnetic dipole (M1) transitions to the
continuum are normally negligible] [12–14]. In ionization of
inner atomic shells, when the photon energy is of the order
of keV and even higher, the nondipole corrections to the
PAD sometimes show up already just above the ionization
threshold [15–19]. For such cases, nondipole effects should
be present in the XUV or x-ray nonlinear atomic processes at
similar energies, since at least for one of the absorbed photons
similar atomic continua and similar transitions are involved as
in single-photon ionization.

Recently, retardation effects were considered theoretically
in the two-photon monochromatic above-threshold ionization
(ATI) of hydrogenlike atoms in the x-ray regime [20–23].
Calculations of [23] confirmed the dominance of the first-order
nondipole corrections to the PADs originating from the terms
proportional to k · p, where k is the photon momentum, at
least for photon energies up to 1 keV, and the dominance of
the A · p contribution in comparison with the A2 contribution.
Taking advantage of the exactly known nonrelativistic wave
functions of the hydrogen atom and hydrogenlike ions, it
was possible, within second-order perturbation theory, to
obtain analytical results for the amplitudes of the two-
photon monochromatic ionization, including all multipoles
of the electromagnetic field [23]. PADs in the two-photon
monochromatic ionization of hydrogenlike ions below the
ATI threshold, but including all field multipoles, were treated
within the relativistic second-order perturbation theory and
using the density-matrix approach in [24]. For highly charged
hydrogenlike ions (Xe53+, U91+), strong retardation effects
in the PADs were found for circular, linear, and unpolarized
photon beams.

In systems with two or more electrons, absorption of two
x-ray photons proceeds sequentially with the formation of an
intermediate ionic state with much higher probability than the
two-photon ATI [25,26] process, provided the photon energy
is larger than the ionization energy of the singly charged
ion. In recent papers [27,28], nondipole effects in the PAD
in sequential two-photon double ionization were considered.
Another situation, in which the nondipole corrections could
be important, is the two-color (XUV + optical) ionization,
when the XUV photon generates the nondipole transitions to
the atomic continuum, which are then monitored and possibly
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controlled by the optical photon. Two-color two-photon ATI is
the subject of experiments with high harmonics [29–38] and
free-electron lasers [39–42], supported by theoretical studies
within the dipole approximation (for example [42–46]). A
very important aspect of the two-photon two-color ionization
is the polarization dependence of the cross sections, since
the polarization of the optical laser is easily variable and
is used as an advantage when extracting information on the
dynamics of the process [40,41]. It is the purpose of this
paper to work out an approach to the PAD in multiphoton
multicolor atomic ionization beyond the dipole approximation
and to specifically apply it to two-photon two-color ionization
within the lowest-order nondipole corrections. In order to
obtain general expressions for the PADs, we extend previous
work on one-photon atomic ionization in the dipole [47] and
nondipole [48] approximations based on the statistical tensor
formalism.

The structure of this manuscript is as follows. A general
expression for the PAD in multiphoton multicolor ionization
without restricting the field multipoles is presented in Sec. II
in terms of geometrical and dynamical factors. Section III
specifies the geometrical and dynamical factors for the two-
photon ionization process. As a particular application, angular
distributions in the two-photon two-color ionization within
the first-order nondipole corrections are derived in Sec. IV for
parallel photon beams. A numerical example is given in Sec. V
for the XUV + optical laser 1s ionization of atomic Ne within
the second-order perturbation theory.

Unless stated otherwise, we use atomic units throughout
this paper.

II. GENERAL CONSIDERATIONS

Consider the multiphoton multicolor atomic ionization

[γ (ω1,P1,�1) + γ (ω2,P2,�2) + · · · + γ (ωn,Pn,�n)]

+A(α0J0) −→ [A+(αf Jf )] + e−( p) (1)

by n photons with arbitrary polarizations, characterized by
triads of their Stokes parameters Pi ≡ {p(i)

1 ,p
(i)
2 ,p

(i)
3 }, direc-

tions of propagation �i ≡ {θi,φi} in the laboratory frame, and
frequencies ωi (i = 1,2, . . . ,n). We denote by [A+(αf Jf )]
the final complex consisting of the nuclei and N − 1 electrons
(some of which may be in the continuum), where N is the
number of electrons in the initial atomic state A(α0J0). The
initial state of the atom and the final state of the complex
are characterized by the total angular momenta J0 and Jf ,
respectively, with sets of other quantum numbers α0 and αf

specifying the states. The photoelectron linear momentum p
is determined by the photoelectron energy ε, p = √

2ε, and
the direction of the electron propagation {ϑ,ϕ}.

We assume that the photon pulses contain many optical
cycles and that the photon beams are mutually incoherent.
Therefore, the effects of the pulse shapes, relative phases of
the electromagnetic fields, time delay, and coherence between
the pulses are irrelevant in our treatment of the PADs, and
thus the nondipole contribution to such phenomena as streak-
ing, carrier envelope phase effects, and other processes for
which the time dependence of the electromagnetic field is
crucial, is beyond the scope of the present manuscript. The

radiation field is treated classically and its corresponding
multipole expansion will be used.

Formulas for the PADs can be obtained by employing
the statistical tensor formalism [49–51] within a stationary
approach, in close similarity to earlier work [47,48], where
single-photon ionization was treated. New features compared
to [47,48] when deriving a general expression for the PAD
are the construction of statistical tensors of n incoming
photons from statistical tensors of the individual photons and
introducing amplitudes for multiphoton transitions.

Following almost literally Eqs. (6)–(14) of [47], except
for replacing the statistical tensors of a single photon by
those of n incoming photons and substituting the one-photon
dipole transition matrix element by a general transition matrix
element describing the n-photon transition without restricting
the field multipoles, we obtain for the PAD in the n-photon
absorption

W (ϑ,ϕ) =
∑
k0kkγ

∑
αγ α′

γ

Lγ L′
γ

B
nγ

k0kkγ
(αγ Lγ ,α′

γ L′
γ )

×F
nγ

k0kkγ
(αγ Lγ ,α′

γ L′
γ ; ϑ,ϕ; {P,�}). (2)

Here the multiphoton dynamical and geometrical factors are,
respectively, of the form

B
nγ

k0kkγ
(αγ Lγ ,α′

γ L′
γ )

= 3Ĵ0

∑
��′jj ′
JJ ′

(−1)J+Jf +kγ −1/2Ĵ Ĵ ′ĵ ĵ ′�̂�̂′(�0,�′0 | k0)

×
{

J J ′ k

j ′ j Jf

}{
j j ′ k

�′ � 1
2

}⎧⎨
⎩

J0 Lγ J

J0 L′
γ J ′

k0 kγ k

⎫⎬
⎭

×〈αf Jf ,�j : J || T || α0J0,αγ Lγ : J 〉
× 〈αf Jf ,�′j ′ : J ′ || T || α0J0,α

′
γ L′

γ : J ′〉∗ (3)

and

F
nγ

k0kkγ
(αγ Lγ ,α′

γ L′
γ ; ϑ,ϕ; {P,�})

=
√

4πk̂0

∑
qγ

{
ρ∗

k0
(α0J0) ⊗ Yk(ϑ,ϕ)

}
kγ qγ

× ρ
nγ

kγ qγ
(αγ Lγ ,α′

γ L′
γ ; {P ; �}). (4)

The summation in Eq. (2) is over the total angular momen-
tum of the n photons Lγ and other quantum numbers αγ

specifying the state of the n photons; αγ includes the set
of the field multipoles and intermediate couplings of the
photon’s angular momenta. The set of photon polarizations
and the directions of the photon beams are denoted as
{P ; �}: {P ; �} ≡ {P1,P2, . . . ,Pn; �1,�2, . . . ,�n}. Below we
will omit the polarization and direction of propagation of the
photons in the arguments of the statistical tensors and the
geometrical factors for brevity, unless such omission would
lead to confusion. In Eqs. (3) and (4), � and j stand for
the orbital and total angular momenta of the photoelectron,
respectively, we have abbreviated â = √

2a + 1, and standard
notations are used for the spherical harmonics, the tensorial
product, Clebsch-Gordon coefficients, and nj coefficients [52].
The Condon-Shortley phase convention is implied, the angular
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momenta are coupled from left to right, and j = � + s. The
transition matrix elements for multiphoton ionization in Eq. (3)
need special treatment. However, it is only important here
that they enter the PAD as angle-independent quantities.
The statistical tensors ρk0q0 (α0J0) describe the polarization
of the initial atomic state. The n-photon statistical tensors
ρ

nγ

kγ qγ
(αγ Lγ ,α′

γ L′
γ ) can be built from those of the individual

photons, as will be exemplified in the next section. They obey
the general relation

ρ
nγ

kγ qγ
(αγ Lγ ,α′

γ L′
γ ) = (−1)L

′
γ −Lγ +qγ

[
ρ

nγ

kγ −qγ
(α′

γ L′
γ ,αγ Lγ )

]∗
,

(5)

expressing the fact that the density matrix of n photons is
Hermitian. It is implied in Eq. (4) that the n-photon statistical
tensor and the statistical tensors of the atom are given in
the same coordinate system. At the same time the n-photon
geometrical factors (4) are rotationally invariant as a scalar
product of two tensors. For an unpolarized initial atomic state
[ρk0q0 (α0J0) = δk00δq00Ĵ

−1
0 ] Eq. (4) reduces to

F
nγ

k0kkγ
(αγ Lγ ,α′

γ L′
γ )

= δ0k0δkkγ

√
4πĴ−1

0

∑
q

Ykq(ϑ,ϕ)ρnγ

kq (αγ Lγ ,α′
γ L′

γ ). (6)

Equations (3) and (4) are a generalization of Eqs. (13) and (14)
of [47], respectively, to an arbitrarily polarized initial atomic
state, an arbitrary number of photon beams, and arbitrary field
multipoles.

The geometrical factors (4) depend on the number of photon
beams, their polarizations, the directions of propagation and
photon multipolarities, the polarization of the initial atomic
state, and the direction of the photoemission. They do not
depend on the details of the atomic structure and dynamics
of the photon-atom interaction, which are included in the
dynamical factors (3). Permutation of primed and not primed
summation indices yields the relations

B
nγ

k0kkγ
(αγ Lγ ,α′

γ L′
γ )

= (−1)Lγ +L′
γ +k0+kγ +k

[
B

nγ

k0kkγ
(α′

γ L′
γ ,αγ Lγ )

]∗
, (7)

F
nγ

k0kkγ
(αγ Lγ ,α′

γ L′
γ )

= (−1)Lγ +L′
γ +k0+kγ +k

[
F

nγ

k0kkγ
(α′

γ L′
γ ,αγ Lγ )

]∗
. (8)

Relations (7) and (8) ensure real values for the PAD (2).
Additional relationships between the coefficients (3) follow
from parity conservation. (An example for the two-photon
ionization will be given in Sec. III.) In principle, general
symmetry properties of the factors (3) and (4) allow us to find
appropriate parametrizations for the PADs. Some examples
will be provided in Sec. IV.

The PAD (2) is related to a differential “generalized cross
section”

dσ

d�
= cW (ϑ,ϕ), (9)

where the factor c normalizes the probability to unit photon
fluxes and also depends on the definition of the generalized
cross section, which is different in the literature (see, for

example, [21] for a discussion). We will turn to the absolute
values of the cross section (9) in Sec. V.

III. TWO-PHOTON GEOMETRICAL AND DYNAMICAL
FACTORS

In order to proceed to the particular case of two-photon
two-color single ionization, we first build the two-photon
statistical tensors (see Appendix A) according to standard
prescriptions [51]:

ρ
2γ

kγ qγ
(π1L1,π2L2 : Lγ ; π ′

1L
′
1,π

′
2L

′
2 : L′

γ )

=
∑

k1q1k2q2

k̂1k̂2L̂γ L̂′
γ (k1q1,k2q2 | kγ qγ )

⎧⎨
⎩

L1 L2 Lγ

L′
1 L′

2 L′
γ

k1 k2 kγ

⎫⎬
⎭

× ρk1q1 (π1L1; π ′
1L

′
1)ρk2q2 (π2L2; π ′

2L
′
2). (10)

The statistical tensors (10) obey the relation (5). Statistical
tensors of a larger number of photons with different frequen-
cies can be built in a similar way [50]. Statistical tensors of
individual photons for arbitrary field multipoles in Eq. (10) are
known. They have the simplest general form in the coordinate
system S‖ with the z axis along the photon beam [50,51,53]:

ρ
‖
k0(πL,π ′L′) = (−1)L

′−1 L̂L̂′

6
(L1,L′ − 1 | k0)

× [1 + (−1)f + p3(1 − (−1)f )], (11)

ρ
‖
k±2(πL,π ′L′) = (−1)L

′+π ′ L̂L̂′

6
(L1,L′1 | k2)

× (±1)f pl exp [∓2iξ ], (12)

where f = L + L′ + π + π ′ − k,

pl =
√

p2
1 + p2

2, cos 2ξ = p1

pl

, sin 2ξ = p2

pl

. (13)

The angle ξ indicates the principal axis of the polarization
ellipse of the corresponding photon beam with respect to the
x axis, which is fixed perpendicular to the photon beam. The
Stokes parameters p1 = +1(−1) and p2 = +1(−1) describe
radiation that is completely linearly polarized in the direction
ξ = 0, x axis (ξ = π

2 , y axis) and φ = π
4 (φ = 3π

4 ), respec-
tively, while pl is the degree of linear polarization. The Stokes
parameter p3 = +1(−1) corresponds to the positive (negative)
value of the photon helicity. Statistical tensors ρ

‖
kq(πL,π ′L′)

with q �= 0, ± 2 vanish. A general factor in Eqs. (11) and (12)
is chosen to yield the standard normalization ρ00(E1,E1) =

1√
3
. The tensors (11) and (12) can be transformed to an arbitrary

coordinate system S by rotation

ρS
kq(πL,π ′L′) =

∑
q ′

Dk∗
q ′q(R) ρ

‖
kq ′ (πL,π ′L′), (14)

where the Wigner D function is defined as in [52] and
the rotation R transforms the frame S‖ into the frame
S. The statistical tensors (11) and (12) for {πL,π ′L′} =
{E1,E1}, {E1,E2}, {E1,M1} in terms of the Stokes pa-
rameters are tabulated in [53]. Those tensors, which are
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needed in the further derivations, are given in Appendix A,
Eqs. (A4)–(A12).

The symmetry properties of the geometrical and dynamical
factors are important in deriving the PADs. Permutation
{π1L1 ↔ π2L2; π ′

1L
′
1 ↔ π ′

2L
′
2} in (10) leads to the relation

ρ
2γ

kγ qγ
(π1L1,π2L2 : Lγ ; π ′

1L
′
1,π

′
2L

′
2 : L′

γ )

= (−1)ηρ2γ

kγ qγ
(π2L2,π1L1 : Lγ ; π ′

2L
′
2,π

′
1L

′
1 : L′

γ ), (15)

where η = L1 + L2 + Lγ + L′
1 + L′

2 + L′
γ . A similar permu-

tation symmetry is valid for the two-photon geometrical factors
[see (4)]

F
2γ

k0kkγ
(π1L1,π2L2 : Lγ ; π ′

1L
′
1,π

′
2L

′
2 : L′

γ )

= (−1)ηF 2γ

k0kkγ
(π2L2,π1L1 : Lγ ; π ′

2L
′
2,π

′
1L

′
1 : L′

γ ). (16)

For fixed parities π0 and πf of the initial atomic and final
ionic states, respectively, the two-photon transition matrix
elements—due to the parity conservation in the photoioniza-
tion process—obey the relationship

〈αf Jf ,�j : J || T || α0J0,αγ Lγ : J 〉
= (−1)ν〈αf Jf ,�j : J || T || α0J0,αγ Lγ : J 〉, (17)

where ν = π1 + L1 + π2 + L2 + π0 + πf + �. Then it fol-
lows from Eq. (3)

B
2γ

k0kkγ
(π1L1,π2L2 : Lγ ; π ′

1L
′
1,π

′
2L

′
2 : L′

γ )

= (−1)ν
′
B

2γ

k0kkγ
(π1L1,π2L2 : Lγ ; π ′

1L
′
1,π

′
2L

′
2 : L′

γ ), (18)

where ν ′ = π1 + π2 + π ′
1 + π ′

2 + L1 + L2 + L′
1 + L′

2 + k,
restricting k to either even or odd values for a fixed set of the
field multipoles.

IV. TWO PARALLEL RADIATION BEAMS

The equations of Secs. II and III allow us to write down the
PAD for two-photon ionization under very general conditions.
In this paper we restrict ourselves to the lowest-order nondipole
corrections, when the interaction of one of the photons with
the atom can be described within the electric dipole E1
approximation, while for the other photon accounting for
the lowest-order nondipole corrections is needed. This is
appropriate, for example, for pump-probe experiments with
combined XUV or x-ray and optical laser beams. Furthermore,
bearing in mind modern experimental facilities, we consider
in this paper parallel radiation beams and unpolarized initial
atomic states.

Using Eqs. (7), (8), and the permutation properties of the
geometrical factors (16), the angular distribution (2) can be
cast into the form

W (ϑ,ϕ) =
∑
k,L

B11
k (LL)F 11

k (LL)

+ 2 Re
∑

k,L>L′
B11

k (LL′)F 11
k (LL′)

+ 4 Re
∑
k,LL′

B12
k (LL′)F 12

k (LL′). (19)

Here we assumed that the dominating nondipole effect in the
PAD is caused by the E1-E2 interference of the multipole
amplitudes. The M1 photoionization amplitude vanishes
nonrelativistically. In Eq. (19) we abbreviated

F 11
k (LL′) ≡ F

2γ

0kk(E1,E1 : L; E1,E1 : L′), (20)

B11
k (LL′) ≡ B

2γ

0kk(E1,E1 : L; E1,E1 : L′), (21)

F 12
k (LL′) ≡ F

2γ

0kk(E1,E1 : L; E2,E1 : L′)

≡ (−1)L+L′+1F
2γ

0kk(E1,E1 : L; E1,E2 : L′), (22)

B12
k (LL′) ≡ 1

2

[
B

2γ

0kk(E1,E1 : L; E2,E1 : L′) + (−1)L+L′+1

×B
2γ

0kk(E1,E1 : L; E1,E2 : L′)
]
. (23)

According to Eqs. (7) and (8), B11
k (LL) and F 11

k (LL) are
real. The first two terms in Eq. (19) describe two-photon
PAD in the pure electric dipole approximation, while the last
term gives the first-order nondipole corrections. The values
of k and L are restricted by triangular rules, in particular
|L − L′| � k � L + L′. For initial atomic and final ionic
states with definite parity, k = 0,2,4 in the first term of
Eq. (19), k = 2 in the second term of Eq. (19), and k = 1,3,5
in the last term of Eq. (19). The last term in Eq. (19) vanishes
when the photoelectron is emitted in the so-called “dipole
plane,” perpendicular to the photon beams. To show this,
we choose the z axis along the photon beams. Then, for
k = odd and ϑ = π

2 , it follows from (6) that only terms with
q = odd give nonvanishing contributions to the PAD, because
Ykq(π

2 ,ϕ) = 0 for k + q = odd. However, the two-photon
tensors (10) contributing to the first-order nondipole correction
vanish for odd projections [see Eqs. (11) and (12)].

For stimulated emission by the optical photon, Eq. (19)
remains valid with the geometrical and dynamical factors
having a different meaning. This point will be considered in
another publication.

Let us now specify Eq. (19) to particular cases.

A. Two circularly polarized radiation beams

For two circularly polarized radiation beams, Eq. (19) gives

W++(ϑ,ϕ) =
5∑

k=0

C++
k Pk(cos ϑ), (24)

W+−(ϑ,ϕ) =
5∑

k=0

C+−
k Pk(cos ϑ), (25)

where ++ and +− correspond to positive and negative
helicities of the radiation beams, respectively, and the angle
ϑ is counted from the propagation direction of the radiation
beams. Note that W++(ϑ,ϕ) = W−−(ϑ,ϕ) and W+−(ϑ,ϕ) =
W−+(ϑ,ϕ). In Eqs. (24) and (25), terms with k = even
represent the dipole contributions originating from the pure E1
transitions, while terms with k = odd are due to the first-order
nondipole corrections. Explicit expressions for the coefficients
C++

k and C+−
k in terms of dynamical factors (21) and (23) are

given in Appendix B, Eqs. (B1)–(B10). For particular cases
the coefficients in Eqs. (24) and (25) may be related, providing
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simpler expressions for the PADs. An appropriate example will
be given in Sec. V.

The PAD has axial symmetry with respect to the direction of
the beams propagation (z axis). The forward-backward sym-
metry is violated due to the first-order nondipole corrections.

The circular dichroism in the photoelectron angular distri-
bution (CDAD) takes the form

CDAD ≡ W++(ϑ,ϕ) − W+−(ϑ,ϕ)

= 1
4 (C�

0 + C�
2 + 3C�

2 cos 2ϑ)

+ 1
4 (3C�

1 + 3C�
3 + 5C�

3 cos 2ϑ) cos ϑ, (26)

where C�
k = C++

k − C+−
k . Note that terms with the highest

powers of cosine in Eqs. (24) and (25) are canceled in the
CDAD (26).

B. One circularly polarized and one linearly
polarized radiation beam

This case is realistic for experiments with linearly polarized
XFEL radiation in combination with an optical laser whose
polarization can be controlled easily. Equation (19) gives

W±(ϑ,ϕ) =
5∑

k=0

CkPk(cos ϑ) + cos 2ϕ

5∑
k=2

C̄kP
2
k (cos ϑ)

± sin 2ϕ
[
CP 2

2 (cos ϑ) + C ′P 2
3 (cos ϑ)

]
. (27)

It is implied that the z axis is chosen along the photon beams
and the x axis is chosen along the linear polarization. The
signs, + or −, indicate the helicity of the circularly polarized
photon, P m

k (x) are the associated Legendre polynomials [54],
and the coefficients Ck , C̄k , C, and C ′ are given in Appendix B,
Eqs. (B11)–(B20). Similar to the previous case, terms with
k = even in Eq. (27) originate from pure dipole transitions,
while terms with k = odd are due to first-order nondipole
corrections. The latter break down the symmetry with respect
to the dipole xy plane.

The parametrization (27) is identical for the two cases:
(a) for linearly polarized radiation the nondipole E2 transitions
are taken into account, while the circularly polarized radiation
is treated within the dipole approximation and (b) linearly
polarized radiation is treated within the dipole approximation,
while for the circularly polarized radiation the E2 transitions
are included. Equation (27) for cases (a) and (b) differ only
by the two nondipole coefficients, C̄3 and C ′ [see a note to
Eqs. (B19) and (B20) in Appendix B].

The CDAD, which is the difference between the PADs for
right (+) and left (−) polarized photons, follows from Eq. (27):

CDAD ≡ W+ − W−
= 6 sin 2ϕ sin2 ϑ(C + 5C ′ cos ϑ). (28)

In spite of the complicated expression for the PAD (27), the
CDAD has a simple form with only two terms: one from
the dipole part of the cross section and one from the first-
order nondipole corrections. For fixed ϑ the CDAD reaches
maximum absolute values at the angle ϕ = π

4 . The dipole term
of Eq. (28) shows the similar angle dependence as derived
previously in [45] [see their Eq. (11)] for the CDAD in the
two-photon two-color ionization of S states.

FIG. 1. (Color online) Geometry of the process with two
collinear linearly polarized radiation beams: (a) general case with
adjustable angle between the polarizations of the beams in the
coordinate system S‖; (b) for parallel polarizations of the beams
in the alternative coordinate system S⊥.

C. Two linearly polarized radiation beams

For linearly polarized beams the PAD depends on the ad-
justable angle ψ = ξ2 − ξ1 between the polarization directions
of the photon beams [see Fig. 1(a)]. The PAD is obtained by
Eq. (19), which is more convenient to transform into the frame
with the z axis along the direction of polarization of one of
the photons and the x axis along the beams. The conversion is
performed by the relations

cos � = sin ϑ cos ϕ, cot � = −cot ϑ

sin ϕ
. (29)

The PAD can then be cast into the following form, where we
explicitly allocated the angle dependencies:

Wψ (�,�)

=
∑

k=0,2,4

(
Cs

k sin2 ψ + Cc
k cos2 ψ

)
Pk(cos �)

+ sin 2ψ sin �
∑
k=2,4

C1
kP

1
k (cos �)

+ sin2 ψ cos 2�
∑
k=2,4

C2
kP

2
k (cos �)

+ cos �
∑

k=1,3,5

(
Cs

k sin2 ψ + Cc
k cos2 ψ

)
P 1

k (cos �)

+ sin 2ψ sin 2�
∑
k=3,5

C2
kP

2
k (cos �)

+ sin2 ψ cos 3�
∑
k=3,5

C3
kP

3
k (cos �). (30)

The dynamical coefficients in Eq. (30) are given in Ap-
pendix B, Eqs. (B21)–(B34). The pure dipole part, represented
by the first three sums in Eq. (30), is of the form found
in [55,56]. The three last sums represent the first-order
nondipole corrections.

Additional symmetries of the PAD appear for parallel and
perpendicular directions of the polarizations. For the particular
case of parallel polarizations [ψ = 0, Fig. 1(b)], we obtain
from Eq. (30)

W0◦ (�,�) = W0
[
1 + β

(2)
2 P2(cos �) + β4P4(cos �)

+ (δ(2) + γ (2) cos2 �+ γ4 cos4 �) sin � cos �
]
,

(31)
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where W0 = Cc
0, β

(2)
2 = (Cc

0)−1Cc
2, β4 = (Cc

0)−1Cc
4, δ(2) =

(Cc
0)−1(Cc

1 − 3
2Cc

3 + 15
8 Cc

5), γ (2) = 15
4 (Cc

0)−1(2Cc
3 − 7Cc

5),
and γ4 = 315

8 (Cc
0)−1Cc

5. The superscript (2) distinguishes the

parameters β
(2)
2 , δ(2), and γ (2) from the corresponding ones in

the well-known PAD in single-photon ionization, accounting
for the first-order nondipole corrections [16]

dσ

d�
= σE1

4π
[1 + βP2(cos �) + (δ + γ cos2 �) sin � cos �].

(32)

In Eq. (32), σE1 is the total photoionization cross section in the
dipole approximation, β is the asymmetry parameter, and γ , δ
are the nondipole asymmetry parameters. The first three terms
in Eq. (31) yield the well-known PAD in two-photon ionization
in the dipole approximation. The next two terms are similar
to the PAD (32) in single-photon ionization, except that the
parameters δ(2) and γ (2) are now expressed in terms of the two-
photon amplitudes. The term with the dynamical coefficient
γ4 in Eq. (31) is characteristic for the PAD in the two-photon
ionization with the lowest-order nondipole corrections. It is
absent in the case of single-photon ionization.

Simpler expressions are obtained for linear dichroism
in the photoelectron angular distribution (LDAD), which is
defined as LDAD(ψ/ψ + π

2 ) = Wψ (ϑ,ϕ) − Wψ+ π
2
(ϑ,ϕ). For

example, as follows from Eq. (30),

LDAD

(
π

4

/
3π

4

)
= 2 sin �

⎡
⎣ ∑

k=2,4

C1
kP

1
k (cos �)

+ 2 cos �
∑
k=3,5

C2
kP

2
k (cos �)

⎤
⎦ . (33)

D. Angle-integrated cross section

Integrating Eq. (19) over the angles of the electron emission
gives the integral generalized cross section [see Eq. (9)]

σ = c
4π

Ĵ0

1

12
√

5

{[
2
√

5B11
0 (00) +

√
15B11

0 (11) + 7B11
0 (22)

]
+p

(1)
3 p

(2)
3

[
5B11

0 (22) −
√

15B11
0 (11) − 2

√
5B11

0 (00)
]

+p
(1)
l p

(2)
l cos 2ψ

[
B11

0 (22) −
√

15B11
0 (11)

+ 2
√

5B11
0 (00)

]}
. (34)

Thus the angle-integrated two-photon ionization cross section
is not sensitive to the first-order nondipole corrections,
regardless of the polarization state of the photons. Measure-
ments collecting photoelectrons in the 4π geometry, such
as experiments with a magnetic bottle [41,57], are sensitive
to the nondipole contribution only in the next order. The
particular cases of Eq. (34) are equivalent to those used in
the XUV + optical laser pump-probe studies of the two-
photon ionization with observing the angular dependence
of the intensities, for example [40,42]. Note that in the
limiting cases of both right (left) circularly polarized photons
(p(1)

3 p
(2)
3 = 1, p

(1)
� p

(2)
� = 0) and parallel linearly polarized

photons (p(1)
3 p

(2)
3 = 0, p

(1)
l p

(2)
l cos 2ψ = 1), the maximum ra-

tio of the cross sections for circular and linear polarized beams
given by Eq. (34) is 3

2 , in accordance with [58,59]. Here we
obtained this result for arbitrary angular momentum J0 of an
initially unpolarized atomic state.

Equation (34) shows that the angle-integrated dichro-
ism vanishes in the case of one circularly polarized and
one linearly polarized radiation beam (p(1)

l p
(2)
l = p

(1)
3 p

(2)
3 =

0). Furthermore, for two linearly polarized beams the
angle-integrated linear dichroism LD(π

4 / 3π
4 ) also vanishes

(p(1)
3 p

(2)
3 = p

(1)
l p

(2)
l cos 2ψ = 0).

V. K -SHELL TWO-PHOTON TWO-COLOR
IONIZATION OF Ne

As a numerical example of applying the developed for-
malism, we take the ATI of the 1s subshell of Ne, when the
two-photon ionization proceeds by absorption of the XUV
photon and the optical photon (Fig. 2). Noticeable nondipole
effects in the PAD in single-photon 1s ionization of Ne have
been predicted [60]. It is natural to expect that the nondipole
effects should show up in the two-photon two-color ionization
as well, if the energy of the XUV photon is in the same energy
range. We assume that the interaction of the optical photon
with the atom can be described in the dipole approximation,
i.e., the nondipole contribution comes from the XUV photon.
We fix the energy of the optical photon in the infrared (IR)
at 1.5 eV and limit the energies of the photons to 3 keV,
so that an energy resolution of an electron spectrometer of
10−3–10−4 still allows one to resolve the ATI photoelectron
line from the main photoelectron line. Based on calcula-
tions [60] for the Ne(1s−1) photoelectron line, we expect the
second-order nondipole effects to be small at these photon
energies.

We assume that the two-photon ionization is dominated by
the process, in which the 1s electron first absorbs the XUV
photon (solid arrows in Fig. 2). The two-photon transition
matrix element in second-order perturbation theory then takes
the form

〈αf Jf ,�j : J || T || α0J0,(π1L1E1)Lγ : J 〉
= 〈αf Jf ,�j : J || {T π1L1 ⊗ T E1}Lγ

|| α0J0〉

FIG. 2. (Color online) Scheme of the two-photon two-color ATI
of the Ne atom from the 1s shell (see text).
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= (−1)1+L1−J δJLγ
L̂−1

1

×
∑

ν

∫
δJνL1

〈αf Jf ,�j : J || T E1 || ν〉〈ν || T π1L1 || 0〉
Eν − E0 − ω1

,

(35)

where π1L1 = E1 or E2 with the electric dipole and electric
quadrupole transition operators in the nonrelativistic long-
wave approximation

T E1
μ =

√
4π

3

∑
p

rpY1μ(θp,φp), (36)

T E2
μ = iαω

2
√

3

√
4π

5

∑
p

r2
pY2μ(θp,φp). (37)

Here we introduced the tensorial product of two reduced tensor
operators [52]. The summations in Eqs. (36) and (37) are taken
over the atomic electrons and μ denotes the cyclic projection
of the operators. Furthermore, with the transition matrix ele-
ment (35), the second term in Eq. (23) for the dynamical factors
vanishes. Using standard methods of Racah algebra, Eq. (35)
can be reduced within the framework of a single-particle model
and the LS-coupling approximation. Substituting the result
into Eq. (3) with J0 = 0 and performing the summations, we
finally obtain for the dynamical factors of Eq. (19)

B11
k (LL′) = 6k̂−1(L0,L′0 | k0)(10,10 | L0)

× (10,10 | L′0)DLD∗
L′, (38)

B12
k (LL′) = −3k̂−1(L0,L′0 | k0)(10,10 | L0)

× (20,10 | L′0)DLQ∗
L′, (39)

where

DL =
∑
ε′

∫
d1s→ε′pdε′p→εL

ε′ − E1s − ω1
, (40)

QL =
∑
ε′

∫
q1s→ε′ddε′d→εL

ε′ − E1s − ω1
, (41)

da→b =
∫ ∞

0
P ∗

b (r)Pa(r)r dr, (42)

qa→b = iαω

2
√

3

∫ ∞

0
P ∗

b (r)Pa(r)r2 dr. (43)

Here Pa(r) and Pb(r) are the radial electron wave functions in
the states a and b, respectively. The dipole integrals (42) with
two continuum states were calculated according to the recipes
developed in [61,62].

The 1s electron wave function was obtained in the
Hartree-Fock approximation for the ground state of
Ne [63]. The atomic wave functions were then fixed
to obtain the continuum electron orbitals Pε�(r) in the
Ne(1s−1) frozen-core Hartree-Fock approximation. The
continuum wave functions are normalized asymptotically

FIG. 3. (Color online) Nondipole parameters for the main
Ne(1s−1) photoelectron line. Chain red: nondipole asymmetry pa-
rameter γ , Eq. (32). Dashed blue: differential forward-backward
asymmetry at the angle π

4 to the quantization axis; A( π

4 ) = γ /3
is independent of the photon polarization. Solid black: integral
forward-backward asymmetry; A = γ /8 is independent of the photon
polarization. Crosses: relativistic independent-particle approxima-
tion [60] for γ .

according to

lim
r→∞ Pε�(r) = i�e−iδ�(ε)

√
2

πp

× sin

(
pr + 1

p
ln 2pr − π�

2
+ δ�(ε)

)
, (44)

where δ�(ε) is the scattering phase. With this normalization,
the coefficient c in Eq. (34) is 2π2α2ω1ω2/3 to yield the gen-
eralized cross section in atomic units (1.897 × 10−50 cm4s).
Our model gives the nondipole asymmetry parameters for
the main photoelectron line in agreement with the relativistic
independent-particle approximation of [60] (see the parameter
γ in Fig. 3).

It can be seen from Eqs. (38) and (39) explicitly that the
dynamical coefficients with similar sets of L,L′ but different k
are related by a simple algebraic factor. Furthermore, L = 0,2
and L′ = 0,2 in (38), L = 0,2 and L′ = 1,3 in (39), and L +

FIG. 4. (Color online) Angular asymmetry parameters of
Eq. (31) for the two-photon two-color Ne(1s) ATI by linearly
polarized photons (see text).
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FIG. 5. (Color online) 3D photoelectron angular distributions in
the Ne(1s) ATI at the XUV photon energy of 3 keV: (a) ionization
by two circularly polarized photon beams with opposite helicities;
(b) ionization by two linearly polarized photon beams with the angle π

4
between their electric-field vectors EXUV and EIR. The wave vectors
of the XUV (kXUV) and IR (kIR) radiation beams are shown.

L′ + k = even. As a result, the general equations of Sec. IV are
simplified. For example, Eq. (24) for two circularly polarized
beams with equal helicities transforms into

W++(ϑ,ϕ) = 3

2
|Dd |2 sin4 ϑ

(
1 + 3

√
5

Re(DdQ
∗
f )

|Dd |2 cos ϑ

)
.

(45)

Here the nondipole contribution is given by the term containing
the cosine. In the dipole limit Eq. (45) reproduces the well-
known sin4 ϑ dependence for two-photon ionization from an
S state by circularly polarized light [58].

As another example, for two linearly polarized beams
in the dipole approximation, the terms with k = even in
Eq. (30) coincide with Eqs. (2) and (6) of [56] for the
PADs in photoionization of the 1P laser-excited states of the
alkaline-earth metals, provided depolarization due to hyperfine
structure [56] is neglected.

Figure 4 displays the asymmetry parameters in the PAD (31)
for two beams with parallel linear polarizations. At XUV pho-
ton energies near 2 keV, the two-photon two-color nondipole
and dipole asymmetry parameters, γ4 and β4, respectively,
become approximately equal, with γ4 exceeding β4 with

increasing the photon energy. This points to large nondipole
effects in the PADs. It is illustrated in Fig. 5, which shows the
PADs for the photon energy of 3 keV deviating considerably
from the shape inherent to the dipole approximation. In
particular, the symmetry with respect to the dipole plane
perpendicular to the radiation beams (ϑ = π

2 ) is strongly
violated. The latter is better seen in Fig. 6, where meridional
cuts of the PADs are displayed for three combinations of
the XUV and IR photon beam polarization. The nondipole
corrections lead to preferential electron emission into the
forward hemisphere, except for the case (ϕ = π

2 ) in panel (b).
For the latter geometry the nondipole terms vanish, which
is specific for ionization from the S states. In the deep
minimas of the cross sections, and especially at the angles
of photoemission where the PADs in the dipole approximation
drops to zero, one should incorporate additional effects into
the model, such as relativistic splitting of the electron orbitals
in the continuum and the second-order nondipole corrections.

We concentrate now on the differential forward-backward
asymmetry

A(ϑ,ϕ) = W (ϑ,ϕ) − W (π − ϑ,ϕ)

W (ϑ,ϕ) + W (π − ϑ,ϕ)
(46)

and the integral forward-backward asymmetry

A =
∫
�+ W (ϑ,ϕ) d� − ∫

�− W (ϑ,ϕ)d�∫
W (ϑ,ϕ)d�

, (47)

where �+ (�−) represents the forward (backward) hemi-
sphere. The forward-backward asymmetry is a convenient
quantity to study the nondipole effects, since it vanishes in
the dipole approximation.

Figure 7 exhibits selected results for the forward-backward
differential and integral asymmetries for various polarizations
of the incoming XUV and IR radiation beams. For comparison,
integral and differential forward-backward asymmetries of the
main photoelectron line are shown in Fig. 3. The values of the
forward-backward asymmetry generally increase monotoni-
cally with the XUV photon energy, except in the case of one
circular and one linear polarized radiation beam [Fig. 7(b)].
This case is distinguished because the imaginary parts of
the dynamical coefficients (38), (39) also contribute to the
forward-backward asymmetries, in contrast to the other two
cases with both linearly and both circularly polarized beams.
Comparing the integral forward-backward asymmetry A of

FIG. 6. (Color online) Same as in Fig. 5 on the absolute scale: (a) for two circularly polarized photon beams; (b) for linearly polarized XUV
and circularly polarized IR photon beams; (c) for two linearly polarized photon beams. Solid: including the first-order nondipole corrections;
dashed: pure dipole approximation.
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FIG. 7. (Color online) Forward-backward differential asymme-
tries A(ϑ,ϕ), Eq. (46), and integral asymmetries A, Eq. (47), for
circularly polarized XUV and IR photons (a), linearly polarized XUV
photon and circularly polarized IR photon (b), and linearly polarized
XUV and IR photons (c).

the main photoelectron line (Fig. 3) with the corresponding
asymmetry of the ATI line, A, ψ = 0 [Fig. 7(c)], we see
that the forward-backward asymmetry in the latter case
is slightly larger. One can find conditions for which the
differential forward-backward asymmetry of the ATI line is
much larger than the asymmetry of the main photoelectron
line; see A(π

4 ,0), ψ = 0 in Fig. 7(c). Interestingly, the
forward-backward asymmetry (46) in the direction of the beam
propagation takes the form

A(ϑ = 0,ϕ) = 6√
5

2 Re[(Ds − Dd )(Q�
p − Q�

f )]

|Ds − Dd |2
, (48)

independent of the polarization state of the photon beams.
This “universal” forward-backward differential asymmetry
(not shown) in our case is less than 0.02 over the entire range
of photon energies considered.

The predicted values of the cross sections and the forward-
backward asymmetries of the ATI line point to the possibility of
observing nondipole effects by combining XUV free-electron
and optical laser radiation beams.

VI. CONCLUSIONS

The angular distribution of photoelectrons in two-photon
two-color above-threshold atomic ionization was studied
theoretically by accounting for the full multipole expansion
of the radiation field and emphasizing independently variable
polarizations of the radiation beams. The general formalism
was applied to the analysis of first-order nondipole correc-
tions for the experimentally most feasible arrangement with
collinear photon beams. The derived expressions can be used
to parametrize the photoelectron angular distributions and dif-
ferent kinds of dichroism. Calculations for the above-threshold
(XUV + IR) 1s photoionization of Ne within the second-order
perturbation theory predict large nondipole effects in the
photoelectron angular distribution. These nondipole effects
can be enhanced by selecting a suitable experimental geometry.
In particular, the forward-backward asymmetry may be much
larger than in the main photoelectron line. The predicted
nondipole effects in two-photon two-color above-threshold
ionization are measurable by combining XUV free-electron
and optical laser radiation beams.
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APPENDIX A: STATISTICAL TENSORS OF
TWO PHOTONS

To derive Eq. (10) we consider the density matrix of two
photons with fixed frequencies ω1 and ω2 in the laboratory
system represented by their individual angular momenta L1

and L2, with projections M1 and M2 on the z axis, and parities
π1 and π2. Since, according to our assumptions, the photons
in the two beams are not correlated, the density matrix of
the two absorbed photons is a product of the two density
matrices, ρ̂ = ρ̂(1)ρ̂(2), with zero matrix elements coupling the
photons from the different beams. The superscripts (1) and (2)

denote the “first” and “second” radiation beams, respectively.
Furthermore, we assume that the polarization states of the
photons are independent of their frequencies. Then we can
write

〈ω1π1L1M1,ω2π2L2M2 | ρ̂ | ω1π
′
1L

′
1M

′
1,ω2π

′
2L

′
2M

′
2〉

= I (1)(ω1)I (2)(ω2)〈π1L1M1 | ρ̂(1) | π ′
1L

′
1M

′
1〉

×〈π2L2M2 | ρ̂(2) | π ′
2L

′
2M

′
2〉

+ I (1)(ω2)I (2)(ω1)〈π2L2M2 | ρ̂(1) | π ′
2L

′
2M

′
2〉

× 〈π1L1M1 | ρ̂(2) | π ′
1L

′
1M

′
1〉, (A1)
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where the boson symmetry of the basis two-photon bra and
ket states on the left side of Eq. (A1) is taken into account
and I (i)(ωj ) (i = 1,2, j = 1,2) is a factor that depends on
the photon flux in the corresponding beam. In our case of
different colors of the beams (ω1 �= ω2), one of the two terms
in Eq. (A1) vanishes. The overall normalization factor of the
density matrix is a matter of convention; it does not affect
the PADs and will be included in the factor c in Eq. (9).
Using the definition of the statistical tensor

ρkq(π1L1,π2L2 : L; π ′
1L

′
1,π

′
2L

′
2 : L′)

=
∑
MM ′

(−1)L
′−M ′

(LM,L′ − M ′ | kq)

×〈π1L1,π2L2 : LM | ρ̂ | π ′
1L

′
1,π

′
2L

′
2 : L′M ′〉, (A2)

decoupling angular momenta of the two photons in the density
matrix at the right side of (A2), accounting for Eq. (A1),
transforming from the density matrices of the individual
photons to their statistical tensors by the equation

〈πLM | ρ̂ | π ′L′M ′〉
=

∑
kq

(−1)L
′−M ′

(LM,L′ − M ′ | kq)ρkq(πL; π ′L′), (A3)

and performing summations over magnetic quantum numbers,
we obtain Eq. (10). The first nonvanishing tensors of the photon
in the coordinate system S‖ [see Eqs. (11) and (12)] are

ρ
‖
00(E1,E1) = 1√

3
, (A4)

ρ
‖
10(E1,E1) = 1√

2
p3, (A5)

ρ
‖
20(E1,E1) = 1√

6
, (A6)

ρ
‖
2±2(E1,E1) = −1

2
pl exp[∓2iξ ], (A7)

ρ
‖
10(E1,E2) = − 1√

2
, (A8)

ρ
‖
20(E1,E2) = −

√
5

6
p3, (A9)

ρ
‖
30(E1,E2) = − 1√

3
, (A10)

ρ
‖
2±2(E1,E2) = ±

√
5

6
pl exp[∓2iξ ], (A11)

ρ
‖
3±2(E1,E2) =

√
5

3
√

2
pl exp[∓2iξ ]. (A12)

APPENDIX B: DYNAMICAL COEFFICIENTS IN THE
ANGULAR DISTRIBUTION OF PHOTOELECTRONS

Below the coefficients in the expressions for the PAD are
given in terms of the dynamical factors (21) and (23). For two

circularly polarized radiation beams, Eqs. (24) and (25),

C++
0 = 1√

5
B11

0 (22), (B1)

C+−
0 = 1

6
√

5

[
2
√

5B11
0 (00) +

√
15B11

0 (11) + B11
0 (22)

]
,

(B2)

C++
2 =

√
10

7
B11

2 (22), (B3)

C+−
2 = 1

3

√
5

14

[
2
√

7 ReB11
2 (20) −

√
21B11

2 (11) − B11
2 (22)

]
,

(B4)

C++
4 = C+−

4 = 3√
70

B11
4 (22), (B5)

C++
1 = −4

√
2

21
Re

[√
7B12

1 (22) +
√

5B12
1 (23)

]
, (B6)

C+−
1 = −2

√
2

35
Re

[√
35B12

1 (01) −
√

7B12
1 (21)

+
√

35B12
1 (12) +

√
3B12

1 (23)
]
, (B7)

C++
3 = −2

3

√
14

3
Re

[√
3B12

3 (22) + 2
√

5B12
3 (23)

]
, (B8)

C+−
3 = −2

3

√
7

15
Re

[
2
√

15B12
3 (03) − 3

√
15B12

3 (12)

+ 3
√

3B12
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For one linearly and one circularly polarized photon beam,
Eqs. (27) and (28),
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Equations (B19) and (B20) are given for case (a); see Sec. IV B.
For case (b), the numerical coefficients at B12

3 (12), B12
3 (13),

and B12
3 (22) in Eqs. (B19) and (B20) change sign and,

furthermore, the coefficient at B12
3 (22) decreases and increases

by a factor of 2, respectively.
For two linearly polarized photon beams, Eq. (30),
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[17] B. Krässig, M. Jung, D. S. Gemmell, E. P. Kanter, T. LeBrun,

S. H. Southworth, and L. Young, Phys. Rev. Lett. 75, 4736
(1995).
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