
PHYSICAL REVIEW A 89, 043414 (2014)

Interference of electron wave packets in atomic ionization by subcycle sculpted laser pulses
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We present a theoretical analysis of the atomic photoelectron emission spectra produced by a linearly polarized
sculpted laser pulse of two colors with frequencies ω and 2ω. The spectrum of the “direct” electrons with
intermediate energies prominently features both intracycle and intercycle interferences. We derive a simple
analytic expression for this spectral range based on a semiclassical approximation of the time-dependent
distorted wave strong-field approximation generalized to strong-field ionization by a two-color pulse. We verify
its applicability to approximately represent the intricate interference patterns by comparison with the exact
solutions of the time-dependent Schrödinger equation and with the strong-field approximation. We show that the
interference patterns can be tuned and its contrast enhanced by the additional “knob” available, the relative phase
between the two frequency components. The present results confirm that two-color ionization allows resolving
interference structures originating from trajectories launched within a time interval of less than 100 as [X. Xie
et al., Phys. Rev. Lett. 108, 193004 (2012)].
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I. INTRODUCTION

Above-threshold ionization (ATI) and high-order-harmonic
generation (HHG) are highly nonlinear quantum-mechanical
phenomena induced by intense laser pulses. Electrons are
emitted by tunneling through the potential barrier formed by
the combination of the atomic potential and the external strong
field. Tunneling occurs within each optical cycle predomi-
nantly around the maxima of the absolute value of the electric
field. According to the three-step model, photoelectrons can
be classified into direct and rescattered electrons [1]. After
detachment from the atom, direct electrons can escape without
rescattering at the residual core. A small fraction of the
released electrons, however, is driven back to the ionic core
(“rescattering”) and is accelerated to high energies by the
combined ionic and laser fields. Classical trajectories play a
crucial role in analyzing the formation of interference patterns
in photoelectron spectra [2,3]. A temporal double-slit inter-
ference pattern was studied in near-single-cycle pulses both
experimentally [4,5] and theoretically [6], and a time-energy
analysis of ATI has been presented recently [7]. Near-threshold
oscillations in angular distributions were explained as interfer-
ences of electron trajectories [8–10] and recently measured
by Marchencko et al. [11]. Diffraction fringes have been
experimentally observed in photoionization of He atoms [5]
and photodetachment of F− ions by femtosecond pulses for
fixed frequency [12]. The latter process has been theoretically
analyzed in [13]. The interference pattern in multicycle pho-
toelectron spectra can be identified as a diffraction pattern for
a time grating composed of intracycle (or subcycle) and inter-
cycle interferences [2,3,13,14]. While the latter give rise to the
well-known ATI peaks, the former lead to a modulation of the
ATI spectrum offering information on the subcycle ionization
dynamics [2,3,14]. For single-color laser fields, this analysis
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was based on the widely used semiclassical approximation [15]
of the strong-field approximation (SFA) [16–23]. Similar
modulation patterns were found in spectra of laser-assisted
Auger decay where the gross structure of sidebands was
explained as the interference between electrons emitted within
one period [24].

Recently, two-color fields with commensurate frequencies,
usually consisting of a fundamental component and one of
its low harmonics, have been applied to study ATI [25–27],
control of ionization [28], dichroism [29,30], and orientation
of molecules [31], as well as to control interference fringes in
electron momentum distribution [32]. The shape of the pulse is
determined by the relative phase ϕ between the two frequency
components enabling a coherent phase control of these atomic
processes [25]. The experimental observation of subcycle ion-
ization dynamics by sculpted laser pulses became accessible
for multicycle pulses and in low-resolution spectra [32]. To the
best of our knowledge, a thorough semiclassical analysis of the
interference patterns found in atomic ionization by two-color
lasers [32] has not yet been presented.

In the present paper, we focus on the direct photoelectrons,
which dominate the total ionization yield and the differential
momentum spectrum at low energies. The contribution of the
photoelectrons that are driven back to the ionic core by the
near-infrared (NIR) laser field and subsequently rescatter at
the remaining ion is comparably small and will be neglected
for the analysis of the intra- and intercycle interferences. We
extend the previous semiclassical analysis for one-color fields
in terms of a time grating [2,3,13,14] to the case of a two-color
pulse containing the first and second harmonic (ω-2ω). In the
following, we will refer to this description as the semiclassical
model (SCM). We gauge the results of the analytical SCM by
comparison with a (essentially exact) numerically obtained full
solution of the time-dependent Schrödinger equation (TDSE)
and with numerical results of the SFA. While the SCM cannot
accurately reproduce the TDSE results, it provides detailed
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insight into the interference of wave packets released at
different emission times that underlie the interference pattern.

We analyze the dependence of intracycle and intercycle
interferences on the relative phase ϕ. A key finding is
that for a particular value of the relative phase, electron
emission becomes very asymmetric along the polarization
axis extending the distribution to high kinetic energies and
thus favoring the measurement of the intracycle interference
pattern and maximizing the contrast of intracycle interfer-
ence fringes. The goal of this paper is to stress the role
of interferences stemming from the superposition of wave
packets released at different emission times. For our analysis,
we will rely mostly on the SCM, which allows for an
analytical treatment of the problem and, unlike the direct
solution of the TDSE, enables an explicit decomposition
of the different contributions to the interference patterns,
which greatly facilitates the theoretical understanding of
the process.

The paper is organized as follows. In Sec. II, we summarize
the methods used to calculate the photoelectron emission from
an atom by a two-color multicycle laser pulse: (i) the TDSE,
(ii) the time-dependent distorted-wave SFA [16–23], and
(iii) a semiclassical simplification of the SFA which we call the
SCM, often also referred to as the “simple man’s model” [15].
In Sec. III, we compare the TDSE, SFA, and SCM calculations
showing that the SCM is capable of qualitatively reproducing
the complex interference fringes. In Sec. IV, we employ the
SCM to analyze the interplay of intracycle and intercycle
interferences, and we show that the relative phase between

the harmonics can serve as a knob to tune and enhance the
contrast of the interference fringes.

II. THEORETICAL METHODS

We consider the interaction of a target atom with a two-
color laser pulse with frequencies ω and 2ω. The pulse is
described through a time-dependent electric field �F (t) along
the ẑ direction, which reads

�F (t) = f (t) [cos(ωt) + cos(2ωt + ϕ)] ẑ, (1)

where ω is the fundamental laser frequency, ϕ is the relative
phase, and f (t) is the envelope function of the sculpted laser
pulse. We assume in Eq. (1) that the amplitudes of the two
harmonics are equal, thereby maximizing specific two-color
effects, and we consider the relative phase ϕ between the
two harmonics as a control parameter for the subcycle time
structure of the field F (t) (see Fig. 1).

The Hamiltonian of the system in the length gauge is

H = H0 + z F (t), (2)

where H0 is the unperturbed atomic Hamiltonian,

H0 = �p 2

2
+ V (r) , (3)

with the central atomic core potential V (r) taken to be a
Coulomb potential (−1/r), the canonical momentum �p of
the electron, and the position of the electron �r . The transition
of the electron from the initial bound state |φi〉, which fulfills
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FIG. 1. (Color online) (a) and (b) Electric field (dashed gray line) and vector potential (thick solid red line) of a sculpted ω-2ω laser pulse
as a function of time for relative two-color phases ϕ = 0 (a) and ϕ = π/2 (b). Each optical cycle can be viewed as a “unit cell” of the time
lattice. In (b), the cyan rectangle shows the momentum region with four ionization times per unit cell. (c) and (d) Classical electron trajectories
z(t) released at early ionization times t (1,1)

r [circle in (a) and (b)] and late ionization times t (1,2)
r [triangle in (a) and (b)] calculated by the SCM.
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the time-independent Schrödinger equation

H0|φi〉 = E|φi〉 (4)

with the energy E = −Ip (Ip is the ionization potential), to
the final unperturbed state |φf 〉 after the pulse, is determined
by the solution of TDSE

i
∂

∂t
|ψ(t)〉 = H |ψ(t)〉 (5)

for the Hamiltonian of Eq. (2).
The electron is emitted with final momentum �k and energy

εf = k2/2 (k = |�k|), and electron momentum distributions can
be calculated from the transition matrix as

dP

d�k = |Tif |2, (6)

where Tif is the T -matrix element corresponding to the
transition |φi〉 → |φf 〉. The energy spectrum can be written

as dP
dE

= 2π
∫ 1
−1 d(cos θ )

√
2E |Tif |2, where θ is the angle

between �k and the direction of polarization ẑ. The longitudinal
momentum distribution is given by dP

dkz
= 2π

∫ ∞
0 dkρ kρ |Tif |2,

with kρ being the absolute value of the final momentum in the
direction perpendicular to the polarization axis. In this work,
Tif will be computed (i) by solving the TDSE and within the
strong-field approximation using both (ii) a time-dependent
distorted-wave method and (iii) a semiclassical approximation.

A. Time-dependent Schrödinger equation

We numerically solve the TDSE [Eq. (5)] in the dipole
approximation using the length form of the dipole operator
[Eq. (2)] as well as using the velocity form by replacing
�z · �F (t) with �p · �A(t) [33]. The wave function is expanded
in spherical harmonics (partial wave expansion) where the
radial part is represented using a pseudospectral grid. The real
space is divided into an inner region, R < Rc, and an outer
region, Rc < R < Rmax. The time-dependent wave function is
propagated using the pseudospectral split-operator approach
(as described in [34]). In the outer region, the continuum
states are expanded into continuum Coulomb wave functions
and then further propagated analytically as Volkov momentum
states [35]. We have verified that the results for the electron
spectra are gauge-independent.

B. Time-dependent distorted-wave strong-field approximation

Within the time-dependent distorted wave theory [36], the
transition amplitude in the post form is expressed as

Tif = −i

∫ +∞

−∞
dt 〈χ−

f (t)|z F (t) |φi(t)〉 , (7)

where χ−
f (t) is the final distorted-wave function and the time

evolution of the initial state |φi(t)〉 is governed by Eq. (5) with
the unperturbed atomic Hamiltonian Eq. (3). In the present
paper, we choose |χ−

f 〉 to be the solutions of the Hamiltonian

in the length gauge Hf = �p2

2 + z F (t), corresponding to a
free electron in the time-dependent electric field (exit-channel

distorted Hamiltonian), i.e.,

i
∂

∂t
|χ−

f (t)〉 = Hf |χ−
f (t)〉 = k2

2
|χ−

f (t)〉. (8)

The solutions of Eq. (8) are the Volkov states [37]

χ
(V )−
�k (�r,t) = exp(i�k · �r)

(2π )3/2
e−iεt exp[iD−(�k,�r,t)] (9)

with the Volkov phase

D−(�k,�r,t) = �A−(t) · �r − �k
∫ t

+∞
dt � �A−(t �)

−1

2

∫ t

+∞
dt � [ �A−(t �)]2, (10)

where �A−(t) = − ∫ t

+∞ dt � �F (t �) is the vector potential of the
field multiplied by the speed of light. In this SFA, the influence
of the atomic core potential on the continuum state of the
receding electron is neglected and, therefore, the momentum
is a constant of motion after conclusion of the laser pulse.
It is well known that the SFA fails to describe ionization for
moderately weak fields as well as for slow electrons [38].
Agreement with the TDSE solution is therefore expected only
for strong fields and intermediate to high electron energies.

C. The semiclassical model

The starting point for the derivation of the SCM [15] is
the saddle-point approximation of the SFA [1,21–23], Eq. (7),
which leads to a transition amplitude to the continuum state of
the form [21]

Tif (�k) = −
M∑
i=1

G
(
t (i)
r ,�k)

eiS(t (i)
r ). (11)

Here, M is the number of classical trajectories reaching a given
final momentum �k, and G(t (i)

r ,�k) is the ionization amplitude

G
(
t (i)
r ,�k) = π

2
√

Ĩp

∣∣F (
t

(i)
r

)∣∣ exp

[
− (2Ĩp)3/2

3
∣∣F (

t
(i)
r

)∣∣
]

. (12)

where Ĩp = Ip + k2
ρ/2. A similar expression has been derived

from the semiclassical ADK theory [39,40], and variations of
it have been extensively used in the literature (for example,
in [22]). Equation (12) is derived in the length gauge. In
Eq. (11), S is given by the classical action [37]

S(t) = −
∫ ∞

t

dt ′
[

[�k + �A(t ′)]2

2
+ Ip

]
, (13)

where �A(t) = − ∫ t

−∞ dt ′ �F (t ′) coincides with �A−(t) for a

propagating wave which fulfills
∫ ∞
−∞ �F (t) = 0. From Eq. (13),

the semiclassical action along one electron trajectory with
release time t (i)

r is, up to a constant, given by

S
(
t (i)
r

) = k2

2
t (i)
r − �k · �α(

t (i)
r

) − β(t)

2
+ Ĩpt (i)

r , (14)

where

�α(t) =
∫ t

−∞
dt ′ �A(t ′) (15)
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is the quiver amplitude of the classical electron and,

β(t) =
∫ t

−∞
dt ′A2(t ′) (16)

is related to the ponderomotive energy of the classical.
The release time t (i)

r of trajectory i is determined by the
saddle-point equation [41–43],

∂S(t ′)
∂t ′

∣∣∣∣
t ′=t

(i)
r

=
[�k + �A(

t (i)
r

)]2

2
+ Ip = 0 , (17)

which yields complex release times t (i)
r since Ip > 0. Within

the SCM, we approximate them by real values by setting Ip =
0 and kρ = 0, arriving at

kz + A
(
t (i)
r

) = 0 . (18)

Classical trajectories originating from different release times
t (i)
r (i = 1,2, . . . ) can give rise to semiclassical interferences

provided they satisfy the condition [Eq. (18)] for reaching the
same final momentum �k.

For reasons of simplicity, we consider in the following a
flat-top pulse with f (t) = F0 in the central region of the pulse
with an adiabatic switch on and off at its beginning and end.
In the special case of an infinitely long two-color pulse,

�F (t) = F0 [cos(ωt) + cos(2ωt + ϕ)] ẑ, (19)

the vector potential, the quiver amplitude [Eq. (15)], and the
ponderomotive energy term [Eq. (16)] which enter Eq. (14)
have analytical forms,

�A(t) = −F0

ω

[
sin(ωt) + 1

2
sin(2ωt + ϕ)

]
ẑ, (20a)

�α(t) = F0

ω2

[
cos(ωt) + 1

4
cos(2ωt + ϕ)

]
ẑ, (20b)

β(t) = F 2
0

ω2

[
− t

2
−2ωt+ϕ

16ω
+ 1

4ω
sin(2ωt)− 1

2ω
sin(ωt + ϕ)

+ 1

32ω
sin[2(2ωt + ϕ)] + 1

6ω
sin(3ωt + ϕ)

]
. (20c)

The kinetic energy at time t for electron trajectories released
at time t (i)

r can be calculated from the velocity,

ż
(
t (i)
r ,t

) = A(t) − A
(
t (i)
r

)
. (21)

The cycle-averaged kinetic energy Ekin = 〈ż(t (i)
r ,t)2〉/2 of the

two-color flat-top pulse can be written as

Ekin = Up + Edrift (22)

with the ponderomotive energy given by

Up = 〈A(t)2〉/2 = Up(ω) + Up(2ω) = 5/4(F0/2ω)2 (23)

and the drift energy

Edrift = A
(
t (i)
r

)2/
2

= (
F 2

0

/
2ω2

)[
sin

(
ωt (i)

r

) + 1
2 sin

(
2ωt (i)

r + ϕ
)]2

. (24)

The ponderomotive energy of a two-color pulse is the sum
of the ponderomotive energy of each color [Eq. (23)]. For
a multicycle pulse that is adiabatically switched off, the

ponderomotive contribution vanishes and Ekin = Edrift. Unlike
Up, the two-color drift energy is not additive because of the
cross term in Eq. (24). Accordingly, the maximum final kinetic
energy depends on the relative phase ϕ; the highest values are
reached at relative phases equal to ϕ = (j + 1/2)π, whereas
the lowest are reached at ϕ = jπ , with j an integer number.
The maximum drift energy is (9/2)(F 2

0 /4ω2) = (18/5)Up,
thus it considerably exceeds the ponderomotive energy.

Within the SCM, the trajectory of the emitted electron at
time t (i)

r can be directly derived from Eq. (21),

z
(
t (i)
r ,t

) = α(t) − α
(
t (i)
r

) − A
(
t (i)
r

)(
t − t (i)

r

)
, (25)

where we have used the initial condition z(t (i)
r ,t (i)

r ) = 0, i.e.,
the electron is released with zero velocity at the nucleus.
Typically, there are two values of t within the j th optical cycle
which fulfill Eq. (18), namely the so-called early release time
t

(j,1)
r and the late release time t

(j,2)
r [see Figs. 1(a) and 1(b)].

The corresponding electron trajectories z(t (1,1)
r ,t) and z(t (1,2)

r ,t)
are (within the strong-field approximation) parallel to each
other [Figs. 1(c) and 1(d)]. We note that for the two-color
pulse with ϕ = π/2 there is a range of final momenta [gray
shaded area in Fig. 4(b)] where the number of release times
reaching the same final momenta is larger than 2, i.e., 3 or
4. Their emission probabilities are, however, small since the
electric field (and thus the ionization amplitude) is, in general,
small compared to the momentum regions where only two
solutions contribute. While for a one-color pulse maximum
ionization takes place for zero final momentum [2,3,14],
i.e., near threshold, this is not the case for two-color pulses
[Fig. 1(b) for ϕ = π/2], where the maxima of the electric
field do not coincide with the zeros of the vector potential.
This property of nonmonochromatic fields helps to improve
the visibility of path interferences.

III. PROBING THE SEMICLASSICAL MODEL

To test and validate the predictions of the SCM, we compare
its results with those of the essentially exact numerical TDSE
solutions as well as those of the time-dependent distorted wave
SFA [Eq. (7)], from which the SCM is derived. This allows
us to assess the effect of the stationary-phase approximation
[Eq. (11)] and the neglect of the imaginary component of the
emission times [Eq. (18)], the two approximations reducing
the SFA to the SCM. Furthermore, the contribution of
rescattered electrons and the effects of the Coulomb potential
on the dynamics of the ejected electron, both of which are
neglected in the SCM, can be scrutinized.

We compare these three different models using a finite pulse
with an envelope function that consists of an N -cycle flat-top
pulse with a smooth sinusoidal m-cycle ramp-on and -off,

f (t) = F0

⎧⎪⎨
⎪⎩

sin2
(

ω
4m

t
)

if 0 � t < 2mπ
ω

,

1 if 2mπ
ω

� t < τ − 2mπ
ω

,

sin2
[

ω
4m

(τ − t)
]

if τ − 2mπ
ω

� t � τ,

(26)

where we have chosen m = 2 for our calculations. This
particular choice is motivated by the fact that for a total
pulse duration equal to a multiple of the laser period and
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FIG. 2. (Color online) Doubly differential momentum distributions. (a) and (b) SCM, (c) and (d) SFA, (e) and (f) TDSE. In (a), (c), and
(e), the relative phase is ϕ = 0, while in (b), (d), and (f), the relative phase is ϕ = π/2. The laser parameters are F0 = 0.075 and ω = 0.057
with a total duration of eight optical cycles consisting of a square-sine two-cycle ramp-on and two-cycle ramp-off, with a four-cycle flat-top
region in between. The white-dashed boxes and the white circles at the center delimit the region in the (kz,k⊥) momentum plane within which
the SCM is expected to account for the key features of the photoelectron spectrum.

an integer number of optical cycles involved in the ramp-on
and -off, the vector potential in the flat-top region given by
Eq. (20a) is equivalent to the case of an infinitely long pulse.
In this case, the ionization times in the flat-top region of the
pulse [calculated from either Eq. (18) or Eq. (17)] are given
by the analytic solution for the SCM. The envelope function
introduced in Eq. (26) guarantees not only a smooth switch-on
and -off, but also the independence of the intracycle interfer-
ence pattern for multicycle pulses from the pulse duration,
since the field periodically repeats itself in the flat-top region
and is not modulated by the envelope, which would lead to
variations of the ionization amplitude. The doubly differential
momentum distributions calculated within SCM, SFA, and the
TDSE for the relative phases ϕ = 0 and ϕ = π/2 between the
two colors are shown in Fig. 2. The most prominent structural
features are reproduced by all three methods: The intercycle
interferences (or ATI-like peaks) arise as concentric rings
of radii kn = √

2(n�ω − Ip − Up), whereas the intracycle
interference pattern is observed as an amplitude modulation
of the former, in analogy to the one-color case [2,3,14]. The
agreement is particularly good at intermediate energies or
momenta (highlighted in Fig. 2). The SCM distributions are
restricted to the classically allowed energy region determined
by Eq. (18), while both the SFA and TDSE distributions go
beyond this limit. For example, for ϕ = 0, the classical limit
is Ecl = 2.7Up 
 1.46 (kcl 
 1.71), whereas for ϕ = π/2, the
maximum classical kinetic energy is Ecl = 18/5Up = 1.95
(kcl = 1.97). The longitudinal momentum kz in the SCM
distributions of Fig. 2 is confined within these limits, whereas

the corresponding quantum SFA and TDSE distributions are
not. This is a consequence of the neglect of the imaginary
part of the saddle-point value for the release time [Eqs. (17)
and (18)], and it leads in turn to an energy (momentum) shift
of the intracycle interference pattern.

In detail, in the energy spectrum in the backward direction
(corresponding to the negative momenta in Fig. 2 for ϕ =
π/2), the modulations (i.e., envelopes) of the equally spaced
intercycle (or multiphoton) interference peaks are shifted
relative to each other (see Fig. 3). As compared to the SCM,
the SFA leads to a shift of the high-energy envelopes to
slightly higher energies [since the approximation Eq. (18) is
not invoked within SFA], while the TDSE results exhibit a
systematic shift toward lower energies due to the Coulomb
interaction of the free electron with the core as well as the
ac Stark shift of the ground-state energy. Overall and on a
qualitative level, the SCM reproduces the structures of the
fairly complex interference fringes over a broad range of
energies remarkably well.

IV. ANALYSIS OF THE SEMICLASSICAL
INTERFERENCE PATTERN

One key advantage of the SCM is that it allows for an
analytic treatment of the intra- and intercycle interferences
in the electron spectra for a two-color field. We focus in
the following on the region where only two interfering
trajectories per cycle contribute (see Fig. 1). Here, the total
number of interfering trajectories in Eq. (11) is M = 2N ,
with N being the number of cycles involved. The sum over
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FIG. 3. (Color online) Photoelectron energy distribution in “the
backward direction” (for an opening angle of 10◦) along the
polarization axis for ϕ = π/2. (a) TDSE, (b) SCM, and (c) SFA.
Same pulse parameters as in Fig. 2. Gray dashed line: envelope of
the intracycle interference. The pink dash-dotted lines connecting the
panels (a), (b), and (c) visualize the shift of the envelope between the
three approaches.

interfering trajectories [Eq. (11)] can now be decomposed
into those associated with the two release times within the
same cycle and those associated with release times in different
cycles [2],

Tif (�k) = −
2N∑
i=1

G
(
t (i)
r ,�k)

eiS(t (i)
r )

= −
N∑

j=1

2∑
α=1

G
(
t (j,α)
r ,�k)

eiS(t (j,α)
r )

= −
N∑

j=1

eiS̄j

[[
G

(
t (j,1)
r ,�k) − G

(
t (j,2)
r ,�k)]

ei
�Sj

2

+ 2G
(
t (j,2)
r ,�k)

cos

(
�Sj

2

) ]
, (27)

where S̄j = [S(t (j,1)
r ) + S(t (j,2)

r )]/2 is the average action of
the two trajectories released in cycle j, and �Sj = S(t (j,1)

r ) −
S(t (j,2)

r ) is the accumulated action between the two release
times t

(j,1)
r and t

(j,2)
r within the same j th cycle. Neglecting

for simplicity the depletion of the initial state, the ionization
amplitude G(t (j,α)

r ,�k) in Eq. (27) is independent of the optical
cycle (or temporal unit cell), and we can drop the label j in
the superindex of t

(j,α)
r . The average action depends linearly

on the cycle number j ,

S̄j = S0 + j S̃, (28)

where S0 is a constant that cancels out when the absolute value
of Eq. (27) is taken, and S̃ = (2π/ω)(E + Up + Ip). In turn,
the difference of the action �Sj is a constant independent of
the cycle number j , �Sj = �S.

The transition amplitude Eq. (27) becomes

Tif (�k) = −2

[
G

(
t (1)
r ,�k) + G

(
t (2)
r ,�k)

2
cos

(
�S

2

)

+ i
G

(
t (1)
r ,�k) − G

(
t (2)
r ,�k)

2
sin

(
�S

2

)]
eiS0

N∑
j=1

eij S̃ .

(29)

Accordingly, the transition probability Eq. (6) from the initial
state to a final state with momentum �k can be written as
dP

d�k

= 4�(�k)

∣∣∣∣ cos

(
�S

2

)
+ i

G
(
t (1)
r ,�k) − G

(
t (2)
r ,�k)

G
(
t

(1)
r ,�k) + G

(
t

(2)
r ,�k) sin

(
�S

2

)∣∣∣∣2

︸ ︷︷ ︸
F (�k)

×
[

sin(NS̃/2)

sin(S̃/2)

]2

︸ ︷︷ ︸
B(k)

, (30)

with �(�k) = |G(t (1)
r ,�k)+G(t (2)

r ,�k)
2 |2. In the limit of an infinite

number of cycles (N → ∞), the factor B(k) describing
intercycle interferences,

B(k) =
[

sin(NS̃/2)

sin(S̃/2)

]2

→
∑

n

δ(E − εn), (31)

with εn = n�ω − Ip − Up, yields the multiphoton spectrum,
which is broadened with width �E = ω/N for finite pulse
lengths. The factor F (�k) describes the intracycle interferences.
Equation (30) is structurally equivalent to the expression for
the intensity in crystal diffraction: The factor F (k) represents
the form (or structure) factor accounting for interference
modulations due to the internal structure within the unit cell,
while the factor B(k) gives rise to Bragg peaks due to the
periodicity of the crystal. Therefore, B(k) in Eq. (30) may be
viewed as the interference of N slits in the time domain and
F (k) as the diffraction or form factor for each slit. Now, it is
of interest to compare Eq. (30) for the two-color field with
the corresponding expression for the single-color pulse. If the
relative phase between the two colors equals ϕ = π/2, then
one obtains G(t (1)

r ,�k) = G(t (2)
r ,�k), and consequently F (�k) =

cos2(�S
2 ), identical to the intracycle interference (or form)

factor for the single-color field [2,3,14]. However, for any other
phase ϕ �= (j + 1/2)π , F (�k) has no zeros and yields a different
interference pattern, typically with lower contrast. Compared
to the single-color case, the relative phase between the two
colors now serves as an additional control knob for the time
slit in the interference process. An analog expression can be
derived employing the velocity gauge. While the prefactors are
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different and the SCM is not gauge-invariant, the interference
pattern remains unchanged due to the structure factors F (�k)
and B(k). Therefore, the resulting interference fringes are
largely gauge-invariant.

The intracycle interference arises from the superposition
of pairs of classical trajectories separated by a time slit �t =
t

(j,1)
r − t

(j,2)
r of the order of less than half a period of the laser

pulse, i.e., �t < π/ω, facilitating a temporal resolution in the
emission of electron wave packets of �1 fs (for NIR pulses).
The width of the accessible time slit �t sensitively depends
on the final longitudinal momentum kz and the relative phase
ϕ (Fig. 4). Regions in the longitudinal momentum spectrum
where the electric field is small, and where more than two solu-
tions for the release time exist, can be neglected because of the
exponential suppression of the ionization probability.
Likewise, when one ionization event strongly dominates,
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FIG. 4. (Color online) (a) Time slit �t (difference between the
release times of the two interfering electronic trajectories) as a
function of the longitudinal momentum kz and relative phase ϕ of
the two-color pulse within the SCM. The white region indicates
momenta where no pair of wave packets reaches this momentum.
(b) The longitudinal momentum kz as a function of the time slit
�t for ϕ = π/2 for a two-color (red) and a single-color (blue) field
within the SCM. The peak field of the single-color pulse was adjusted
to F0 = 0.106 in order to match that of the two-color pulse. The
frequency is ω = 0.057 and the peak electric field of the two-color
pulse is F0 = 0.075. Pairs of trajectories with comparable emission
probability, 1/2 < |F (t (j,1)

r )/F (t (j,2)
r )| < 2, are included.

interference effects will be negligible. Thus, only in the region
where two solutions of Eq. (18) with comparable ionization
probability exist does the time slit �t become resolvable
[Fig. 4(a)].

The maximum extension to high longitudinal momenta
kz for ϕ = (j + 1/2)π coincides with maximum
forward-backward asymmetry, and with the broadest range of
the accessible time window from ∼1 fs down to about 50 as.
The lower limit is determined by the suppression of ionization
at small fields. The upper limit of the time window (�1 fs)
follows from the requirement that the final momenta should be
sufficiently large such that the strong Coulomb distortion near
threshold (not considered in the SCM) does not significantly
contribute. A cut through the distribution shown in Fig. 4(a)
at ϕ = π/2 displays the dependence of kz on �t [Fig. 4(b)].
For comparison, we also show this relation for the case of
a one-color laser field with the same frequency ω = 0.057
and peak field F0 = 0.106 in order to match the intensity
of the two-color pulse. The gray shaded area indicates
momentum regions where the influence of the Coulomb
potential becomes significant. Delays smaller than ≈50 as
(marked by the dashed line) are effectively inaccessible due
to suppression of ionization at small field strengths. The slope
of the mapping function kz(�t) is considerably steeper for the
two-color pulse than the single-color case, indicating superior
temporal resolution achievable with a two-color pulse.

We have calculated the photoelectron spectrum along the
polarization axis for the two-color laser pulse of Eq. (1) with
a flat-top envelope, i.e., f (t) = F0 = 0.075, a fundamental
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FIG. 5. (Color online) SCM photoelectron spectrum along the
polarization axis for a two-cycle (solid line) and a one-cycle pulse
(intracycle, dashed line) for the backward-forward symmetric pulse
ϕ = 0 (a), and the asymmetric ϕ = π/2 in the forward (b) and
backward direction (c). The contrast of intracycle interference fringes
for ϕ = π/2 in (b) is sharper than for ϕ = 0 in (a). The laser
parameters are F0 = 0.075 and ω = 0.057.
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frequency ω = 0.057, and a duration of two optical cycles,
within the SCM making use of Eq. (6) together with Eq. (11).
The photoelectron spectrum along the polarization axis for
ϕ = 0 [Fig. 5(a)] is forward-backward symmetric [38].

The maximum forward-backward asymmetry in the energy
spectrum appears for relative phases that are multiples of semi-
integer values of π, i.e., ϕ = (j + 1/2)π [Figs. 5(b) and 5(c)],
where electrons are mostly emitted backward. All energy
spectra clearly exhibit the multiphoton peaks stemming from
the intercycle factor B(k) in Eq. (30), which in the present case
reduces to the two-slit Young interference expression B(k) =
4 cos2[π/ω(E + Up + Ip)] due to the coherent superposition
of just two optical cycles. This peak structure is modulated
by the intracycle factor F (�k) in Eq. (30), corresponding to the
contribution of only one cycle.

Whereas for a relative phase of ϕ = π/2 the local minima
of the intracycle pattern are zero, since F (�k) = cos2(�S

2 ), for
ϕ = 0 the local minima of the intracycle pattern remain at finite
values [Eq. (30)]. This reduced contrast explains the reduced
visibility of intracycle interferences in two-color experiments
for ϕ = 0 [32,44]. The variation of the contrast with ϕ is also
observable for the angle-integrated photoelectron spectrum
(Fig. 6). However, the difference between ϕ = 0 and ϕ = π/2
is reduced when distributions from the forward and backward
hemisphere are added up.

The buildup of the interference fringes in the doubly differ-
ential momentum distributions as a function of the longitudinal

FIG. 6. (Color online) Angle-integrated SCM photoelectron dis-
tribution for a two-cycle (solid line) and a one-cycle pulse (intracycle,
dashed line) with ϕ = 0 (a) and ϕ = π/2 (b). The contrast of the
intracycle interference fringes is reduced compared to the angular-
resolved spectrum (see Fig. 5). The laser parameters are F0 = 0.075
and ω = 0.057.

FIG. 7. (Color online) Variation of the SCM doubly differential
momentum distribution with the length of the pulse (number N of
cycles). The left column [(a), (b), and (c)] corresponds to ϕ = 0, and
the right column [(d), (e), and (f)] to ϕ = π/2. The first row [(a) and
(d)] shows the intracycle pattern only, the second row is calculated
for two-cycle laser pulses [(b) and (e)], and the third row [(c) and (f)]
for four-cycle laser pulses. Intracycle interference fringes exhibit a
clearer contrast for ϕ = π/2 than for ϕ = 0. The laser parameters are
F0 = 0.075 and ω = 0.057.

momentum kz and the transverse momentum k⊥ with increas-
ing number of cycles in the flat-top part of the pulse is shown
in Fig. 7. While for N = 1 only the intracycle pattern given
by F (k) appears, with N = 2,4 increasingly sharp fine-scale
patterns due to the Bragg factor B(k) that describes intercycle
interferences appear. For all pulse lengths, the ϕ = 0 pattern is
forward-backward symmetric, while for ϕ = π/2 the “center
of mass” of the distribution is shifted to the left. The same
behavior can also be observed, albeit less clearly, in the TDSE
spectra [Figs. 2(e) and 2(f)]. Experimentally, often only the
longitudinal momentum distribution P (kz) is recorded [44].
The SCM predictions for the variation of P (kz) with ϕ (Fig. 8)
display the characteristic difference between intercycle and
intracycle interference fringes. Intercycle interferences give
rise to ϕ-independent fringes, while intracycle fringes display
a pronounced sinusoidal variation with ϕ [Fig. 8(a)]. One key
observation is that the modulation of the intracycle pattern
is readily visible when a lack of energy resolution does not
permit the multiphoton fringes to be resolved. This is beneficial
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FIG. 8. (Color online) SCM longitudinal momentum distribution
P (kz) along the polarization axis as a function of the relative phase
ϕ. (a) Pure intracycle pattern (for a one-cycle pulse), (b) two-cycle
pulse, and (c) four-cycle pulse. The laser parameters are F0 = 0.075
and ω = 0.057.

for experiments with a low-resolution that do not allow the
multiphoton feature of the ionization process to be resolved, as
an attosecond time resolution associated with the release time
intervals between subcycle photoemission events can still be
obtained from the wider intracycle interference pattern.

In the velocity gauge, the ionization amplitude G(t (i)
r ,�k)

has the same exponential factor as in the length gauge [see
Eq. (12)], but the prefactors are different. As expected,
the SCM is not gauge-invariant as is any strong-field
approximation. For example, Bauer et al. show that for
ionization of negative ions with a ground state of odd parity,
the predictions of the two gauges differ qualitatively [45]. In
the envelope of the angular-resolved energy spectrum, dips
in one gauge correspond to humps in the other. This is not so
in our case, where the ground state of the hydrogen atom is

of even parity, and ATI peaks coincide in both gauges. In the
present case, the factorization of the momentum distribution
in the intracycle and intercycle factors remains valid in
the velocity gauge since the transition amplitude possesses
the form of Eq. (11) in both length and velocity gauges. We
have performed numerical calculations within the SCM in the
velocity gauge (not shown) corroborating this conclusion.

V. CONCLUSIONS

We have presented a semiclassical analysis of interference
effects observed in the direct atomic ionization spectrum
resulting from the interaction with high-intensity ω-2ω two-
color laser pulses. The SCM allows for an analytical treatment
and successfully explains the complex diffraction patterns
observed in the exact solution of the TDSE in the SFA,
and in the experiment [32]. The observed interference fringes
result from the superposition of intracycle and intercycle path
interferences.

Intracycle interferences result from the coherent super-
position of electron wave packets released within the same
optical cycle, whereas intercycle interferences correspond
to the well-known multiphoton peaks of the photoelectron
spectrum arising from the superposition of wave packets
periodically released during different optical cycles. The
intracycle interference modulation is most pronounced when
the relative phase between the two colors is ϕ = π/2, with
a perfect contrast of the intracycle interference pattern in the
SCM and SFA, and with good, though not perfect, contrast
in the TDSE results. We have shown that the intracycle
modulation is independent of the total number of optical
cycles involved in the laser field for a flat-top pulse. This
implies that the observation of subcycle interferences of wave
packets released within time intervals of �t ≈ 100 as is easily
possible for long two-color pulses subtending many optical
cycles. Moreover, these intracycle interference patterns are
fairly robust and should also be visible in low-resolution
photoelectron spectra.
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063407 (2006); D. G. Arbó, S. Yoshida, E. Persson, K. I.
Dimitriou, and J. Burgdörfer, J. Phys.: Conf. Ser. 88, 012054
(2007).

[7] L. Guo, S. S. Han, and J. Chen, Opt. Express 18, 1240
(2010).
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