
PHYSICAL REVIEW A 89, 043411 (2014)

Exactly solvable two-state quantum model for a pulse of hyperbolic-tangent shape
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We present an analytically exactly solvable two-state quantum model, in which the coupling has a hyperbolic-
tangent temporal shape and the frequency detuning is constant. The exact solution is expressed in terms of
associated Legendre functions. An interesting feature of this model is that the excitation probability does not
vanish, except for zero pulse area or zero detuning; this feature is attributed to the asymmetric pulse shape.
Two limiting cases are considered. When the coupling rises very slowly, it is nearly linear and the tanh model
reduces to the shark model introduced earlier. When the coupling rises very quickly, the tanh model reduces to
the Rabi model, which assumes a rectangular pulse shape and hence a sudden switch on. Because of its practical
significance, we have elaborated the asymptotics of the solution in the Rabi limit, and we have derived the next
terms in the asymptotic expansion, which deliver the corrections to the amplitude and the phase of the Rabi
oscillations due to the finite rise time of the coupling.
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I. INTRODUCTION

It is well known that one can exactly solve the two-
state time-dependent Schrödinger equation on resonance, i.e.,
when the carrier frequency of the external field is equal
to the Bohr transition frequency [1]. Several off-resonance
two-state models are known that have exact analytical solu-
tions, the most popular of which are the Rabi [2], Landau-
Zener-Stückelberg-Majorana [3–6], Rosen-Zener [7], Allen-
Eberly [8,9], Bambini-Berman [10], Demkov-Kunike [11–14],
Demkov [15], Nikitin [16], and Carrol-Hioe [17] models. All
of these except the Rabi model express the respective solution
in terms of a special function, which solves a second-order
ordinary differential equation: the Weber parabolic cylinder
function (Landau-Zener-Stückelberg-Majorana model), the
Bessel function (Demkov model), the Gauss hypergeomet-
ric function (Rosen-Zener, Allen-Eberly, Bambini-Bermann,
Demkov-Kunike, and Carroll-Hioe models), the Kummer
confluent hypergeometric function (Nikitin model), etc. A
different approach has been used by Barnes and Das Sarma
[18], who derived a variety of solvable models by assuming
that the solution is known and considered the Schrödinger
equation to be an equation for the pulse shape.

In this paper, we introduce an exactly solvable model, in
which the Rabi frequency has a hyperbolic-tangent temporal
shape; that is, it increases monotonically from zero toward a
constant value. This model can be considered a generalization
of the rectangular pulse in the Rabi model, to which it reduces
in the extreme limit of very fast pulse rise. In the other limit,
very slow pulse rise, the tanh model reduces to the linear shark
model derived earlier [19]. We derive the exact propagator,
which is expressed in terms of associated Legendre functions,
and then verify the limits of the Rabi and shark models. We
pay special attention to the asymptotics of the solution in
the Rabi limit and derive the corrections to the amplitude and
the phase of the Rabi oscillations due to the finite rise time of
the coupling.

This paper is organized as follows. In Sec. II we define
the tanh model and derive the exact propagator. In Sec. III A
we explore the limiting case of a very steep turn-on, and we
calculate the corrections to the Rabi formula. In Sec. III B we

investigate the opposite case of very slow rise of the field, and
we derive the shark model limit [19]. Finally, in Sec. IV we
give a summary and an outlook.

II. HYPERBOLIC-TANGENT (TANH) MODEL

A. Definition of the tanh model

We begin with the derivation of the exact propagator for
the tanh model. Coherent excitation of a two-state quantum
system is described by the Schrödinger equation [1]

i�
dc
dt

= Hc, (1)

where c(t) = [c1(t),c2(t)]T is a two-dimensional vector com-
prising the complex probability amplitudes of the two states
|1〉 and |2〉. The Hamiltonian in the basis formed by these states
has the matrix form [1]

H = �

2

[−�(t) �(t)
�(t) �(t)

]
, (2)

where �(t) is the Rabi frequency of the coupling. In coherent
atomic excitation, �(t) = −d · E/�, where d is the transition
electric dipole moment and E(t) is the laser electric-field enve-
lope, while � = ω0 − ω is the frequency detuning between the
Bohr transition frequency ω0 and the laser carrier frequency ω.
This Hamiltonian is valid in the rotating-wave approximation
(i.e., for |�| � ω and |�| � ω) and for completely coherent
evolution [1].

In the Rabi model, we have the simplest nontrivial Hamilto-
nian (i.e., with � �= 0), in which the coupling and the detuning
are constant. With the initial condition usually set at ti = 0,
the Rabi model physically implies a sudden switching on
of the coupling. In many real experimental situations, however,
the electric-field envelope does not possess such an ideal shape.

In order to deal with the finite turn-on time of the coupling
we introduce the tanh model,

�(t) =
{

0 (t < 0, t > T ),
�0 tanh(t/τ ) (0 � t � T ), (3a)

�(t) = const. (3b)
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FIG. 1. (Color online) Rabi frequency �(t) = �0 tanh t/τ as a
function of time. The duration of the pulse is T .

Here T is the pulse duration and τ is the characteristic rise
time of the coupling. This pulse is shown in Fig. 1. The pulse
begins at ti = 0, and its amplitude increases monotonically
towards the long-time asymptotic value �0. Such a behavior
of the amplitude of the driving field is observed, e.g., after a
sudden switching on of a rf pulse generator [20]. The pulse
area of the tanh pulse is

A = �0τ ln[cosh(T/τ )]. (4)

Below we derive the propagator for this model and explore the
two limits of fast and slow rise of the coupling.

B. Derivation of the propagator

Our objective is to derive the propagator U(t,0) from
time 0 to time t , which is defined as c(t) = U(t,0)c(0). We
begin by rotating the state vector at an angle π/4, c(t) =
R (π/4) b(t), where R(θ ) is the rotation matrix

R(θ ) =
[

cos θ − sin θ

sin θ cos θ

]
. (5)

The equation for b(t) reads

iτ
d

dt
b(t) =

[
α tanh(t/τ ) δ

δ −α tanh(t/τ )

]
b(t), (6)

where we have introduced two dimensionless parameters,

α = �0τ

2
, δ = �τ

2
. (7)

We assume, without loss of generality, that �0 is positive;
hence, because τ > 0, we have α > 0. (The phase of �0

can always be attached to the probability amplitudes.) We
also assume for simplicity that � � 0 because the transition
probability does not depend on its sign; hence δ � 0.

A two-state model with the Hamiltonian in Eq. (6) was
considered earlier by Demkov and Kunike under the name
“second hypergeometric model” [11,14]. Because the coupling
in this rotated basis is constant, the transition probability in this
model does not converge for initial conditions set at t → −∞,
as considered by Demkov and Kunike [11]; hence they have
calculated the probability for nonadiabatic transitions, i.e., the
transition probability in the basis of the eigenstates of the
Hamiltonian in Eq. (6). Here we have our initial conditions

at time t = 0, and our pulse in the original basis has a finite
duration; hence there are no divergences. Moreover, we are
interested in the problem in the original basis (3), which is, of
course, very different physically.

We change the independent variable from t to

ξ = tanh
t

τ
, (8)

which turns Eq. (6) into the equation

i(1 − ξ 2)
d

dξ
b =

[
αξ δ

δ −αξ

]
b. (9)

Next, we decouple this system of two first-order differential
equations. To this end, we express b2(ξ ) from the first equation,
substitute it into the second equation of the system (9), and
obtain a second-order ordinary differential equation for b1(ξ ),

b′′
1 − 2ξ

1 − ξ 2
b′

1 +
[
iα(1 + iα)

1 − ξ 2
+ β2

(1 − ξ 2)2

]
b1 = 0, (10)

where β = √
α2 + δ2 and a prime denotes d/dξ . This is the

associated Legendre equation, and its solution reads

b1(ξ ) = BP ν
μ(ξ ) + CQν

μ(ξ ), (11)

where P ν
μ(ξ ) and Qν

μ(ξ ) are the associated Legendre functions
of the first and second kinds, respectively [21]. Here B and C

are integration constants, and

μ = iα, ν = iβ. (12)

We find b2(ξ ) by using Eq. (9) and the following properties of
the Legendre functions involved [21]:

(ξ 2 − 1)
d

dξ
P ν

μ(ξ ) = ξμP ν
μ(ξ ) − (μ + ν)P ν

μ−1(ξ ), (13a)

(ξ 2 − 1)
d

dξ
Qν

μ(ξ ) = ξμQν
μ(ξ ) − (μ + ν)Qν

μ−1(ξ ). (13b)

The solution for b2(ξ ) reads

b2(ξ ) = i(μ + ν)

δ

[
BP ν

μ−1(ξ ) + CQν
μ−1(ξ )

]
. (14)

In order to derive the propagator V(t,0) in the rotated basis
b(t), defined as b(t) = V(t,0)b(0), we let ξ → 0 in Eqs. (11)
and (14) and find

B = 1

D

[
Qν

μ−1(0)b1(0) + iδ

μ + ν
Qν

μ(0)b2(0)

]
, (15a)

C = − 1

D

[
P ν

μ−1(0)b1(0) + iδ

μ + ν
P ν

μ(0)b2(0)

]
, (15b)

with D = P ν
μ(0)Qν

μ−1(0) − P ν
μ−1(0)Qν

μ(0). We find

D = (μ + ν)

(1 + μ − ν)
, (16)

where we have used the relations

P ν
μ(0) = 2ν

√
π


(

1
2 − μ+ν

2

)


(
1 + μ−ν

2

) , (17a)

Qν
μ(0) = − 2ν−1π3/2


(

1
2 − μ+ν

2

)


(
1 + μ−ν

2

) tan
π (μ + ν)

2
, (17b)
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and Eqs. (A4). We substitute Eqs. (15) into Eqs. (11) and (14)
and find the propagator elements,

V11 = 1

D

[
P ν

μ(ξ )Qν
μ−1(0) − P ν

μ−1(0)Qν
μ(ξ )

]
, (18a)

V12 = iδ

(μ + ν)D

[
P ν

μ(ξ )Qν
μ(0) − P ν

μ(0)Qν
μ(ξ )

]
, (18b)

and V21 = −V ∗
12, V22 = V ∗

11. The propagator U(t,0) in
the original basis c(t) is connected to the propagator
V(t,0) in the rotated basis b(t) via the relation U(t,0) =
R(π/4)V(t,0)R(−π/4). Explicitly,

U(t,0) =
[

ReV11 − iImV12 ReV12 + iImV11

−ReV12 + iImV11 ReV11 + iImV12

]
. (19)

Therefore the transition probability is

P = |U12|2 = (ReV12)2 + (ImV11)2. (20)

This is the exact solution for the tanh model expressed in
terms of associated Legendre functions. Below we shall study
the asymptotic behavior of this solution in two limits: (i) fast
coupling rise (or long pulse duration), in which the coupling is
nearly constant and the tanh model reduces to the Rabi model
[2], and (ii) slow coupling rise (or short pulse duration), in
which the coupling is nearly linear and the tanh model reduces
to the shark model [19].

C. Transition probability

Figure 2 compares the transition probabilities plotted versus
the pulse area (4) for the tanh model, Eq. (20), and the Rabi
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FIG. 2. (Color online) Transition probability vs the pulse area A

for various detunings � and coupling rise times τ . The values of �

and τ are given above each frame. Solid curves show the tanh model
[Eq. (20)]; dashed curves show the Rabi model [Eq. (29)].

model,

PRabi = �2

�2 + �2
sin2

(
T

2

√
�2 + �2

)
. (21)

For small τ and small detuning � (top left) the tanh model
behaves similar to the Rabi model, and the two curves are
barely discernible. A similar conclusion holds for larger τ and
small detuning (left column). For large detuning and large
τ (bottom right) the tanh model approaches the behavior of
the shark model [19], and it behaves very differently from
the Rabi model: the transition probability has much lower
oscillation amplitude and oscillates around the value P = 0.5.
For large detuning and moderate τ (middle right) the tanh
model shows a behavior of its own. There are two important
features concerning the probability oscillations: the oscillation
amplitude in the tanh model decreases compared to the Rabi
model, and similarly, a decrease in the oscillation frequency in
the tanh model also takes place. Another important difference
between the tanh and Rabi models, which is easily visible
in the middle and bottom frames of the right column (due
to the larger value of τ , which implies a larger deviation from
the Rabi model), is that the transition probability for the tanh
model does not vanish at any pulse area, except for the trivial
value A = 0. This is a consequence of the fact that the pulse
shape is asymmetric: it is known that for asymmetric pulses
the transition probability usually does not vanish [10,19,22],
although there are some exceptions [23,24].

The nonvanishing feature of the transition probability is
clearly visible in Fig. 3, where the top two frames in the left
column of Fig. 2 are plotted in logarithmic scale.

0 2 4 6 8 10
10 4

0.001

0.01

0.1

1

Tr
an

si
tio

n
Pr

ob
ab

ili
ty

0.1T , 2 T

0 2 4 6 8 10
10 4

0.001

0.01

0.1

1

Pulse Area units of π

Tr
an

si
tio

n
Pr

ob
ab

ili
ty

0.5T , 2 T

FIG. 3. (Color online) Transition probability in logarithmic scale
vs the pulse area A for detuning � = 2/T and two values of the
coupling rise time τ , given above each frame. Solid curves show the
tanh model [Eq. (20)]; dashed curves show the Rabi model [Eq. (29)].
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FIG. 4. (Color online) Transition probability vs the detuning for
various pulse areas A and coupling rise times τ . The values of A

and τ are given above each frame. Solid curves show the tanh model
[Eq. (20)]; dashed curves show the Rabi model [Eq. (29)].

The nonvanishing nature of the transition probability is
illustrated further in Fig. 4, where it is plotted versus the
detuning for pulse areas π and 3π and several values of τ .
The power broadening of the excitation profile is evident as
the pulse area increases. In all frames the characteristic features
of the tanh model compared to the Rabi model are clearly seen:
the nonvanishing transition probability, the reduced oscillation
amplitude, and the reduced oscillation frequency.

In the next two sections we consider two approximations
to the transition probability in two limiting cases. In the limit
τ → 0 (very steep rise) the tanh model reduces to the Rabi
model, while in the limit τ → ∞, the tanh model reduces to
the shark model (linear coupling). We pay special attention to
the Rabi limit τ → 0 because of the great importance of the
Rabi model in quantum physics. We not only retrieve the Rabi
formula in the leading order of the transition probability but
also derive the first-order corrections to it, which allow us to
explain the observed features in Figs. 2 and 4.

III. LIMITING CASES

A. Fast rise: Rabi model limit

In the limit

τ → 0, (22)

the coupling rises so quickly that the effect of the finite rise time
becomes negligible. In this limit, obviously, tanh(T/τ ) ≈ 1. To
this end, we set

ξ = tanh(T/τ ) = 1 − ε, (23)

where 0 < ε � 1. Obviously, ε ∼ 2e−2T/τ .

Here it is important to note that when we make the limiting
transition (22), we should do so while keeping �0, �, and T

constant. This means that the dimensionless variables α and δ

should also be small,

α → 0, δ → 0. (24)

We use the asymptotic expansions of the Legendre functions
[21],

P ν
μ(1 − ε) ∼ (2/ε)ν/2

(1 − ν)
, (25a)

Qν
μ(1 − ε) ∼ (ε/2)ν/2(1 + μ + ν)(−ν)

2(1 + μ − ν)

+ (2/ε)ν/2

2
(ν) cos πν, (25b)

which are valid in the lowest order in ε. Here (z) is Euler’s
gamma function. We substitute these asymptotic expressions
into Eqs. (18) and (20), and after simple calculations we obtain
the transition probability in the form

P = α

β

sinh(πα)

sinh(πβ)
cos φ sin2 χ

2
+ α

2β
sin φ sin χ + 1

2

− δ
√

sinh2(πβ) − sinh2(πα) + α sinh(πα)

2β sinh(πβ)
cos φ, (26)

where

φ = arg


(
1
2 iα + 1

2 iβ
)


(
1
2 iα − 1

2 iβ
)


(

1
2 + 1

2 iα − 1
2 iβ

)


(
1
2 + 1

2 iα + 1
2 iβ

) , (27a)

χ = arg
(iα + iβ)(iβ − iα)

22iβ2(iβ)
+ β ln(2ε). (27b)

The asymptotics of φ and χ in the limit (24) read, up to
orders O(α3,α2β,αβ2,β3),

φ ∼ 2α ln 2, (28a)

χ ∼ β ln
ε

2
. (28b)

Because ε � 1, we have φ � 1 but χ ∼ O(1). Hence we
find in the lowest orders of α, β, and δ that

P ∼ α2

β2
sin2

(
β

2
ln

1

ε

)
. (29)

Because ln(1/ε) ∼ 2T/τ , we recover the Rabi formula,
Eq. (21), which should be the case in the limit (22).

In order to find the corrections to the Rabi formula, we keep
the next terms in α, β, and δ in the expansions above. Thereby
we find

P ∼ α2

β2
(1 − �1) sin2

(
β

2
ln

1

ε
− �2

)
, (30)
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where the corrections to the Rabi formula read

�1 = δ2 π2 − 12(ln 2)2

6
, (31a)

�2 = β

2
ln 2. (31b)

These terms are positive and small compared to the respective
leading terms: �1 ∼ O(τ 2) and �2 ∼ O(τ ). The term �1

describes the reduction of the oscillation amplitude due to the
finite coupling rise time; it depends on the detuning only. The
term �2 describes the decrease of the oscillation frequency.
These features are indeed observed in Figs. 2 and 4, which
show that the features remain valid even outside the considered
regime τ → 0. We note that the nonvanishing transition
probability feature cannot be retrieved in the limit τ → 0
because it is characteristic of asymmetric pulses, whereas in
the limit τ → 0 the tanh pulse becomes symmetric.

B. Slow rise: Shark model limit

In the opposite limit to that in the preceding section,

τ → ∞, (32)

the coupling rises so slowly that the tanh function is nearly
linear throughout the pulse duration: ξ = tanh(t/τ ) ≈ t/τ .
Then the tanh model reduces to the shark model,

�(t) =
{

0 (t < 0, t > T ),
�0t/τ (0 � t � T ), (33)

which has been solved in a fashion similar to the present model
[19]: after a π/4 rotation of the basis the Schrödinger equation
was solved in terms of Weber’s parabolic cylinder function
Da(z) because in the rotated basis, the shark model turns
into the Landau-Zener-Stückelberg-Majorana model [19,25].
Therefore we expect that in the limit (32) the Legendre
functions in the tanh model should reduce to the Weber
functions of the shark model. We verify these expectations
rigorously in the Appendix.

IV. DISCUSSION AND CONCLUSIONS

In this paper, we have derived an exactly solvable
time-dependent model of a two-state quantum system driven
by a pulse of hyperbolic-tangent shape and constant detuning.
This model resembles the famous Rabi model, but unlike the
latter, the tanh model exhibits a gradual, rather than sudden,
rise of the coupling. We have calculated the exact propagator in
terms of associated Legendre functions. We have examined the
limit when the Rabi and tanh models coalesce: the limit of fast
rising of the tanh pulse. We have derived the corrections to the
Rabi formula due to the finite rise time of the coupling, and we
have found that for the tanh pulse both the amplitude and the

frequency of the Rabi oscillations are reduced. In the limit of
slow coupling rise, the tanh model reduces to the linear (shark)
model; we have verified that our expressions for the propagator
elements reduce to the ones for the shark model, which are
expressed in terms of Weber’s parabolic cylinder function.
An interesting feature of the tanh model is that the transition
probability does not vanish exactly, except in the trivial cases
of vanishing pulse area or detuning; in other words, a two-state
system excited by a tanh pulse cannot return to its initial state
upon the completion of the pulse. We have attributed this
feature to the asymmetry of the driving pulse.

Besides the general importance of exactly solvable time-
dependent models of two-state quantum systems, the tanh
pulse shape is of interest in some real experimental situations.
For example, the rising edge of the rf field produced by a sud-
denly turned on rf generator has a shape very close to the tanh
profile. The results presented in this paper allow one to describe
more accurately the excitation produced in such situations.
Moreover, our results make it possible to estimate the accuracy
of the assumption of a rectangular pulse profile and therefore
the conditions for the applicability of this assumption.

We point out that the tanh model assumes a sudden fall of
the pulse, and hence it cannot describe a finite turn-off time.
If this fall is fast, i.e., if the fall time is much shorter than
the rise time, the tanh model can still be used to describe
the postpulse excitation with high accuracy. We note that it
is possible to describe analytically an exponential, rather than
sudden, fall of the pulse. The solution for the exponential part,
as in the Demkov model [15], is expressed in terms of Bessel
functions [22]. The overall propagator then would be given
by a product of our present propagator (19), expressed by
associated Legendre functions, and another propagator for the
exponential turn-off, expressed by Bessel functions. Although
it is possible to write down the overall solution, it is far too
cumbersome to be of practical use.
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APPENDIX: DERIVATION OF THE SHARK MODEL
IN THE LIMIT τ → ∞

In order to verify that in the limit (32) the tanh model (3)
reduces to the shark model (33), we first note that for fixed
� and �, the variables α, β, and δ all tend to infinity in the
limit (32),

α → ∞, β → ∞, δ → ∞. (A1)

Next, we use the representation of the associated Legendre
functions in terms of the hypergeometric function [21],

P ν
μ(ξ ) = 2ν

√
π(1 − ξ 2)−ν/2

[
1


(

1
2 − μ+ν

2

)


(
1 + μ−ν

2

) 2F1

(
1

2
+ μ − ν

2
, − μ + ν

2
;

1

2
; ξ 2

)

− 2ξ 2


(−μ+ν

2

)


(
1
2 + μ−ν

2

) 2F1

(
1

2
− μ + ν

2
,1 + μ − ν

2
;

3

2
; ξ 2

)]
, (A2a)

043411-5



LACHEZAR S. SIMEONOV AND NIKOLAY V. VITANOV PHYSICAL REVIEW A 89, 043411 (2014)

Qν
μ(ξ ) = 2ν

√
π (1 − ξ 2)−ν/2

[
cos π(μ+ν)

2 
(
1 + μ+ν

2

)


(
1
2 + μ−ν

2

) ξ 2F1

(
1

2
− μ + ν

2
,1 + μ − ν

2
;

3

2
; ξ 2

)

− sin π(μ+ν)
2 

(
1
2 + μ+ν

2

)
2

(
1 + μ−ν

2

) 2F1

(
−μ + ν

2
,
1

2
+ μ − ν

2
;

1

2
; ξ 2

)]
. (A2b)

Now we substitute Eq. (17) and the two equations above in
Eq. (18). After some simplifications we obtain

V11 = (1 − ξ 2)−ν/2
2F1

(
1

2
+ μ − ν

2
, − μ + ν

2
;

1

2
; ξ 2

)
,

(A3)

where we have used several well-known properties of Euler’s
gamma function [21],

(z + 1) = z(z), (A4a)

(z)(1 − z) = π

sin(πz)
, (A4b)

(z)(z + 1
2 ) = 21−2z

√
π (2z). (A4c)

Expression (A3) is exact. Now we apply conditions (32)
and (A1). In this limit, we have ξ ≈ t/τ → 0, |ν| → ∞, and
|μ| → ∞. Hence, we can use the relations [21]

lim
|p|→∞

(
1 + z

p

)p

= ez, (A5a)

lim
|p|→∞ 2F1

(
a,p; c;

z

p

)
= 1F1(a; c; z), (A5b)

where 1F1(a; c; z) is the confluent hypergeometric function.
We find

lim
τ→∞ V11 = eνξ 2/2

1F1

(
1

2
+ μ − ν

2
;

1

2
; −μ + ν

2
ξ 2

)
(A6a)

= e−μξ 2/2
1F1

(
ν − μ

2
;

1

2
;
μ + ν

2
ξ 2

)
, (A6b)

where the relation 1F1(a; b; z) = ez
1F1(b − a; b; −z) was

used in the latter transformation.

Formula (A6b) can be expressed in terms of Weber’s
parabolic cylinder function Da(z). To this end, we use the
definition of Weber’s function [21],

Da(z) = 2a/2√π e−z2/4

[
1


(

1−a
2

) 1F1

(
−a

2
;

1

2
;
z2

2

)

− z
√

2


(− a

2

) 1F1

(
1 − a

2
;

3

2
;
z2

2

)]
. (A7)

We find that

1F1

(
−a

2
;

1

2
;
z2

2

)
= 

(
1−a

2

)
ez2/4

√
π 21+a/2

[Da(−z) + Da(z)],

(A8a)

1F1

(
1 − a

2
;

3

2
;
z2

2

)
= 

(− a
2

)
ez2/4

√
2π 21+a/2z

[Da(−z) − Da(z)].
(A8b)

We set t = T , z2 = (μ + ν)ξ 2 ≈ 2iαT 2/τ 2 = iγ 2T 2, and
a = μ − ν ≈ −iδ2/(2α) = −iλ2, where we have assumed
that α � δ and we have set γ = √

2α/τ and λ = δ/
√

2α.
We substitute Eq. (A8a) in Eq. (A6b) and obtain

lim
τ→∞ V11 = (1 + iλ2)D−1−iλ2 (0)√

2π

× [D−iλ2 (γ T eiπ/4) + D−iλ2 (−γ T eiπ/4)], (A9)

where we have used relation (A4c) and [21]

Da(0) = 2a/2√π


(

1−a
2

) . (A10)

Equation (A9) coincides with Eq. (7a) of Ref. [19], with an
appropriate change of notation.

In a similar fashion one can derive limτ→∞ V12.
We conclude that in the limit of infinitely slow rise of the

coupling, τ → ∞, the solution for the tanh model reduces to
the one for the shark model [19], as must be the case.
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