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We present a study of Sisyphus cooling of molecules: The scattering of a single photon removes a substantial
amount of the molecular kinetic energy and an optical pumping step allows one to repeat the process. A review
of the produced cold molecules so far indicates that the method can be implemented for most of them, making
it a promising method able to produce a large sample of molecules at sub-mK temperatures. Considerations
of the required experimental parameters, for instance the laser power and linewidth or the trap anisotropy and
dimensionality, are given. Rate equations, as well as scattering and dipolar forces, are solved using kinetic
Monte Carlo methods for several lasers and several levels. For NH molecules, such detailed simulation predicts
a 1000-fold temperature reduction and an increase of the phase-space density by a factor of 107. Even in the
case of molecules with both low Franck-Condon coefficients and a nonclosed pumping scheme, 60% of trapped
molecules can be cooled from 100 mK to sub-mK temperatures in a few seconds. Additionally, these methods
can be applied to continuously decelerate and cool a molecular beam.
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I. INTRODUCTION

In this article we study the Sisyphus method for cooling
molecules. In such cooling, sketched in Fig. 1, external forces
remove kinetic energy by transferring it into potential energy.
A (absorption-)spontaneous emission step follows, creating
nonreversibility of the process which can be repeated by optical
pumping the molecule back to its original state. The method
is first compared to other ones, then illustrated with a simple
one-dimensional (1D) or three-dimensional (3D) model, and
finally detailed on specific cases, such as the NH molecule. We
then conclude that the method is very versatile and is able to
produce large samples of molecules at very low temperatures.

A first simple idea to cool molecules is the use of
evaporative cooling or collisions with dense and colder species,
such as trapped laser cooled atoms or ions, in a so-called
sympathetic cooling scheme. Such a thermalization technique
has been demonstrated with molecular ions [1]. For a long
time, reactive or inelastic collisions have strongly limited
the efficiency of the process for neutral species [2,3]. Only
very recently OH radicals have been cooled using evaporative
cooling [4].

A second, straightforward idea is the laser cooling tech-
nique using transfer of photon momentum. While the first
demonstration of light pressure on molecules occurred in
1979 [5], it is only very recently that laser cooling of molecules
has been observed [6]. To circumvent the general modification
of the internal state occurring after the spontaneous emission
step, this has indeed required choosing a very well suited
molecule (SrF), which has a quasi-closed-level system with a
very high Franck-Condon factor (see also Table I).

A third route, suitable for a larger number of molecular
systems, is to modify the kinetic energy into potential energy
using external forces [7]. A so-called one-way [8–11], or irre-
versible, cooling has to be realized in order to avoid the reverse
process which otherwise would heat the sample. This can be
realized, for instance, by using an (absorption-)spontaneous
emission step [12,13]. Finally, this can be repeated, in a
so-called Sisyphus cooling process [14] (see Fig. 1). Compared
to standard laser cooling based on photon momentum transfer,

the reduction in temperature per spontaneous emission step
is typically a few mK compared to a few μK. It can be
a large fraction of the initial temperature. The process is
therefore less sensitive to the modification of the internal state
occurring after spontaneous emission. The Sisyphus cooling
process, first proposed by Pritchard [15], has represented a
milestone in the history of laser cooling by being responsible,
through polarization induced light shifts, for breaking the
Doppler limit in magneto-optical traps (MOT) [14]. The
irreversible Sisyphus cooling cycle has then been realized for
atoms [16] with the help of a gravity sag, both in magnetic [17]
and in evanescent wave reflection fields [18], and with rf-
induced transition both in an optical dipole trap [19] and
in a magnetic trap [20]. A typical experiment, as reported
in Ref. [19], concluded that “the final temperature achieved
was (a somewhat disappointing) 17 μK.” This explains why
nowadays Sisyphus cooling is not heavily used by the cold
atom community. But, such a low temperature would be a
tremendous result for molecules. Indeed, a review, given by
Table II, of the produced cold molecular species indicates
that most of them are produced at temperatures of hundreds
of mK. The Sisyphus effect has recently allowed the first
efficient laser cooling of a polyatomic molecule from 400
mK down to 30 mK with the phase-space density increased
by a factor of 30 [21]. In such a molecular Sisyphus cooling
scheme some specific symmetric-top rotors remain electrically
trapped, and microwave transition between vibrational states
provides the energy transfer [22]. Even if limited to a specific
type of molecule, this extremely promising experiment already
indicates the possibility to reduce the temperature below the
mK range in tens or hundreds of seconds. One of the difficulties
is to find molecules with short enough spontaneous emission
times. A similar problem is found in Ref. [23], where it
is suggested to put an optical cavity around a magnetically
trapped OH sample in order to accelerate the spontaneous
decay.

In this article, we suggest using optical pumping and
faster electronic transitions in order to generalize the method.
We first discuss the required ingredients needed for efficient
cooling such as the choice of the molecule, the trap, and laser
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FIG. 1. (Color online) Principle of Sisyphus cooling of
molecules: (1) removal of kinetic energy through motion in an
external potential; (2) “Sisyphus transfer step”: a dissipative process
avoids the reverse motion; (3) this “one-way” (or “single-photon”)
process can be repeated by bringing the molecule back in position
using the trapping potential; and (4) in its original internal state using
light absorption in a “repumping step” (symbolized by the shaped
spectrum for amplitude selection). r designs the radial coordinate. In
2D or 3D, due to the angular momentum the particles can miss the
center, therefore rrepump could be nonzero.

parameters. We then perform a detailed simulation of the whole
process in realistic conditions in the case of the NH molecule.

II. COOLING STRATEGY

A. Choice of the molecular states

Each molecule has its own characteristics and the cooling
strategy should be adapted to each of them by making choices
for the trap, the electronic states, and the lasers.

In Table I, we have listed some diatomic molecules [24]
to illustrate their properties and explain why we think that the
method can be implemented for most of the up to now produced
cold molecular species. For simplicity, in this article, we do not
consider any hyperfine structure, the splitting of which being
typically in the MHz range and if needed can be resolved and
manipulated by laser sidebands [6]. We simply note that the
role of the hyperfine structure can be very important and, con-
trary to common thought, it can make the cooling simpler; for
instance, by creating the two trapping potentials U1,U2 when
without the hyperfine structure only a single one would exist.

For the choice of the lasers or trap, a key parameter is the ac
or dc electric, magnetic, or electromagnetic trapping capability
of the molecule.

Electrostatic or magnetic traps can be used if the molecule
presents a strong enough energy shift �� due to Stark or
Zeeman effect. In an external electric E or magnetic B field,
the energy shift of the 2S+1|�|� state depends on the rotational
level J . For Hund’s case (a) electronic state, it is respectively
Ed�̄M/J (J + 1) and BμB(� − 2�̄)�̄M/J (J + 1), where
μB is the Bohr magneton, d is the permanent electric dipole
moment, and M is the projection of J/� along the quantization
axis given by the local field at the particle position. Most of the
molecules listed in Table I can thus be trapped in an electric or
magnetic trap. However, some of them (with 1� ground state,
for instance) cannot be electrically or magnetically trapped.
In such case, one solution is to transfer the molecule to a
state with a sufficiently long lifetime where the method can
then be applied [25,26]. Another solution, is to use a laser

TABLE I. Some properties of some diatomic molecules. In
italic are the molecules that have not been cooled up to now (cf.
Table II). The molecules are ordered by the rounded value of the
v′ = 0, v′′ = 0 Franck-Condon factor. The main parameters needed
to realize the Sisyphus cooling are a trapping capability (depending
on the electronic state), a transition wavelength in the region cover by
laser (typically near the visible region), and a good Franck-Condon
ratio in order to simplify the repumping step. The spontaneous
emission (lifetime) is mainly here to ensure the feasibility of the
process.

Molecule Low state High state λ (nm) FC Lifetime

NH X 3�− X 3�− 3050 1 37 ms
X 3�− A 3� 336 1 400 ns
X 3�− b 1�+ 471 1 18 ms
X 3�− a 1� 794 1 12 s

BH X 1�+ A 1� 433 1 160 ns
YO X 2�+ A 2� 614 0.99
CH X 2� A 2� 431 0.99 530 ns
SrF X 2�+ A 2� 651 0.98 23 ns
CaH X 2�+ A 2� 693 0.98
CaF X 2�+ A 2� 606 0.98 20 ns
YbF X 2�+ A 2� 552 0.95
BaF X 2�+ A 2� 860 0.95 50 ns
MgH X 2� A 2� 519 0.94
YbF X 2�+ A 2� 552 0.93
OH X 2� A 2�+ 308 0.91 700 ns
ThO X 1�+ A 1�+ 943 0.86
VO X 4�− B 4� 787 0.80
MnH X 7� A 7� 556 0.78
CS X 1�+ A 1� 258 0.78 200 ns
TiO X 3� A 3� 709 0.72
CrH X 6�+ A 6�+ 866 0.68
CaS X 1�+ A 1�+ 658 0.59
CN X 2�+ A 2� 1097 0.50 10 μs
CaO X 1�+ A 1�+ 866 0.43

X 1�+ A′ 1� 1199 0
CO X 1�+ a 3� 206 0.31 10 ms

X 1�+ A 1� 154 0.12 10 ns
a 3� a′ 3�+ 1453 0.04 3 μs
a 3� d 3� 823 0.02

SrO X 1�+ A 1� 920 0.29
X 1�+ A′ 1� 1074 0

SO X 3�− A 3� 262 0.22 12 ns
NO X 2� A 2�+ 227 0.17 200 ns

X 2� a 4� 263 ? 100 ms
SiO X 1�+ A 1� 235 0.15 9 ns
N2 X 1�+

g a 1� 0.04
A 3�+

g B 3�g 8 μs
PbO X 1�+ a 3�+ 629 0.02
H2 X 1�g B 1�+

g 111 0.01 1 ns
c 3�g j 3�g 567 0.99

LiH X 1�+ A 1�+ 385 0
X 1�+ B 1� 291 0.08

O2 X 3�−
g B 3�−

g 286 0 Predissociation

dipole trap [16,27]. But, because the initial temperature of the
molecule is usually high (cf. Table II), a quite deep trap is
required and so a close to resonance laser has to be used. For
instance, a 100 W laser focused on 1 mm diameter, detuned
a fraction of a nanometer from a resonance leads to a typical
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trap depth of more than 10 mK and an oscillation frequency
of ω ≈ 2π (500 Hz). Such laser can be realized through
(fiber) laser amplification or using a quasi-continuous-wave
laser [28]. Interestingly enough, the fact that the laser is close
to resonance can be used to take benefit of the high diffusion
rate (105 photons/s in the previous example) to perform the
Sisyphus transfer between the two trapped states [16].

B. Removal elementary step strategy

Once the trap is chosen, the cooling strategy is strongly
linked to the energy removal elementary steps: steps 1 and 2
in Fig. 1.

In order to study the dynamics, we shall assume N

particles initially at temperature T in potential U1(r). They
are then transferred to the potential U2(r) and then, when
reaching rrepump = 0 (in the 1D case), are pumped back to
U1. For simplicity, we shall first illustrate the strategies in the
simple 1D picture and using two harmonic potentials U1(r) =
mω2

1r
2/2 and U2(r) = mω2

2r
2/2 (where gravity is neglected).

In such a process there are no collisions to thermalize the
sample, but for simplicity we shall use an effective temperature
T (given by the average kinetic energy).

The Sisyphus transfer between states 1 and 2 can be ob-
tained in several ways and using different strategies illustrated
by Fig. 2 such as by spontaneous or induced transfer, which
we discuss briefly as follows:

(1) Spontaneous emission (Fig. 1): As shown by Fig. 1, the
simplest solution is simply to wait for spontaneous emission.
This can be used when the first state (U1) has a long enough

FIG. 2. (Color online) Illustration of possible strategies to re-
move the kinetic energy from the sample. The upper part illustrates
the process in a 1D picture, whereas the lower part indicates it in a
2D picture. The transfer position is indicated by a hatched area. Two
kinds of trajectories, but with the same kinetic energy, are shown:
the dashed red line corresponds to an isotropic trap case ωx = ωy

and the solid line with ωx = 0.8ωy . Left panel: The selection is done
spatially (in the hatched region shown by the line or box) to catch
the molecule where it has almost zero kinetic energy. Center panel:
The selection is done spectrally depending on the potential energy
of the particle when it has almost zero kinetic energy. Right panel:
The selection is done depending on the velocity through the lifetime
of the (absorption or spontaneous emission) transition.

lifetime so that the particle moves in the trap before its
spontaneous decay [29–31].

Unfortunately, in many cases U1 and U2 will simply be two
rotational or vibrational states of the electronical ground state
having a very long spontaneous decay time. For such cases,
another way is to control the Sisyphus step by applying an
excitation laser, or any other light source (rf-microwave, etc.),
to the molecule initially in the potential U1 to excite it to an
excited state that will then decay toward U2.

(2) Continuous transfer (upper right part of Fig. 2): A simple
way to mimic the case of a spontaneous emission with rate γ

is to realize the Sisyphus transfer step by using a large and
broadband laser covering the whole sample. This creates a
quite uniform excitation rate γ toward an excited state that
(quickly) decays toward U2. Usually γ is chosen to be smaller
than or on the same order of magnitude as the trap oscillation
frequencies in order to avoid a too fast transfer that would
transfer the molecule before it has lost enough energy.

In such process (spontaneous emission or uniform excita-
tion), on average, the particle loses kinetic energy simply due
to the fact that a slowing down molecule spends more time
at the spatial points where the velocity is reduced. We can
draw here some similarity with the optical pumping scheme
in a blue optical molasses where atoms scatter less photons
when they have less kinetic energy because there is less
light present [32,33]. Hence, under the effect of its motion
the molecule will be transferred toward U2 when it has the
smallest kinetic energy. More precisely, neglecting the photon
recoil energies, and using survival probability described in
Appendix B 4, we see that the average energy reduction
is given by

∫ +∞
0 {U1[r(t)] − U2[r(t)]}γ e−γ tdt . Thus, in our

simple harmonic trap example, using the typical trajectory r(t)
for the average kinetic energy kBT , this energy reduction is
kB�T = 0.4kBT (1 − ω2

2/ω
2
1) for γ = ω2 [27]. This value can

be easily improved by using a nonuniform excitation rate γ (r)
as graphically illustrated by case 3 in Fig. 2. Moreover, we can
always combine these ideas, and depending on the oscillation
frequencies, laser power, and cooling time available, find
the optimum spatial distribution of the light power which
optimizes the one-way cooling.

(3) Induced spatial transfer (upper left part of Fig. 2): When
using a laser-induced transfer, one idea is not to cover the
whole sample by laser, but to catch the particle at the “top” of
its trajectory, which is when it has almost zero kinetic energy.
This selection can be realized spatially by applying the laser
only at this position. This simple realization is illustrated by
the localized arrow in the upper left part of Fig. 2.

(4) Induced energy transfer (cf. upper middle part of Fig. 2):
However, it can be sometimes simpler to apply the laser on the
overall sample and to realize this selection spectroscopically.
We can use the fact that the resonance condition is fulfilled
only locally due to different potentials seen by the particles
during the excitation (case 2 of Fig. 2).

For the last two cases, we can assume that the laser
transition occurs only at location r = rres. Due to Boltzmann
statistics the number of molecules reaching the transition
point is Ne−η, where η = U1(rres)/kBT . Assuming that the
particles hardly move before being optically (re-)pumped,
i.e., that all (re)pumping rates are faster than the trap
frequencies, the total energy change for the sample is then
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�E = Nk�T =Ne−η[U2(rres)−U1(rres)] < 0. The molecule
has spent at most a quarter of the oscillation time in each
potential before being transferred to the other one. Thus, a
maximum cycling time is �t = π/2ω1 + π/2ω2. This leads
to the equation

�T

�t
= −2ω1ηe−η

π

1 − ω2
2

/
ω2

1

1 + ω1/ω2
T . (1)

As for evaporative cooling processes [34,35], we see that it is
probably efficient to adjust the laser detuning (or the external
trapping potential) as the particles are losing energy. This can
be done, for instance, by keeping the ratio η of the transition
energy to the thermal energy constant, with η = 1 being the
best choice. The speed can be optimized by choosing ω2 =
ω1/2 with a temperature variation per cycle �T ≈ 0.28T and
a (1/e) decay time of 17/ω1.

Independently of the chosen strategy we can drive the con-
clusion that a 1D Sisyphus cooling will provide a temperature
variation per cycle on the order of �T ≈ 0.3T . Then the
temperature should decay exponentially with a (1/e) decay
time on the order of 20/ω1. Thus, cooling by a factor 10 000,
say from 100 mK to 10 μK, takes only 30 cycles. This has
to be compared to the few thousands of cycles needed for
standard laser cooling [6]. This simple study clearly highlights
the potential of the Sisyphus method.

C. 1D, 2D or 3D cooling?

In the real system the particles moved in 3D, for instance,
being trapped in a harmonic trap with U (r) = 1

2mω2
xx

2 +
1
2mω2

yy
2 + 1

2mω2
zz

2. The problem is that, even in such simple
case where the motion in one of the three axes x,y,z is
decoupled from the others, the previous discussion, concerning
1D motion, cannot be generalized to the (2D or) 3D case.
The reason is that, if Fig. 1 is still valid, where r designs
the radial coordinate, now in 2D or 3D motion, due to the
angular momentum, the particles can miss the center and
rrepump could be nonzero. This is clearly indicated by the
trajectories, calculated in the case of a harmonic 2D potential
and shown in the lower part of Fig. 2. The dashed red line
trajectory, corresponding to an isotropic trap case ωx = ωy ,
performs at constant r . Thus the process given in Fig. 1 does not
work at all because r does not change, so the trajectory never
crosses the desired transfer point (box in case 1 and solid circle
in case 2 of Fig. 2) where the kinetic energy should be zero,
simply because the kinetic energy is constant and never zero.

There are at least two ways to get around this important
difficulty:

(1) Create asymmetries in the potential: In order to avoid
particles that orbit around the trap center with constant r for
instance, it is possible to create asymmetries in the poten-
tial [17,23,29,36]. This is illustrated by the second trajectory
(solid line in the lower part of Fig. 2), corresponding to an
anisotropic trap case ωx = 0.8ωy . The trajectory is more com-
plex now and presents some points where the kinetic energy is
almost zero and thus the trajectory crosses the line or box where
the transfer should occur and the cooling will be efficient.

An important message is that a small modification of the
trap can totally modify the efficiency of the cooling (see also
Fig. 9).

(2) 3 × 1D cooling: If we only look at one axis (let us say
the x axis), the 1D Sisyphus cooling picture given previously
is perfectly valid and efficient with r = x. Indeed, the motion
along x crosses the zero center and, at the edge of the trajectory,
the velocity along x is zero as desired for an efficient Sisyphus
transfer. The usual 1D process can thus be used to reduce first
the velocity, or the temperature Tx , along this axis. We then
just have to repeat the process for the other axes y and z.
Experimentally, the cooling along x can be done by using a
spatial selection that affects only the x coordinate but not the
other ones. For this we can choose the induced spatial transfer
(case 1) strategy and send the laser beam only along a line (or
a plane in a 3D vision) as shown in the lower left part of Fig. 2
by the hatched area.

D. Phase-space density and optimized strategy

The temperature is not the only relevant parameter. Another
important parameter, which is to be maximized, is the phase-
space density D = n0�

3, where n0 is the peak density and

� =
√

2π�2

mkBT
is the thermal de Broglie wavelength [35]. In

the 3D isotropic harmonic case, for U (r) = 1
2mω2r2, we have

D = N ( �ω
kBT

)3 and n0 = N
(2πσ 2

r )3/2 , where U (σr ) = 1
2kBT .

A proper optimization of the cooling should be done
by clearly defining the objective function to be optimized.
Depending on the goal, we might thus prefer to optimize the
time, the number of particles, the temperature, the phase-space
density, or as done experimentally for evaporative cooling
strategies, the parameter Ḋ/D

Ṅ/N
[35,37,38]. The strategy has

also to be chosen depending on constraints such as vacuum
limitation, available lasers, trapping possibilities, etc.

We have seen that the efficiency of the process strongly de-
pends on its dimensionality, on the trap anisotropy, and on the
transfer strategy chosen. Comparison of all possible processes
and dependence with trap or laser parameters is beyond the
scope of this article. However, we have tried to initiate such
discussion in Appendix A and the results are summarized in
Fig. 10 which gives the time evolution of number of molecules
N , temperature T , and phase-space density D under different
cooling strategies. These results should be taken only as a rule
of thumb and not as accurate predictions. In fact, one important
consideration is that the interaction time, the power broadening
of the transition, or the velocity dependence of the transition
rate can lead to a much lower energy or spatial resolution
than naively expected. We thus need to confirm these results
by simulations. But, before doing so we first extract, from
the appendix, a few considerations for the efficiency of three
different cooling strategies:

(1) One-way or single-photon cooling: In the first step
(1 and 2) of Fig. 1, a single-photon cooling decreases the
temperature but the density stays the same because we
simply remove the kinetic energy. However, it is possible to
increase furthermore the phase-space density by transferring
the particles in a tighter trap without heating. This can be
done by catching them in a tight trap as indicated by the
dashed trap shown in the upper panel of case 1 in Fig. 2.
In order to catch all particles it is even possible to have this
small, tight trap U2 (the black box in the lower panel of the
figure) that dynamically follows the location of the transfer. In
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principle such single-photon cooling processes look extremely
attractive [11]: Starting with the more energetic molecules,
and slowly sweeping the laser position (for case 1) or the
transition frequency (for case 2) down, we can always transfer
the molecules when they have almost zero kinetic energy. A
simple optimization of the time evolution (trajectory) of this
box is proposed in Ref. [39]. If the lower potential U2 is almost
flat we can also, in principle, remove all the energy with a
single photon emitted per molecule. Several realizations of
this one-way or single-photon cooling already exist, but only
for atoms [9,10,12,13,36,40].

These one-way or single-photon cooling schemes have to
be used if the repumping step 4 of Fig. 1 is difficult to realize.
An obvious example is when the decay after step 2 populates
a lot of levels, for instance due to bad Frank-Condon factors,
because it will be quite difficult to optically pump all of them.

(2) 3 × 1D cooling: The 3 × 1D cooling is very efficient
because it is simply three times that of the 1D cooling. For
instance, the time needed to reach the same final temperature
has to be multiplied by a factor 3 compared to the 1D case. It
is thus a very fast cooling and it works with any kind of trap
geometry. Another advantage of such 1D cooling, compared
to that of 3D, is that the quantification axis is always the same
(there is only one possible axis) and transitions can thus be
controlled using light polarization, which can be extremely
useful to excite only the states which are trapped (for instance
by controlling the Zeeman sublevel in a magnetic trap). A last
advantage is that the particles always cross the 0 coordinate
along the considered axis and so the repumping light can then
be focused only at the center of the trap in order to realize the
ideal step 4 of Fig. 1. Finally we would like to mention the very
useful rotation of phase-space method used in Ref. [17] in order
to cool always along the same direction. Quoting the authors:
“First the vertical distribution is cooled. Then, by adiabatically
changing the trap parameters, we produce a degeneracy
ωx ∼ ωz. Anharmonicities cause the atom cloud to rotate in
the x-z plane, exchanging the x and z distribution. After we
adiabatically restore the trap to the initial field conditions. We
then cool the vertical distribution again.” Therefore only one
laser direction is enough to cool the 3D sample.

The conclusion is that this three times 1D cooling may be
simpler and more efficient that direct 3D cooling [17,22] but
its practical implementation has to be done with care since the
other axis should be a spectator, not only in the cooling step
but also in the repumping step.

(3) Standard 3D Sisyphus cooling scheme: In the following
we have chosen to study in more detail the Sisyphus cooling
scheme because it keeps all molecules and does not require one
to move lasers. But, even without a detailed simulation, we can
directly see from Fig. 1 that, as the particle returned to the origi-
nal potential (step 3), the reduction of temperature also induces
an increase of the density and of the phase-space density.

III. SISYPHUS COOLING ON NH: CASE WITH HIGH
FRANCK-CONDON VALUE OF 1

To gain more insight into the Sisyphus cooling process,
we shall first study a case where the repumping step is
simple. In order to have a fast cooling process we want to
use an electronic transition. The simplest choice is to choose a

molecule with a Franck-Condon factor close to unity creating
a closed vibrational pumping scheme. With such close cycling
scheme the Sisyphus cooling process is clearly advantageous
as compared to the one-way single-photon scheme because we
can repeat the single-photon process without losses.

As an example we shall investigate the NH (imidogen)
molecule. The A-X transition in NH is indeed almost perfectly
diagonal and the v′ = 0 − v′′ = 0 band has a Franck-Condon
factor of better than 0.999 [40]. NH is a very well known
molecule which has already been decelerated and cooled (see
Table II). It has been trapped both in electric [41] and magnetic
traps, for more than 20 s [42], in the a 1� or its X 3�−
state, respectively. The accumulation of Stark-decelerated NH
molecules in a magnetic trap has been realized [40].

NH is probably one of the simplest systems to study the
cooling of molecules. A single-photon cooling scheme has
been envisioned [12]. For simplicity we shall concentrate here
on NH in its X state trapped in magnetic field. But the case
of the a 1� state and an electrostatic trap is also possible with
the 325 nm c 1� ← a 1� Sisyphus transition and repumping
on the 452 nm c 1� ← b 1�+ transition.

A 471 nm b 1�+ ← X 3�− transition is possible but
a simple and efficient transition is the A 3�; v′ = 0 ←
X 3�−; v′′ = 0 transition.

In order to perform the Sisyphus cooling we need to find
two states with different magnetic moments and then couple
them using laser light through an intermediate level. We
choose not to use the absolute rotational ground state but
the X 3�−; N ′′ = 1, J ′′ = 1+. This allows one to perform
the Sisyphus cooling on the A 3�; N ′ = 1, J ′ = 0, − ←
X 3�−; N ′′ = 1, J ′′ = 1+ transition that is, due to parity rea-
sons, the only closed N ′ ← N ′′ rotational transition. A sketch
of the relevant levels and transition strength is shown in Fig. 3
as calculated by a program for simulating rotational structure
(PGOPHER) [43] with the molecular constants taken from
Ref. [44]. From Fig. 3, we can find two states with different
magnetic moments to perform the Sisyphus cooling: U2 being
the potential of the M ′′ = 1 level (with a linear Zeeman shift)
and U1 being the M ′′ = 0 one (with a quadratic Zeeman shift).
One drawback is the possible decay toward the untrapped

FIG. 3. (Color online) Principle of NH Sisyphus cooling of
molecules. The widths of the arrows are proportional to the branching
ratios.
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M ′′ = −1 level, but because of the fast electronic transition, a
fast repumping from this state seems nevertheless possible.

Even if it is not the purpose of this article, we mention that
using this transition standard laser cooling of NH should be
quite easy. The fact that the transition is a J ′′ → J ′ = J ′′ − 1
scheme and not the standard J → J + 1 scheme for MOT,
may lead to some difficulties because in 1D this produces a
dark state that prevents the cooling [6,45]. However, the dark
state is not dark for the other lasers present in a 3D MOT. We
have simulated such 3D cooling and found results comparable
to the experimental demonstration of the so-called 3D type-II
magneto-optical trap on a sodium atom [46]. However, as
stressed in the appendix, rate equations are not able to deal
correctly with dark states so the simulation of a J ′′ → J ′ =
J ′′ − 1 transition using a rate equation may be questionable.

A. Cooling in quadrupolar trap with energy degeneracy

For the Sisyphus cooling, we first study the simple case
of a quadrupolar trap. We explain in detail our choice for the
parameters in a way that can be generalized for other situations
and then present the results.

The magnetic field is thus B(R) = [B ′
0(1 + α)XeX +

B ′
0(1 − α)Y eY ] − 2B ′

0ZeZ with B ′
0 = 100 T/m and α is a

parameter that controls the anisotropicity of the trap. We
choose the anisotropy parameter α = 0.17 (see Fig. 9) which
optimize, after 20 ms, both the energy conversion for the
pumping and repumping steps. This situation can easily be
experimentally realized, for example using two orthogonal
pairs of coils in anti-Helmholtz configuration. In a gradient
of ∼100 T/m a typical molecule with potential energy of
∼150 mK (corresponds to 0.1 cm−1), sees a magnetic field
slightly less than 0.2 T (see Fig. 3). This leads to a typical
radius for the sample of σr ≈ 2 mm. In order to affect most
(say 90%) of the molecules, we choose an initial laser waist
size of 5 mm and we start the Sisyphus process with a laser
detuning corresponding to a transition with a potential energy
of four times the energy: 500 mK (in temperature units).

The time evolution of the cooling is linked to two param-
eters: the typical “oscillation” time T1 (2 ms in our case) and
the number of “oscillations” required before the molecule is
transferred. As indicated in the Appendix, this number Nd−1

0
(1 for a 1D, N0 for a 2D, and N2

0 for a 3D cooling) is linked
to the selectivity �E in energy (or in spatial position) of the
transition by �E ≈ E/N0 in the 3D case. In our case, the study
of the trajectories in the trap (see energies in Fig. 9) indicates
that an accuracy on the order of �E = 20–70 mK is probably
a good choice for a transfer after 20 ms. This suggests one
take a value N0 < 5 for our case of an initial average potential
energy of ∼150 mK (temperature of 100 mK). Thus, we expect
a typical decay time for the temperature on the order of N2

0 T1,
i.e., below 50 ms. We thus choose in our simulation to reduce
all laser powers, waists, and detunings (i.e., transition energy)
exponentially with a time constant of τ = 50 ms.

The choice of laser power is discussed in Appendix B 3 e
and the result is that the intensity I = 2P

πw2 should be on

the order of kBT
��

v
σr

�L

�

(500 nm)3

λ3
1

300 000FFCFAF
. For transition at

λ = 336 nm with a linewidth � = 1/(400 ns) (see Table I), a
Franck-Condon factor FFC = 1, an angular factor FAF = 1/4
(ratio of the worst transition to the total one in Fig. 3),

and a velocity v at the transition taken to be typically (for
reasonable N0 value) tens of the thermal velocity; a standard
�L = 2π (10 MHz) linewidth laser requires a power of nearly
100 mW. We choose such values for the simulation.

For this first study—and this will be refined later—we do
not use any realistic repumping laser but we choose a constant
and uniform repumping rate of 106 s−1 for all molecules having
a potential energy below 15 mK as indicated by the green box
in Fig. 3.

For the simulation, the absorption-emission processes are
accurately calculated using rate equations taking into account
the saturation, the laser detuning its linewidth, and the Doppler
effects [47]. The simulation used a kinetic Monte Carlo
algorithm to solve exactly the rate equations, and a Verlet
algorithm to drive the particle motion under the effects of
gravity, magnetic field, and recoil photons [48]. The molecular
dipole moment is assumed to adiabatically follow the local
field and the laser polarization is thus calculated along this
local axis. Details are given in the appendix, mainly by
Eqs. (B3) and (B4).

We choose 100 molecules and a 100 mW power laser
propagating along Oz and circular left polarized (σ+). The
results of the cooling are presented in Fig. 4. We first see
that the repumping is efficient and that, despite the transient
population of an untrapped potential curve, we do not lose any
molecules during the process. The other important result is
that the temperature is reduced, and therefore the phase-space
density increases, but the process stops, and even gets worse
after 100 ms.

If, by choosing better laser parameters, the final temperature
can be made lower, we would like to stress that such limited
cooling behavior is quite general and that choosing better
cooling strategies or parameters is not so obvious. Thus, this
is an important result appearing in several situations that we
have simulated when dealing with zero field trap at the center.
By looking to the transitions radius and potential energy for
the particles, we found that with degenerate energy levels near

FIG. 4. (Color online) Results of NH Sisyphus cooling of
molecules in a linear (quadrupole) trap with energy degeneracy at
center. Molecules number N (left axis) in the M ′′ = 1 (square) and
M ′′ = 0 (circle) states as well as the temperature T (triangle, right
axis) in a function of time.
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the trap center (i.e., at low temperature), the spectral or spatial
selectivity for the transitions is no longer ensured and that we
excite undesirable levels during the process.

B. Cooling in trap without energy degeneracy

A simple way to avoid such nasty behavior is to use a
trap without energy degeneracy, that is, with a nonzero field
at the center, where the spectral selectivity for the transitions
is ensured. Another major advantage of such trap is that the
field at the center defines a proper quantification axis that can
be used to select even more efficiently the desired transition
through proper laser polarizations.

Therefore, in order to lift degeneracies and to facilitate the
spectral amplitude selection shaping for the optical pumping
we choose here an Ioffe-Pritchard configuration. Keeping
achievable values [49–53], the magnetic field is taken to be
B(R) = B ′(XeX − Y eY ) + (B0 + B ′′Z2)eZ with B0 = 0.1 T,
B ′ = 1 T/cm, and B ′′ = 0.1 T/cm2. In order to avoid particles
that orbit around the trap center, we need to create asymmetries
in the potential. We choose α = 0.17 creating an asymmetric
configuration with a 1.17 T/cm gradient along X and a
0.83 T/cm gradient along Y .

We still simulate particles initially at a temperature of T =
100 mK and randomly distributed using equipartition of the
energy.

Because the trap is shallower, the sample is bigger. The
Sisyphus laser now has a waist of 6 cm, a 5 W power,
and a central frequency such as the resonant transition is
for particles having a potential energy of 3kBT where T

is the expected temperature. We expect an exponential decay
of the temperature T , and consequently of the sample size.
Thus the power, the detuning, as well as the (initially 35
MHz) FWHM Lorentzian laser linewidth (this is to follow the
interaction time and required resonance sharpness evolution)
of the Sisyphus laser are decreased exponentially with the same
time constant (170 ms). The bias field creates a very useful
preferential quantization axis (the Z axis) and we thus choose
to propagate the lasers along this axis with circular polariza-
tion. For this simulation we use a realistic repumping laser with
10 W power, and a 5 GHz laser FWHM linewidth in order to re-
pump all needed untrapped particles at a waist of 3 cm. We did
not find it useful and necessary to reduce the waist of the lasers
and this is a clear simplification for experimentalists. In order
to repump only useful particles, that is, the particles having a
low enough energy, the spectrum of repumping the laser is flat
and cut at a frequency corresponding to particles in M ′′ = 1
with a potential energy of 0.4kBT . We just mention that spec-
tral shaping for amplitude selection has experimentally been
realized for optical pumping experiments [54–57], with similar
laser power and shaping resolution using simple broadband
diode lasers and diffraction gratings for the shaping [58–60].

The results of the simulation, shown in Fig. 5, are
impressive. With almost no losses, the temperature drops by
a factor 1000 and the phase-space density increases by a
factor 107 in only 1 s. Even better results are possible, but
we may need to take into account collisional processes for
such high phase-space densities. We thus believe that further
optimization of the parameters is useless.

FIG. 5. (Color online) Results of NH Sisyphus cooling of
molecules in a quadratic (Ioffe-Pritchard) anisotropic trap. Molecules
number N in the M ′′ = 1 and M ′′ = 0 states and temperature T are
displayed on the left axes. The relative phase-space density D is
displayed on the right axes in a function of time.

IV. CASE WITH LOW FRANCK-CONDON VALUE:
OPTICAL PUMPING

With the previous NH case, we have treated a molecule with
a very high Franck-Condon factor where vibration is frozen.
However, several molecules do not have such good properties
(see Table I).

For such cases with bad Frank-Condon factors, possible
improvement of the Sisyphus cooling would consist of even
further reducing the amount of (absorption)-spontaneous
emission cycles, for instance by using an external cavity [61] or
coherent effects where the spontaneous emission step occurs
only after several energy transfer processes [62–66]. But even
without using such coherent (often complex) tricks, there are
at least three possibilities to deal with such difficulties that we
shall mention:

(1) Use an optimized single-photon cooling to avoid losses
due to spontaneous emission.

We have already studied this solution and conclude that, if
possible experimentally, three times 1D cooling may be more
efficient that direct 3D cooling [17,22].

(2) Realize a Sisyphus cooling in the ground state using
only rovibrational transitions as done in Refs. [21,22].

In light diatomic molecules the radiative lifetime of the
excited rovibrational state is not too long and this solution can
be efficiently implemented. For instance, the v′ = 1 → v′′ = 0
radiative lifetime of NH(X 3�−) is determined to be 37 ms [67]
(59 ms for OH [68]). Very powerful lasers, such as single-
frequency continuous-wave optical parametric oscillators, are
nowadays commercially available to drive this transition (at
3.05 μm for NH). Due to the long lifetime of the states it is
preferable to work only with trappable states. This will often
work with the M ′ = 2 (and thus J ′ = 2) upper state because
it decays toward M ′′ = 1,2,3 lower states. Several lasers or
microwave sources might be needed to repump these levels.

(3) Use an optical pumping scheme in order to repump the
levels.

Obviously we can combine the three possibilities in order
to find the best solution to the problem.
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FIG. 6. (Color online) Branching ratios, proportional to the
broadening of the blue lines, between vibrational (left) and rotational
(right) levels after transfer by the narrow-band Sisyphus laser (dashed
black) and the spectrally shaped amplitude selection broadband
optical pumping (green hatched). J ′′ = 2 is not pumped for v′′ = 0.

To help in further studies on Sisyphus cooling of such
molecules, we deliberately choose to illustrate the third
solution on a system, combining several “bad” points such as
no closed rotational or vibrational transition scheme and quite
poor Franck-Condon factors (�0.5). Thus, we shall illustrate
the method on a textbook example inspired by the CO case, but
with a scaled internuclear distance to get the Franck-Condon
factor of 0.5 toward the 3�2 lower level. Quantities related to
this level will be indicated by a double prime, ′′.

Then the 3�3 upper level, indicated by a prime, ′, is
preferred to the 3� level because it forms with 3�2 a closed
system for spontaneous emission. Both potentials [69] are
presented in Fig. 6 where the Franck-Condon factors, the
rotational transitions, and the trapping energy states are also
displayed. They produce a Franck-Condon value near 0.5 for
v′ = 0 ← v′′ = 0.

An obvious choice for the initial trapping U1 is the lowest
rovibrational level having the strongest trapped state, which is
the |v′′J ′′M ′′〉 = |022〉′′ level. By choosing excitation only to
|J ′M ′〉 = |33〉′, the rotational population can be locked in few
trapped levels: |J ′′M ′′〉 ∈ {|22,32,33,42,43,44〉′′}. Finally, in
order to help the vibrational cooling, we do not use the best
existing Franck-Condon factor (on v′ = 1 → v′′ = 0) but we
deal with excitation toward v′ = 0 to favor decay to low
v′′ values (see Fig. 6). Therefore for simplicity of both the
explanation and the theoretical treatment, all laser excitations
end up to the sole |v′J ′M ′〉 = |033〉′.

We simulate particles initially at a temperature of 100 mK
in an Ioffe trap with B0 = 0.1 T, B ′ = 0.1 T/cm, and B ′′ =
0.1 T/cm2.

Several laser schemes or simple rf-microwave transfer can
be used to make the Sisyphus or pumping transitions. We
choose here a simple case with only two lasers: a single one to
make the Sisyphus transition and a second one as the pumping
laser near the trap center which shall also make optical
pumping to bring back population from other rovibrational
states. Thus, close to the trap center the (re-)pumping laser
should bring the molecules back into the |022〉′′ state. A single
laser would create a cylinder pumping zone. This would be
a problem for particles moving mostly along its axis because
they will never leave the cylinder and will always be under
the effect of the repumping light. To be closer to the ideal
situation of Fig. 1, with small rrepump, we thus create a more
spherical radial zone by dividing the pumping laser in three
beams propagating along Ox, Oy, and Oz. They are focused

at the trap center on an initial 4 mm waist, all circularly left
polarized (corresponding to σ+ polarized for a quantization
axis along the beam propagation) and their spectrum,
60 mW/cm−1 uniform power density, are shaped (amplitude
selection) to drive only transitions toward |033〉′. Finally,
in order to accumulate population into the |022〉′′ level, all
transitions from this state are removed by the spectral shaping.

Several possible experimental realizations exist for the
repumping laser: spanning from femtosecond lasers, diode
lasers, light-emitting diode light, or even a supercontinuum
laser, nowadays spanning 0.4–2.3 μm with 50 mW/nm
uniform power density [70]. We suggest a simple experimental
setup based on the use of several individual lasers driving
individually the vibrational transitions. This would require
five diode lasers to cover the v′′ = 0–4 → v′ = 0 transitions,
respectively, at 833, 971, 1163, 1449, and 1923 nm wave-
lengths, which are all available commercially. The presence of
the B0 = 0.1 T bias field lifts the energy levels through the Zee-
man effect by 0.05 cm−1. The required GHz range resolution
is at the edge of what can be achieved by using a simple grating
configuration, but higher resolution optical pulse shaping
methods can be used [71]. We mention the optical arbitrary
wave form line-by-line pulse shaping technique [60], based,
for instance, on arrayed waveguide routers or liquid crystals
on silicon [72–74], or the virtually imaged phased arrays
that combine the high spectral resolution potential of etalons
with the spectral disperser functionality of gratings [75].
Such devices have been applied to realize pulse shapers with
sub-GHz spectral resolution [76–78]. But one simple method
is the scanning diode method used in my group [57].

The Sisyphus transition |022〉′′ → |033〉′ is performed
using a 1 W laser at 833 nm, 10 MHz linewidth, covering
the whole sample with its 2 cm waist, left circularly polarized,
propagating along Oz, with initial detuning chosen to initially
transfer even very energetic particles with potential energy of
3.5kB 100 mK.

The waist size of the repumping and Sisyphus lasers, as well
as their powers and the detunings, are decreased exponentially
with a time constant of 500 ms.

FIG. 7. (Color online) Time evolution of the (stacked) number
N of particles in the |v′′J ′′〉 state and the (three axis) averaged
temperature T of the particles in |022〉′′. The sequence is repeated
every 1 s.
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FIG. 8. (Color online) Illustration of optical deceleration of a
molecular beam using Sisyphus cooling when molecules travel
through magnetic coils. Left panel: illustration of the principle.
Right panel: Simulation using pairs of 3-mm-radius Helmholtz coils
separated by 1.5 cm and creating a 1 T axial field. The circularly
polarized lasers are 5 W focused with 1.5 mm waist, 1 GHz laser
linewidth. The monokinetic molecular beams cover 1 mm radially.

The results of the simulation are presented in Fig. 7 where
the temperatures are calculated from the standard deviation of
the histogramed velocities. 25% of the |022〉′′ molecules are
cooled from 100 mK to 1 mK within 1 s. Other molecular states
are simply not repumped because they are in larger orbits, but
no molecules are lost. Thus, repeating the same process every
1 s greatly improves the results with 60% of the molecules
with temperature below 1 mK after 4 s.

Clearly, there is plenty of room for optimization [79] and the
laser wavelengths, sizes, locations, polarizations, and chosen
transitions can be further optimized. For instance, simulation
of a perfect Sisyphus scheme where particles are transferred
and repumped when reaching their higher and lower radial
coordinates leads to 100% of the molecules being cooled,
from 100 mK down to 1 mK, within only 0.15 s.

V. GENERALIZATION OF THE METHOD

Before concluding we would like to mention that the
Sisyphus cooling method can be generalized with more
complex potentials or absorption schemes, for instance during
decelerator stages. We have illustrated in Fig. 8 such idea
with molecules traveling repeatedly through uphill potentials.
This idea is similar to the one proposed in Ref. [63] but
now with a spontaneous emission step. The 3D simulation
is done using a simple “toy model” spin-1/2 molecule (four
levels A 2�1/2M

′
J = ±1/2 ← X 2�, M ′′

J = ±1/2 transition)
but is obviously more general. The global dynamics of the
decelerator looks promising with negligible effect due to the
transverse motion and only small kinetic energy dispersion due
to photon recoil energy transfer. This scheme can be realized
using permanent magnets and would allow continuous cooling.

VI. CONCLUSION

In conclusion, the fact that Sisyphus and optical pumping
methods require only a small number of spontaneous emission

steps makes it especially useful for cold molecular systems
with internal state modifications during the individual process.
Similarly, an optical one-way pumping method can also help
to realize transfer to a trap after a deceleration or a buffer
gas cooling stage [9,10,12,13]. We stress here that a full and
detailed simulation of the laser interaction is very important;
a less detailed simulation can lead to incorrect results. We
found that the laser power and its linewidth are parameters
that are not so simple to tune. A relatively fast particle, a low
power laser, an incorrect local polarization, or a too small
laser linewidth can result in transitions that are not effective.
On the contrary a slow particle, a high power laser, or a
large linewidth can result in transitions occurring too early,
out of resonance, and not at the desired location or energy
location. We also found that a small modification of the trap
can totally modify the efficiency of the cooling due to possible
angular momentum quasiconservation. The spectral or spatial
selectivity for the transitions has to be ensured and care has
to be taken not to excite undesirable levels. A trap which lifts
energy degeneracy allows simpler spectral selection of the
transitions and in this case the cooling is found to be much
easier by using a preferential quantification axis allowing one
to control transition using light polarization.

We also show that three times 1D cooling may be simpler
and more efficient than direct 3D cooling [17,22]. Indeed, in
1D the quantification axis is always the same and transitions
can thus be controlled using light polarization, which can be
extremely useful to excite only states which are trapped (for
instance by controlling the Zeeman sublevel in a magnetic
trap). Furthermore, rotation of phase space may be also
advantageously used with only one laser direction to cool the
3D sample.

Obviously the Sisyphus method is very easy to implement
for trapped quasiclosed systems [80–83] and can then be a
very impressive complement to standard laser cooling. For
trapped species, the photon transition rate can be very slow
and the scheme is particularly suitable for particles that require
deep-UV lasers for electronic excitations. It also allows for
the use of pure rovibrational transitions or of quasiforbidden
electronic transitions. Using state-of-the-art (GHz) shaping
resolution [57,60,71,77] the optical pumping step should not
be a problem.

The amount of possible cooling schemes, using optical,
magnetic, electric, or gravitational forces combined with laser
(or radio-frequency) transitions of any kind (Raman, coherent,
stimulated, pulsed, shaped, multiphotonics, blackbody, etc.) is
so large and the method so versatile that it can be implemented
to several species including ions [83,84], ranging from simple
atoms to polyatomic molecules, that are difficult to laser cool,
such as (anti-)hydrogen. It can be generalized to realize con-
tinuous cooling in new types of Stark or Zeeman decelerators.
The low temperature achieved can then be a new starting point
for further studies in precision measurements or in chemical
control of highly correlated systems when collisions between
molecules start to play a bigger role for lower temperatures.
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APPENDIX A: OPTIMIZED STRATEGY: ONE-WAY
SINGLE-PHOTON COOLING VS SISYPHUS COOLING

1. Trajectories in 3D traps

We describe (for simplicity) the trajectories in the case of a
harmonic trap but the discussion is general.

Trajectories in 3D harmonic traps are given, with (x,y,z) =
(r1,r2,r3) notation, by U1(r(t)) = 1

2m
∑

i ω
2
i ri(t)2 with ri(t) =

r0
i cos(φi(t)) and φi(t) = φ0

i + ωit . The total energy E =
1
2m

∑
i ω

2
i r

0
i

2
is a conserved quantity. We want to reduce

the kinetic energy Ekin(t) = E − U1(r(t)). This constrains the
trap geometry such that it should avoid angular momentum
conservation where some particles can orbit around the trap
center with a kinetic energy that never reduces: for instance, if
ωi = ωj and φ0

i = φ0
j + π/2 (dashed trajectory in Fig. 2). As

studied in Ref. [85], we should look for a “chaotic” regime,
with various different trajectories, increasing the likelihood
of meeting the best condition for single-photon cooling where
kinetic energy is near zero: U1(r(t)) ≈ E, that is, when r1,r2,r3

are all extremum. In the harmonic case, the coordinate r1

becomes positive maximum when φ1(t) = 0[2π ], at times
tk1 = t0 + k1T1, for k1 = 0,1, . . . ,N0, spaced by the oscillation
time T1 = 2π/ω1. During these N0 oscillations we want to
have, at tk2 , r2(tk2 ) = r0

2 cos(φ0
2 + ω2t0 + 2πk2ω2/ω1) almost

maximum. This optimal condition (ri maximum) should occur
for all particles and thus for any trajectory independently
of the initial condition φ0

2 . A simple choice to realize such
situation is ω2/ω1 = 1/N0 because during the N0 periods,
the phase φ2(tk1 ) spans the space [0,2π ] with intervals of
2π/N0, and thus we found one φ2(tk2 )[2π ] which approaches
0 with a maximum error of �φ = π/N0. This is the best
possible result with N0 points. Similarly, in N2

0 oscillations,
the choice ω3/ω2 = 1/N0 will allow φ3(tk2 ) to span the
space [0,2π ] with intervals of 2π/N0. At a time tk3 where
all positions are almost maximum, the maximum kinetic
energy is E − U1(r(tk3 )) = 1

2m
∑

i ω
2
i (r0

i )2 sin2 (φi(tk3 )) ≈
(�φ)2E.

From this study we see that the ratio of frequencies on the
order of 1/N0 are good. Coprime or incommensurable ratios
may also be interesting but a simple (from the experimental
point of view) choice is to slightly modify the trap geometry
by a ratio 1 − 1/N0. We have tested this hypothesis in the
case of a simple quadrupole magnetic trap where the magnetic
field is B(R) = [B ′

0(1 + α)XeX + B ′
0(1 − α)Y eY ] − 2B ′

0ZeZ

with B ′
0 = 100 T/m and α is a parameter that controls the

anisotropicity of the trap. We have looked for both linear traps,
i.e., with a state with a linear Zeeman effect, and for quadratic
traps, i.e., with a state with a quadratic Zeeman effect: To
be more precise, the molecule used is NH in the exact same
configuration as used for Fig. 3, using the J ′′ = 1, M ′′ = 1
(linear) state or the J ′′ = 1, M ′′ = 0 (quadratic state). The
typical “oscillation time” T1 is 2 ms.

In order to see if the geometry allows trajectories to reach
the best condition for cooling, i.e., with kinetic energy near
zero for the Sisyphus pumping step and with potential energy
near zero for the repumping step, we use 1000 molecules

FIG. 9. (Color online) Effect of the trap anisotropy, on the min-
imum kinetic Ekin (lower panel for a quadratic trap) and potential
energy Epot (higher panel for a linear trap) reached after 5 ms
(black square) or 20 ms (red circle) evolution time of N = 1000
molecules initially at 100 mK. The worst energy case among the
N = 1000 molecules is plotted, in temperature units, in a function
of α. 1 − α can be seen as the aspect ratio of the trap (see text for
details).

initially in thermal equilibrium. For each molecule we look
for the minimal kinetic and potential energy reached during
a given time: 5 ms or 20 ms, the first case corresponding to
N2

0 ∼ 5/2 and the second to N2
0 ∼ 20/2. Then we took the

worst molecules and plotted the result in Fig. 9 in a function
of the anisotropic parameter α. The simulation confirms that
the anisotropicity of the trap is a crucial parameter and
that α ∼ 1/N0 and a minimal energy of E/N2

0 are correct
assumptions. In the case of an X,Y symmetric trap (α = 0) it is
clear that some molecules do not transfer their energy between
kinetic and potential. Clearly the longer time we allow for the
molecule to move the better the results.

2. Energy or spatial selection in 3D traps

With this simulation and without entering into a more
detailed study [86], our general conclusion is that, in N2

0 times
the typical oscillation time T1 along the fastest axis (say x), a
good trap geometry should allow the trajectories to reach the
maximum energy E within �E ≈ E/N2

0 [87].
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FIG. 10. (Color online) Typical evolution of number of
molecules N , temperature T (or energy E), phase-space density D,
and time required t , for the sample under different d-dimensional
cooling strategies (“Pos.” means a selection in position as in Fig. 2,
case 1, “Ener.” a selection in energy as in Fig. 2, case 2, and “Speed”
a selection with rate proportional to velocity as in Fig. 2, case 3). The
values are given in the harmonic trap cases with angular frequencies
initial ωin and final ωfin. The partial one-way ones take only part of
the population (with a box of given energy or spatial range). The
full one-way strategies move the previous box to catch all particles.
The first Sisyphus step (step 3 of Fig. 1) put the population back
in the original potential. The Sisyphus is thus simply the repetition
of this step. The parameters, except the photon numbers, are given
in the power of N0 = kBT/�E, which is a parameter indicating the
number of slices of the sample over which we catch particles by
spatial (or energy) steps. The time evolution is given, in the “t” line,
in the function of the typical oscillation time T1 along the fastest
axis motion: d − 1 indicates, for instance, that the time evolves like
t ∝ T1N

d−1
0 .

Finally, to be more precise we also have to take into account
that the Sisyphus transition should occur when the particle
stays in the E ± �E energy range, that is, during a time
�t ≈ T1/N0. This is N3

0 times smaller than the overall time
motion and, due to interaction time or power broadening of
the transition, this can lead to lower energy resolution than
the expected �E ≈ E/N2

0 . The study of this effect is in
fact the core of the simulation and will be done later
numerically. However, a simple Lorentzian shape for the
excitation rate [cf. Eq. (B3)] leads to an energy resolution
N

3/2
0 worse and thus �E ≈ E/N

1/2
0 . In conclusion, in order

to have simple calculation, we assume an intermediate case of
�E ≈ E/N0 for all cooling strategies that we study. We have
sketched them and the results in Fig. 10.

The third column of Fig. 10 deals with the energy removal
strategy (case 2 of Fig. 2). By looking at the typical case of
E ∼ kBT , and with �E ≈ E/N0, we see that a single photon
can lead to a reduction of the energy, or the temperature, by
a factor N0. The depth (and shape) of the capture potential
U2 can thus be optimized, to be on the order of kBT/N0, i.e.,
in the harmonic case with frequencies ω′2

i ∼ ω2
i /N0. From an

experimental point of view, such a flat potential can be realized
using combined Zeeman and Stark effects, for instance [11]. In
this case the density is unchanged and the phase-space density
D = N ( �ω

kBT
)3 increases by a factor N

1/2
0 in the 3D case and

N
d/2−1
0 in the d-dimensional case.

It is possible to increase furthermore the phase-space
density by transferring the particles in a tighter trap without
heating. This can be done by catching them in a tight trap (cf.
black box in Fig. 2, lower left panel, 1). This is the case study
in the first column of Fig. 10. The best spatial catch is when the
particles reach the transfer zone of �E ≈ E/N0. However, the
spatially located box is able to access only the turning points
concentrated within its small region. For instance, from Fig. 2,
we clearly see that if the box was placed elsewhere with the
same energy, the trajectory would never cross it. If we want
to catch all particles, we have either to move the box to cover
all the spatial transfer zones of �E ≈ E/N0 (cf. second and
fifth columns of Fig. 10), or to move the trajectories to the box
(using a small anharmonicity). Here again in a 3D case we can
cover this space in N2

0 spots.
Another strategy is to use a second photon to pump the

molecules toward a tighter trap when the molecules are close to
the trap center, using for instance, the Sisyphus cooling process
(step 3 of Fig. 1, and the first column of the “Sisyphus step”
of Fig. 10). In this case, very similar to the dimple trap trick
used in evaporative cooling [35,88], we need to transfer the
molecule when the position is as close as possible to the center,
i.e., where the kinetic energy is maximal. The exact same
discussion indicates that in N2

0 times the typical oscillation
time T ′

1 ∼ √
N0T1 in the new trap, the trajectories reach the

maximal kinetic energy E′ = E/N0 within �E′ ≈ E′/N0.
The values given here are only indicative. But they can

help in choosing the parameters. For instance, with T1 ∼
10 ms [ω1 ∼ 2π (100 Hz)], a value of N0 = 4 is possible even
for a full one-way strategy spanning all the positions. Indeed,
this gives in 3D (d = 3) a cooling time N5

0 T1 of 10 s which
may be feasible. This should allow a huge gain in phase-space
density of 43d/2 ∼ 500 The first (1D) Sisyphus cooling scheme,
leading to Eq. (1), was done with N0 = 2, i.e., ω′ = ω/2.

APPENDIX B: RATE EQUATIONS, KINETIC MONTE
CARLO, AND N-BODY INTEGRATOR USED

1. Polarization and rotation matrices

When dealing with rotation and angular momentum, several
conventions exist for the phase relation between coefficients,
for the sense of rotation, or for the name of the Euler angles. A
good summary of the existing convention is given by [89]. We
deal here with several different frames or axes: the laboratory
fixed one (given by the vacuum chamber), the laser axis (given
by the wavevector k), for a given molecule we have the local
field B or E axis (depending on the position of the particle)
and the molecular axis.

We use capital letters X,Y,Z for the space fixed frame,
with direction vectors (eX,eY ,eZ). We use lower case letters
for the local frame (ex,ey,ez) with B (or E) field along the Oz.
We shall also use the (covariant) spherical and helicity basis
vectors e0 = ez,e±1 = ∓ ex±iey√

2
because they directly express

light polarization. Another frame (e′
x,e

′
y,e

′
z = k/‖k‖) is linked

with the laser propagation. The original laser polarization is

described in the helicity basis e′
0 = e′

z,e
′
±1 = ∓ e′

x±ie′
y√

2
. We can

write the laser polarization vector in the two frames as [[89],
Eq. 1-(49)] ε = ∑

p′=−1,0,+1 ε′∗
p′e′

p′ = ∑
p=−1,0,+1 ε∗

pep, with
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εp = ∑
p′=0,±1(−1)p

′
ε′
p′D

∗(1)
pp′ (0,θ,ϕ). We find

ε+1 = 1 + cos θ

2
e−iϕε′

+1 + sin θ√
2

ε′
0 + 1 − cos θ

2
eiϕε′

−1,

ε0 = − sin θ√
2

e−iϕε′
+1 + cos θε′

0 + sin θ√
2

eiϕε′
−1,

ε−1 = 1 − cos θ

2
e−iϕε′

+1 − sin θ√
2

ε′
0 + 1 + cos θ

2
eiϕε′

−1,

where θ = (Ôz,Oz′) = (êz,k) is the angle between the local
field and the laser propagation axis. When dealing with pure
(circular) polarization and because the transition probability
depends only on the modulus square of the transition amplitude
the value of φ becomes irrelevant and we choose φ = 0.

2. Transition matrix elements and line strengths

The electromagnetic field, due to the lasers L, can be written

E(r,t) = 1

2

∑
L

[ELei[kL·r−�L(t)] + E∗
Le−i[kL·r−�L(t)]].

For each laser L the polarization vector, defined by EL(r,t) =
EL(r,t)εL, is (written directly in the local axis) εL =∑

p=−1,0,+1 ε∗
pep and the irradiance, improperly called inten-

sity, is

IL = ε0|EL|2c/2. (B1)

The light-molecule interaction Hamiltonian is −μ̂ · E, where
μ̂ is the electric dipole moment operator.

The Doppler effect and the laser linewidth are taken into
account by writing �L(t) = (ωL − kL · v)t + �L(t), where
�L(t) is a fluctuating phase. As shown below, or through the
Wiener-Khinchin-(Einstein-Kolmogorov) theorem, its statis-
tical average is linked to the spectral irradiance distribution
Iω(ω). In the simple Lorentzian case Iω(ω) = IL

π

�L/2
(ω−ωL)2+(�L/2)2

with FWHM �L.
We shall only describe the notation for Hund’s case (a),

but for more complex cases I use the known molecular
parameter of the molecule and then the transition strength and
Zeeman or Stark effect shifts (�E = E0 + sgn(C)[−�/2 +√

�2/4 + C2F 2] for each of the levels where F is the field)
given by PGOPHER (see also [90]). We use the simplified
notation 〈′|μ̂ · ε∗|′′〉 = 〈�′v′J ′M ′|μ̂ · ε∗|�′′v′′J ′′M ′′〉, where
the electronic part is simply noted |�〉, the vibrational
|v〉, and the rotational |JM�〉. The integration on the
electronic coordinates r i gives first the electronic dipole
moment μel(R) = 〈�′|qe

∑
i=1 r i · e∗

q |�′′〉(R) depending on
the internuclear distance R, with the short notation that q

refers to the vector quantized on the molecular frame, whereas
p refers to the vector on the local (field) frame. The integration
on the vibrational coordinate R gives the dipole moment of the
transition μv′v′′

q = 〈v′|μel(R)|v′′〉. If μel(R) is not constant we
can assume a linear variation in R which leads to

μv′v′′
q = 〈v′|v′′〉μel(Rv′v′′ ),

where the Rv′v′′ = 〈v′|R|v′′〉 centroid is the “distance” where
the transition takes (classically speaking) place. When no other
information is available we take the dipole moment of the

transition from Einstein’s formula for the lifetime τ ′ of the
upper state τ ′−1 ≈ ω3

�′�′′
3ε0c3�π

(μel)2.
The integration over the rotational coordinates leads to the

final results for the Rabi frequency �̄ of the transition:

��̄ = 〈′|μ̂ · EL|′′〉 = ELμε∗
p

= ELε∗
p〈v′|v′′〉μel(Rv′v′′ )〈J ′�′,1q|J ′′�′′〉

× 〈J ′M ′,1 − p|J ′′M ′′〉, (B2)

where p = M ′′ − M ′ and q = �′′ − �′ are the only values
leading to nonzero amplitude. The intensity of a transition is
thus proportional to the Franck-Condon factor |〈v′|v′′〉|2.

3. Laser interaction

The optical Bloch equations for the density matrix element
ρij = 〈i|ρ̂|j 〉 = ρ∗

ji are [91]

ρ̇ii =
∑

j

�jiρjj −
∑

j

�ijρii

+ i

�

∑
j

[μ̂ij · Eρji − ρij μ̂ji · E],

ρ̇i �=j = −iωijρij − �coll + ∑
k(�ik + �jk)

2
ρij

+ i

�

∑
k

[μ̂ik · Eρkj − ρikμ̂kj · E],

where for completeness we have added some possible col-
lisional dephasing through �coll. The rate equation we want
to derive can be justified only using several approxima-
tions [91,92]; especially when coherence (nondiagonal) terms
are small and thus a dominant part is played by the population
(diagonal) terms. We thus keep only the terms ρkj or ρik when
k = i or k = j , even if this prevents the simulation of some
dark state coherent schemes [93].

Under this approximation we have

ρ̇ii =
∑

j

�jiρjj −
∑

j

�ijρii

−
∑

j

Im

(
ρ̃j i

∑
L

�̄L
ij e

i(�ij −�L)

)
,

˙̃ρij = −i(ωij − d�ij /dt)ρ̃ij − �coll + ∑
k(�ik + �jk)

2
ρ̃ij

+ i

2
(ρjj − ρii)

∑
L′

[
�̄L′

ij ei(�ij −�L′ ) + �̄L′∗
ij ei(�ij +�L′ )].

The Rabi frequency �̄L
ij characterizes the strength of the

transition between the states |i〉 and |j 〉 and is defined by

��̄L
ij = 〈i|μ̂ · EL|j 〉eikL·r .

For more generality we have written these equations for ρ̃ij =
ρij e

i�ij (t), where �ij (t) would have to be later chosen cleverly,
for instance, to remove the time-dependent exponential terms
(�ii = 0).

The next step [94] consists in formally integrat-
ing the second equation ˙̃ρij − b(t)ρ̃ij = ∑

L′ cL′ (t) in
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ρ̃ij (t) = ∑
L′

∫ t

0 cL′(t ′)e
∫ t

t ′ bdt ′. The standard choice of �ij =
�L is not possible when several lasers L are present, thus
we report the formula in the first equation which then does
not depend on the choice of �ij . We finally make a statistical
average (over several experiments) noted ρ̄ij = 〈ρij 〉.

The situation may be complex with, for instance, several
lasers coherently driving the same transition to realize a
traveling optical lattice plus incoherent lasers on the same
or other transitions for optical pumping. Following [94], we
shall model the phase �L(t) as a Poissonian random process
with TL = 2/�L as the average time between successive phase
jumps. The statistical average 〈ei[�L(t)−�L′

(t ′)]〉 is nonzero only
if there is no phase jump between t and t ′. For the laser L this
occurs with a probability P0 = e−(t−t ′)/TL . Thus, if L and L′ are
coherent, that is, if �L − �L′ have no more fluctuating phases
(�L = �L′

), we have 〈ei[�L(t)−�L′
(t ′)]〉 = e−(t−t ′)�L/2. The net

result of this statistical average is to remove the �L fluctuating
phases and simply to add the laser linewidth �L, as done for the
collisional terms �coll, to the coherence relaxation rate which
becomes half of

�L
ij = �coll +

∑
k

(�ik + �jk) + �L.

a. Rate equation

Even if coherences or Bloch equations are tractable with
a Monte Carlo method as described in Ref. [95], it is much
simpler to use rate equations for each particle. We thus use
the method of steepest descent or stationary phase, by inte-
grating by part to write

∫ t

0 dt ′�̄L
ij (t ′)e−[i(ωij ±ωL)+�L

ij /2](t−t ′) ∼
�̄L

ij (t)

i(ωij ±ωL)+�L
ij /2

. This is valid only for low saturation, that is,

when the saturation parameter

s = 2
∣∣�̄L

ij

∣∣2

4(ωij − ωL)2 + �L
ij

2 � 1.

The resonant terms, that is, when |δL,0
ij = ωL − ωij | � ωij ,

are the dominant ones, and terms containing ei[�L+�L′ ] will be
dropped (so-called rotating-wave approximation) because they
are much smaller than the resonant ones and because the sta-
tistical average leads to exponential decreasing terms. A slow
time variation due to a small frequency difference between the
coherent lasers L,L′ driving the ij transition could still occur
but, in order to avoid remaining oscillating terms, we shall
suppose it to be smaller than 1/�L

ij . We define the detuning

δL
ij = ωL − ωij − kL · v = δ

L,0
ij − kL · v + �j − �i,

where ��i and ��j are the energy shifts created by the external
trapping potentials. We combined lasers in class “Lc” of mutu-
ally coherent lasers by writing

∑
L = ∑

Lc

∑Lc

L . An important
parameter is the total Rabi frequency for the class Lc:

�̄
Lc

ij =
Lc∑
L

�̄L
ij e

−iδL
ij t =

Lc∑
L

〈i|μ̂ · EL|j 〉eikL·r(t)e−i(ωL−ωij )t ,

where r(t) = r + vt , which in the simulation is taken to be
the current location of the particle.

FIG. 11. (Color online) Schematics of levels i and j interacting
with a broadband laser and with other levels.

We finally obtain the rate equations used in our simulation
and illustrated in Fig. 11:

˙̄ρii =
∑

j

[�jiρ̄jj − �ij ρ̄ii + γij (ρ̄jj − ρ̄ii)], (B3)

γij =
∑
Lc

∣∣�̄Lc

ij

∣∣2

�
L2

c

ij + 4δ
L2

c

ij

�
Lc

ij . (B4)

The physical interpretation is obvious; γij is the rate of
excitation, but also of stimulated emission, of the transition
and is given simply by the incoherent sum over the individual
rates.

With 〈i|μ̂ · EL|j 〉 = |〈i|μ̂ · ep|j 〉ELεp|eiφL
p we see that

the rate is proportional to the total laser taken into account
interferences due to laser polarizations:

∣∣�̄Lc

ij

∣∣2 =
Lc∑
L

∣∣�̄L
ij

∣∣2 + 2
Lc∑

L′>L

∣∣�̄L
ij �̄

L′
ij

∣∣ cos
[
(ωL − ωL′)t

− (kL − kL′) · r(t) − (
φL

p − φL′
p

)]
, (B5)

where |��̄L
ij | = |μεpEL|.

b. Bloch equation with laser linewidth

For completeness, we mention that in the case of a single
class of coherent lasers Lc, we can choose one laser L0 of
this class and �ij = �L0 to derive generalization of the Bloch
equation. Time derivative of the statistical average equations,
before the integration by part, leads to Bloch equations with
laser linewidth:

˙̄ρii =
∑

j

�ji ρ̄jj −
∑

j

�ij ρ̄ii −
∑

j

Im( ˜̄ρji�̄ij ),

˙̄̃ρij = iδ
Lc

ij
˜̄ρij − �

Lc

ij

2
˜̄ρij + i

2
(ρ̄jj − ρ̄ii)�̄ij ,

where �̄ij = ∑
L �̄L

ij e
i(�ij −�L). We obviously recover the rate

equation (B3) using ˙̄̃ρij = 0 and we find ˜̄ρij = �̄ij

2δ
Lc
ij +i�

Lc
ij

(ρ̄ii −
ρ̄jj ) which, as expected, has a smaller value, by the saturation
parameter s, than the populations ρ̄ii − ρ̄jj .

043410-13



DANIEL COMPARAT PHYSICAL REVIEW A 89, 043410 (2014)

c. Dipolar potential and light shift

A full quantum theory of light shift and heating in an
optical trap can be found in Ref. [96], but we shall here
follow a simple deviation based on Ehrenfest’s theorem.
Atomic motion is affected by the force F = 〈μ̂〉 · ∇E, where
〈μ̂〉 = Tr(ρ̂μ̂) = ∑

ij ρ̂jiμ̂ij . We first write it in the single
coherent lasers class case, because general result is simply
the sum over the classes. The statistical average leads to
F = �

∑
i>j Re{ ˜̄ρ∗

ij∇�̄ij } where we have separated the sum
using levels with ωi > ωj . This can be written as

F = −
∑
i>j

(ρ̄jj − ρ̄ii)�γij

[
2δij

�
Lc

ij

Re

{∇�̄ij

�̄ij

}
− Im

{∇�̄ij

�̄ij

}]
,

where a clear separation between the dipolar and the scattering
force appear, F = Fdip + Fscat.

In the general case we found

Fdip = −∇Udip; Udip =
∑
Lc

∑
i>j

�γij (r)
δij

�
Lc

ij

(ρ̄jj − ρ̄ii).

In our Monte Carlo simulation, a molecule is always in a given
state |j 〉. Thus, in addition to the previous shifts created by the
magnetic and electric fields, the dipolar potential indicates that
we have to shift the j energy level by∑

Lc

∑
i>j

�δ
Lc

ij

γ
Lc

ij (r)

�
Lc

ij

−
∑
Lc

∑
k<j

�δ
Lc

kj

γ
Lc

kj (r)

�
Lc

kj

. (B6)

We recover the standard result for a two-level system that for
red detuning the upper state is upshifted and the lower one is
downshifted by the laser.

This picture is not the same as that of the usual dressed
state [14] where particles are in a dressed state and in a
superposition of |i〉 and |j 〉 levels with a light shift given
by �δ ln(1 + s). However, we recover the same average shift
in our Monte Carlo simulation because we oscillate in time
between |j 〉 and |i〉. Finally, we mention that we use this shift
only to calculate the forces but we do not add it as a real shift
in the levels. The energy levels are thus not shifted by lasers
and no new laser detunings are calculated. The main reason
is to avoid unphysical accumulation of dipole shifts. Indeed,
if we calculate a new detuning with this formula, at the next
update of the energy levels a novel detuning will be added to
this one and we would have accumulation of the detuning that
would not correspond anymore to reality.

The scattering force is given by

Fscat =
∑
Lc

∑
i>j

�γ
Lc

ij (ρ̄jj − ρ̄ii)Im

{∇�̄
Lc

ij

�̄
Lc

ij

}
where∣∣�̄Lc

ij

∣∣2
Im

{∇�̄
Lc

ij

�̄
Lc

ij

}
=

Lc∑
L

kL

∣∣�̄L
ij

∣∣2 + 2
Lc∑

L′>L

kL + kL′

2

× ∣∣�̄L
ij �̄

L′
ij

∣∣ cos
[
(ωL − ωL′)t

− (kL − kL′) · r(t) − (
φL

p − φL′
p

)]
.

The photon absorption rate is given by γ
Lc

ij and the photon
momentum can be chosen depending on the “participation”

of the laser beams to the total irradiance by comparison with
formula (B5). In the simple example of a retroreflected laser
creating a standing-wave lattice (�̄L

ij = �̄L′
ij and kL = −kL′)

no force is present but the absorption rate is nonzero.
More general cases, especially in the saturated regime, can

be treated with ad hoc formulas (see [47]) but we have not
implemented them.

d. General laser spectrum

We have, up to now, followed a standard procedure to
derive the absorption rate (B3); that is, statistical average
(and deconvolution approximation) followed by an integration
by part [92,94]. However, the result seems nonphysical in
the far-off-resonance case, when |δLc

ij | � �
Lc

ij . We found an
absorption rate that is proportional to the laser linewidth, where
obviously, because the laser is very far from resonance, only
the laser intensity, not its linewidth, should play a role [33].
The problem arises in a Cauchy-Lorentzian laser irradiance
spectrum because the spectrum does not decrease fast enough
and still has a large amplitude even far from its center. But,
the problem is more general and even for other laser spectra
it arises from the fastest oscillating term in e−[i(δL

ij +�L)+�L
ij /2](t)

that is now due to the detuning and no longer to the laser phase
fluctuation. Thus, in such far-detuned case the integration by
part has to be performed before the statistical average. The
net result, for this far-off-resonant case, is that the phase
fluctuation no longer plays a role and thus �L has to be removed
from �L

ij , which becomes �L
ij = �coll + ∑

k(�ik + �jk) = �ij

in the absorption rate formula (B4).
Fortunately, the near- and far-off-resonant results can be

combined together in a single formula. Indeed, Eq. (B4)
can be written in the single laser case to simplify as γij =
Lω ⊗ Iω(ωij + kL · v)π |μεp|2/(ε0c), which is proportional to
the convolution of the Cauchy-Lorentzian natural linewidth
Lω(ω) = 1

π

�ij /2
ω2+(�ij /2)2 by a Cauchy-Lorentzian laser irradiance

spectrum Iω(ω). However, for a more realistic laser spectral
shape such as a Gaussian one, the formula

γij = [Lω ⊗ Iω](ωij + kL · v)π |μεp|2/(ε0c) (B7)

agrees with our expectation even in the far-off-resonant case
where the formula agrees with the well-known result γij =
|�̄L

ij |2
4δL

ij

2 �ij . As another example, for very broadband lasers with

a spectrum including the resonance, the Lorentzian natural
linewidth can be considered as a Dirac peak and γij is simply
proportional to the irradiance at the transition wavelength
Iω(ωij + kL · v). The physical interpretation of Eq. (B7) is
obvious: In an incoherent (rate equation) model, a laser line
shape can be seen as a sum of several narrow-band (delta or
narrow Gaussian) laser lines of intensity Iω(ω), so, in a low
saturation and perturbative approach, the total rate of excitation
is thus simply the sum of the incoherent rates.

In our simulation, we keep the same spirit, and for each
coherent lasers class, without making a precise integration of
the formulas over the laser spectrum, we calculate the rates
using Eq. (B7) and then forces simply by replacing �L

ij by �ij

in the formulas.
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e. Parameters needed

Here we want to discuss the irradiance needed to efficiently
perform the transition. This is usually defined by the saturation
irradiance (intensity) Isat defined as γ = I

Isat

�
2 (where we

have dropped the ij subscript). With a laser linewidth at
least as large as the transition linewidth we have �L

ij ≈ �L

and γ ≈ �̄2π
2

Iω(ωij )
I

. At resonance γ ∼ μ2E2
L�L

�2�2
L

. Including the

Franck-Condon (FFC = 1) and angular (FAF = 1/4) factors,
Einstein’s formula for the natural lifetime 1/� leads to
γ /FFCFAF ∼ 6πc2

ω3�
I �

�L
and so

γ /FFCFAF ∼ 300 000 s−1

(
λ

500 nm

)3
I

W/m2

�

�L

.

Depending on the laser transition, the needed transition
rate is not the same. Clearly for the Sisyphus transition the
transition probability should be near unity when the particle
arrives at the transition point; whereas for the repumping
transition we may have much more time to do it (except if it is
necessary to repump the particle during the Sisyphus transfer),
typically a fraction of the trapping period.

For the narrow linewidth Sisyphus laser, in order to have
an efficient transition, the time γ −1 to realize the transition
should match the time that the particle spends at resonance
(that is, when |δ| < �L). Due to the (thermal) velocity v =√

kBT/m ∼ 1–10 m/s in the trap (depth kBT and size σr ∼
1 mm), the time spent at the resonance condition is only ��L

kBT
σr

v
.

We thus find γ ∼ kBT
��

v
σr

. For a harmonic trap σr ∝ √
T/ω1 and

the irradiance needed is thus proportional to the temperature.
This explains why we have to reduce the power during the
cooling process. As an example, a (150 ns lifetime, 500 nm
wavelength) 1 MHz transition natural linewidth requires γ ∼
107 s−1 and an irradiance of I ∼ 100 W/m2.

For the case of a laser used for optical (re-)pumping, we can
simply choose its broadband linewidth �L such that the particle
is always at resonance, i.e., ��L ∼ kBT . In practice we use a
much broader, and thus a correspondingly more intense, laser
in order to cover several rotational or vibrational levels. For
T ∼ 100 mK this requires a linewidth of �L ∼ 2π (2 GHz)
and for a transition rate of γ −1 ∼ 1 ms, an irradiance of
7 mW/cm2.

4. Kinetic Monte Carlo exact solution of the master
or rate equation

Here we recall the method, which has been published in
Ref. [48], used to perform the simulation and especially the
kinetic Monte Carlo method for solving rate equations and the
N -body integrator.

The method is able to solve any system driven by a master
equation

dPk

dt
=

N∑
l=1

�klPl −
N∑

l=1

�lkPk. (B8)

This equation describes the time evolution of the probability
Pk of a system to occupy each one of a discrete set of states
numbered by k. Each process occurs at a certain average rate
�lk(t).

With Pk = ρ̄kk we clearly see that our system is described
with such a master equation. The state’s ensemble contains
all molecule internal states and the rates are the spontaneous
emission plus the laser absorption and stimulated emission
rates described in Eq. (B3).

One of the simplest algorithms to solve this equa-
tion, sometimes called the fixed time step algorithm,
is based on the first-order formula Pk(t + dt) ≈ Pk(t) +∑N

l=1 �kl(t)Pl(t)dt − ∑N
l=1 �lk(t)Pk(t)dt . The main disad-

vantage of this fixed time step method [97] is that dt has
to be small enough to maintain accuracy and such that at
most one reaction occurs during each time step, meaning
�lk(t)dt � 1. The kinetic Monte Carlo (KMC) algorithm
solves this problem by choosing optimal time step evolution
of the system. Furthermore, the KMC method makes exact
numerical calculations and cannot be distinguished from
an exact molecular dynamics simulation, but is orders of
magnitude faster. The KMC method is indistinguishable from
the behavior of the real system, reproducing, for instance,
all possible data in an experiment including its statistical
noise. Surprisingly enough, up to now it has been more or
less limited to the study of chemical reactions, and surface or
cluster physics (diffusion, mobility, vacancy motion, transport
process, epitaxial growth, dislocation, coarsening, etc.).

The kinetic Monte Carlo algorithm uses the fact that the
system has a Markovian behavior. For a system initially at time
t in state k, the probability that the system has not yet escaped
from state k at time t ′ is given by exp[

∫ t ′

t

∑
l �lk(τ )dτ ]. At time

t ′ a reaction takes place, so just before t ′ the system is still in
state k; we therefore have to generate a new configuration l

by picking it out of all possible new configurations with a
probability proportional to �lk(t ′).

The KMC algorithm is then the iteration of the following
steps:

(1) Initializing the system to its given state called k at the
actual time t .

(2) Creating the new rate list �lk for the system, l =
1, . . . ,N .

(3) Choosing a unit-interval uniform random number
generator [98] r: 0 < r � 1 and calculating the first reaction
rate time t ′ by solving

∫ t ′

t

∑N
l=1 �lk(τ )dτ = − ln r .

(4) Choosing a unit-interval uniform random number
generator r ′: 0 < r ′ � 1 and searching for the integer l

for which Rl−1 < r ′RN � Rl where Rj = ∑
i=1,j �ik(t ′) and

R0 = 0. This can be done efficiently using a binary search
algorithm.

(5) Setting the system to state l and modifying the time to
t ′. Then go back to the initial step.

5. Simple method to solve the N-body equations of motion

Discussion of possible solutions to solve the N -body
equations of motion is given in Ref. [48]. We simply recall
here the main conclusions.

Numerical methods such as the ordinary Runge-Kutta
methods are not ideal for integrating Hamiltonian systems
because they do not conserve energy. On the contrary,
symplectic integrators do conserve energy.

Because of the computational round-off error and stability
domain issues, algorithms are generally not good to go beyond
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third or fourth order. One very popular N -body integrator is
the fourth (local) -order “Hermite” predictor-corrector scheme
by Makino and Aarseth [99–101]. Here we use a simpler but
still efficient algorithm, the so-called velocity leapfrog-Verlet-
Störmer-Delambre algorithm:

r(t + �t) = r(t) + v(t)�t + 1
2 a(t)(�t)2,

(B9)
v(t + �t) = v(t) + 1

2 [a(t) + a(t + �t)](�t).

It is of O((�t)3) accuracy for both position r and velocity v

for a �t time step. It also has the big advantage that accuracy
can be improved by using higher order symplectic integrators
such as the one by Yoshida [102].

In our case the velocity can be modified directly by photon
recoils in absorption or in emission and the acceleration is
simply calculated using the gradient of the potential. A typical
time scale is given by the motion in laser (or trapping) fields.
Thus the time step should be a small fraction of the ratio of the
waist, or the trap size, over the thermal velocity of the particle.

Finally, we combine the KMC and the N -body integrator
in the following way: We first calculate an expected (KMC)
reaction time t ′ − t . Then, if t ′ − t < �t , that is, a reaction

should occur before the motion, we move [through Eq. (B9)]
the particles, using the time step t ′ − t and the reaction takes
place at time t ′. On the contrary, if �t < t ′ − t , a dynamical
(N -body) evolution of the system is made, and no reaction
takes place; but due to its Markovian probabilistic behavior,
the system is still governed by Eq. (B8). Then, after each
change of the position or of the internal state, the laser fields
and potentials are recalculated and new transition rates are
calculated. It is convenient to choose a �t time step such
that the calculated laser excitation rates are almost constant
over it, in order to allow us to calculate the reaction time
t ′ − t = − ln r∑N

l=1 �lk(t)
. We use these rules of thumb to start the

simulation but we finally reduce the time step �t until we
obtain convergence of the results, which usually occurs for
γ�t ∼ 1.

APPENDIX C: LIST OF FORMED COLD MOLECULES

Table II presents a list of the cold molecular species with
T < 1 K. For each species only the reference corresponding
to the pioneering work is given. The combination of the

TABLE II. Slow and cold molecule list with T < 1 K with an estimation of their temperature T and number N . For each species only the
reference corresponding to the pioneering work is given.

Method Molecule T (μK) N

Feshbach, rf [105,106] 85,87Rb2 [107–109], Cs2 [110], 40K2 [111], Li2 [112–114], 0.1 100 000
Na2 [115], 40KRb [116], 41K87Rb [117], Cr2 [118], Li3 [119], NaK [120]

Photoassociation [121] Cs2 [122], H2 [123], Rb2 [124], Li2 [125], Na2 [126], K2 [127–129], 100 200 000
He2

∗ [130], Ca2 [131], KRb [132], RbCs [133], NaCs [134], LiCs [135]

Three-body collision Rb2 [124], Li2[112,136] 0.2 2 000 000

Laser cooling SrF [6], YO [137], CaF [138] 0.3

Cryogeny (buffer gas) [139] CaH [140], VO [141], CaF [142], PbO [143,144], O2 [145], NH [146], 400 000 1012

ND, CrH, MnH [147], ND3, H2CO [148], YbF [149],
NH, NH3, O2, ThO, naphthalene [150], BaF, SrO, YbF, YO [139]

Field slowing: Stark [151] CO [25], NH3, ND3 [152,153], OH [154,155], OD [156], H2CO [157], 10 000 1 000 000
NH [158], SO2 [159], C7H5N [160], YbF [161], LiH [162], CaF [163]

Rydberg H2 [164–167]

Optical C6H6 [168], NO [169]

Zeemann O2 [170]

Beam collision NO [171], KBr (13 K) [172], ND3 [173] 400 000

Beam dissociation NO [174] 1 600 000

Rotating nozzle O2, CH3F, SF6 [175,176], CHF3 [177], perfluorinated C60 [178] 1 000 000

Velocity filtering H2CO [157], ND3 [179], D2O [180], CH3F [181], CF3H [182], CH3CN [183], 1 000 000 109

H2O, D2O, HDO [184], NH3, CH3I, C6H5CN, C6H5Cl [185]

Sympathetic cooling [186–188] BeH+, YbH+ [189], AF350+ = C16H14N2O9S+ [190], 20 000 1000
MgH+ [1], O2

+, MgO+, CaO+ [191], H2
+, H3

+ [192], BaO+ [193], NeH+,
N2

+, OH+, H2O+, HO2
+, ArH+, CO2

+, KrH+, C4F8
+, R6G+ [188],

Cyt12+, Cyt17+ [194], GAH+ = C30H46O4 [195]

Nanodroplet [196–201] Mg1−3HCN, Ne−, Kr−, ArHF, tetracene-Ar, 1 000 000 10
HCN-H2, HD, D2, Ag8-NeN , ArN , KrN , XeN (N = 1–135),
NaCs, LiCs, HF-(H2), OCS-(H2)N (N = 1–17),
Cs2, Rb2, CO, HCl, amino acid, 3-hydroxyflavone,
xanthine, [Na(H2O)N ]+ (N = 6–43) [202], HF-N2O, Mg-HF,
Mg-(HF)2, CH3-H2O, CsN

+(H2O)M ,CF3I, CH3I, etc.
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buffer gas precooling with the Stark velocity filtering is listed
either under the “Cryogeny” or under the “Velocity filtering”
category. The occurrence of some “exotic” molecules has been
detected only as a loss process in a degenerate gas but not really
produced and isolated. This is the case of Cs3 and Cs4 [103]
and thus they do not appear in the table. Similarly, several

photoassociation experiments have produced electronically
excited cold molecules (as a single example, Yb [104]) but
we do not include them in the list as they have a lifetime
limited to some tens of nanoseconds. Furthermore, we do not
always detail the isotope difference; for instance, NH3 can be
the same as 15NH2D.
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