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Relativistic effects in time delay of atomic photoionization
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We study relativistic effects in the time delay of atomic photoionization using an example of the Xe atom
subjected to a circularly polarized electromagnetic pulse. We find that while relativistic effects play only a fairly
small role for both the ionization probabilities and the time delay of the corotating electron with the same sign
of the angular momentum projection as the circularly polarized light, these effects produce substantial change in
the time delay for a counter-rotating electron with the opposite sign of the angular momentum projection.
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I. INTRODUCTION

Available experimental techniques such as attosecond
streaking and angular attosecond streaking [1-3] added a
new dimension to the traditional atomic and molecular
spectroscopy: a possibility to follow development of the
photoionization process in time. An essential ingredient in
the attosecond streaking approach is the external infrared
(IR) field (the probe pulse), which is used to set a clock
that measures timing of the photoionization process. Any
measuring device (a clock in this case) perturbs the system,
a situation not uncommon in quantum mechanics. Presence
of the IR field (which in experiments is in the range of
10"'-10'2 W/cm?) has to be correctly accounted for. This
is not always an easy task, and the theoretical description of
the attosecond streaking technique evolved from the original
purely classical description [4], neglecting influence of atomic
or molecular structure on the electron motion in the IR field, to
various refinements of this picture [5—8], attempting to provide
the level of accuracy necessary to correctly extract timing
information from the experiments.

An altogether different idea of a clock, which may be
used for the timing analysis of atomic photoionization, is
the so-called Larmor clock. The Larmor clock exploits the
idea of using the Larmor precession to measure the time it
takes for a particle to traverse a barrier [9]. A static magnetic
field is applied inside the barrier. The spin of the incident
particles is polarized perpendicular to this field. The angle of
the Larmor precession occurring during transmission is used
as a measurement of the time spent traversing the barrier.
Recently, this idea was generalized: instead of a magnetic field,
which is difficult to confine within a barrier, it was proposed to
use the spin-orbit interaction as a means to rotate the particle
spin [10]. In simple physical terms, this idea can be understood
by considering an electron with angular momentum / orbiting
around the nucleus. In the reference frame associated with
the electron, the nucleus moves creating magnetic field. The
precession of electron spin in this field records time. The
spin-orbit interaction is naturally occurring in many atoms and
molecules and it can be conveniently used to clock various
single-photon and multiphoton ionization processes. The
spin-orbit wave packets represent another possibility for an
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alternative attoclock design. These wave packets are launched
from a coherent superposition of the spin-orbit decoupled
states of a singly ionized atom, which evolve in time with a
well-calibrated period inversely proportional to the spin-orbit
energy splitting [11]. This precise calibration of time presents
a natural scale to study the evolution of the nonstationary
multielectron wave function. Yet another process that can be
used for this purpose is spin-exchange interaction, which is
particularly strong in atoms with half-filled shells, which are
fully spin polarized according to the Hund rule [12]. This
interaction causes a large asymmetry between photoionization
amplitudes to the spin-up and spin-down continuum states,
which causes a significant spin rotation during ionization and
can be used to clock the photoionization process.

For ab initio theoretical justification and verification of
these ideas, one has to go beyond the usual framework used
for timing analysis of atomic or molecular photoionization. So
far, this analysis has been based on the nonrelativistic time-
dependent Schrodinger equation (TDSE). However, both the
spin-orbit interaction and the interaction of electron spin with
a magnetic field are relativistic effects. In the present work,
we describe an approach that takes into account most essential
relativistic effects. We illustrate this approach by considering
an example of the Xe atom subjected to a circularly polarized
electromagnetic pulse.

The paper is organized as follows. In Sec. II we outline our
theoretical model. In Sec. III we present our numerical results
for the photoelectron momentum distribution, the ionization
probability, and the time delay. The atomic units are used
throughout the paper unless otherwise specified. The time
delay is measured in attoseconds (1 as = 107'8 s). The speed
of light ¢ = 137.036 in the atomic units.

II. THEORY

We consider an atom in the field of a circularly polarized
electromagnetic pulse propagating in the z direction, with the
electric field given by:

& E
E.=—f({t)coswt, E,=—f(t)sinwt. (D)
\/Ef y \/Ef
Here we choose the carrier frequency w = 1 au. = 27.2 eV
(close to the 17th harmonic of a 800 nm laser) and f(¢) =

cos?(rrt/ Ty) is the pulse envelope. The field is present on the
time interval (—7,/2,T1/2), where Ty = 4T, T = 2n/w is an
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optical cycle corresponding to the carrier frequency w. The
total duration of the pulse we use is thus four optical cycles,
which gives the FWHM of 300 as. We will consider below the
ionization process driven by the field (1) with the field strength
£ in Eq. (1) in the interval 0.01-0.1 a.u., corresponding to the
range of intensities 3.5 x 10'?-3.5 x 10'* W/cm?. For these
field parameters ionization occurs in the multiphoton regime.

The magnetic field of the pulse H is related to the
electric field (1) by the relation following from the Maxwell’s
equations:

H(t) = n x E(t), )

where n is a unit vector along the direction of the propagation
of the electromagnetic pulse.

We take into account relativistic effects using the so-
called Breit-Pauli approximation [13]. In this approximation,
the four-component Dirac equation is expanded in powers
of a small parameter 1/c and the terms up to 1/c* are
retained. The wave function in this approximation is a
two-component spinor. The Breit-Pauli version of the time-
dependent Schrodinger equation for an atom in the field of a
circularly polarized electromagnetic pulse takes the form:

0w N N N N

l? = (Ho + Hin(t) + Hso + Hmag)lp' 3)
Here Hj is the part of the Breit-Pauli Hamiltonian of the
field-free atom, which does not include the electron spin. We
describe the atom in a single active electron approximation,
and we have for this operator:

2 4

Y p AU(r)

A= +un-EL + =220
0 +U(r) o2 + 2

5 ; “4)

where U(r) is an effective potential [14] of the Xe atom. The
additional spin-dependent terms in Eq. (3) are the spin-orbit
interaction:

,dU 11§
7 dr 2r 2

and the magnetic term, describing interaction of the electron
spin with the magnetic field of the pulse:

®)

R 1
Hpog = —H (1) - 3. (6)
C

The operator I:Iim(t) in Eq. (3) describes interaction of the atom
and the electric field of the pulse. We employ both the length
and velocity forms for this operator:

N _ E@) -7
Hint(t) - {A(I) . i”

We do not consider here nondipole terms in the interaction
Hamiltonian. As dictated by the wave equation, for a pulse
propagating in the z direction all the functions of time in
Egs. (1), (2) should, in fact, be considered as functions of ¢ —
z/c. By expanding these functions in powers of z/c¢, we obtain
nondipole corrections to the Hamiltonian. These corrections
are of the order of £/c or higher, and can be neglected for the
small field intensities that we presently consider.

A =~ [} , E(@)dT )
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We seek a solution of Eq. (3) in the form:

Lmax

V(o)=Y fimu(r)Yim(®.9)xu(0), ®)

1L,m,

where Y;,,(6,¢) are the spherical harmonics and x,(o) are
the basis spin functions. In the present calculations we used
Lnax = 10. The radial part of the TDSE is discretized on the
grid with the step size §r = 0.02 a.u. in abox of the size Ry,x =
600 a.u. Convergence of Eq. (8) with Ly, and Ry, has been
tested thoroughly. To propagate the wave function (8) in time,
we use the matrix iteration method developed in Ref. [15] and
further tested in strong field ionization calculations [16—18].
This method can be easily modified to include additional spin
degrees of freedom.

At the moment of time ¢ = T;/2, corresponding to the end
of the pulse, we project the solution of the TDSE on the set
of the ingoing scattering states ¥, [19] characterized by the
electron asymptotic momentum k and the spin projection ju:

Yooy = i'e B Ry (D, (F.0)S] (). (9)

1,j,mj

Heres =1/2, 7 =r/r, k= k/k, ¢1jm;(F,0) describes angu-
lar and spin dependence of the wave function,

Sty =S e v (), (10)

Cljmm ! ., are the Clebsch-Gordan coefficients. This projection

gives us the amplitudes

aue = (i 1W(0)e' ™,

of detecting the ejected electron with the asymptotic mo-
mentum k and the spin projection w after the end of the
pulse. The squared moduli of these coefficients determine the
photoelectron spectrum. The energy derivative of the phase
of the coefficients (11) gives the photoelectron group delay,
which is also known as the Wigner time delay [20-22], which
can be conveniently expressed as:

§o
7o = Im( L2940k ) (12)
q 0k

Here the derivative is computed at the point k = ¢, correspond-
ing to the asymptotic momentum of the photoelectron in the
field-free zone and § = q/q. The time delay t has a transparent
physical meaning [20,21]. It appears as a coefficient in the
asymptotic expression for the trajectory of the crest of the
electron wave packet in a given direction

r(t) ~ qt — ) + r'(). (13)

Here the term r/(¢) gives a well-known Coulomb corrections
to the trajectory, which grows logarithmically with ¢ for
large r. The time delay, therefore, can be interpreted as a
moment of time when the photoelectron was launched on
its escaping trajectory. This provides us with the information
about development of the photoionization process in time.

Since the amplitudes (11) depend on the spin projection pu,
so do the ionization probabilities and the time delays. This is,
of course, very different from the nonrelativistic case in which
such dependence is absent.

t=T/2 (11)
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FIG. 1. (Color online) Photoelectron momentum distribution in
the polarization plane for the spin up electrons. Ionization from the
5ps3 state of Xe with m; = 3/2. The peak strength of the electric
field is 0.1 a.u.

III. NUMERICAL RESULTS

We perform calculations for the Xe atom in the 5p;_i,»
and 5p;_3/, initial states with different angular momentum
projections m ;. The quantization z axis is aligned along
the propagation direction of the electric field (1). The field
strengths are chosen to be £ =0.01 and 0.1 a.u., which
correspond to the field intensity of 3.5 x 10'? and 3.5 x
10 W/cm?, respectively.

Figure 1 shows the electron momentum distribution in the
polarization plane for the ionization from the 5 p3/, state of Xe
with the angular momentum projection m ; = 3/2. We present
this figure as an illustration of the general features of the
photoionization process from the Xe atom. In many respects,
this figure looks very much like its nonrelativistic counterpart
for the ionization of the Li atom by the circularly polarized
pulse that we studied in our earlier work [22]. The top panel
of Fig. 2 of this work, corresponding to the field intensity
€ =0.01 a.u., shows the same uniform distribution of the
ionization probability within the circle prescribed by the en-
ergy conservation. A completely uniform distribution is what
the lowest-order perturbation theory (LOPT) would predict.
Indeed, according to the dipole selection rules, absorption of
one circularly polarized photon with m = 1 from the initial
5p3)2 state with m; = 3/2 leads to the continuum state of
even parity with m; = 5/2, which can only be accommodated
by j =5/2. It is easy to see from Eqgs. (9) and (10) that
dependence of the ionization probability on the asymptotic
momentum k is described in this case by a single term that
contains the modulus squared of the spherical harmonic Yo (k).
This term produces a uniform probability distribution in the
polarization plane for the only value w = 1/2 of the spin
projection compatible with the even parity, j = 5/2andm; =
5/2. Any departure from such a uniformity can only be due
to higher-order processes such as absorption of two or more
photons. Such a departure from uniformity can indeed be seen
at a closer inspection of Fig. 1, which we will present below.

When discussing relativistic effects, which are not very
strong even in a moderately heavy Xe atom, the accuracy of the
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FIG. 2. (Color online) Ionization probability (top row) and time
delay (bottom row) as functions of the polar angle in the polarization
plane for the spin-up electrons. Solid (red) line: L-gauge calculation,
filled (blue) circles: V-gauge calculation. Left and right columns show
results for the 5ps;; state of Xe with m; = +3/2 and m; = —3/2,
respectively. The peak strength of the electric field is 0.1 a.u.

calculation becomes an important issue. We performed a series
of checks of the stability of our calculation with respect to the
set of numerical parameters. Convergence of our calculation
was tested with respect to the parameters Lp,x and Ryax in
Eq. (8), and the step size ér used to discretize the TDSE. The
numerical results obtained with R,x = 600 a.u., L.x = 10,
and 6r = 0.02 a.u. are well converged as is confirmed by
a close agreement of the calculations using the length and
velocity forms of the interaction Hamiltonian (7). Since both
gauges weigh completely different regions of the configura-
tion space, any lack of convergence would be immediately
apparent. Such a comparison is shown in Fig. 2 where we
plot the ionization probability and the time delay as functions
of the polar angle in the polarization plane. The probability
is obtained by integration of the photoelectron momentum
distribution shown in Fig. 1 in the k.,k, coordinates over
the radius k. Figure 2 corresponds to the ionization from
the 5p3,, state of Xe with the angular momentum projection
m; = 3/2. The numerical results produced by both gauges
are virtually indistinguishable both for ionization probabilities
and the time-delays.

To elucidate the influence of the relativistic effects, we
performed two sets of calculations using the relativistic
Hamiltonian Eq. (3) and its nonrelativistic limit ¢ — oo. Such
calculations are presented in Figs. 3 and 4 where we plot the
ionization probability and the time delay in the polarization
plane for two different values of the electric field £ = 0.01
a.u. and 0.1 a.u., respectively. Both figures present results of
our calculations for the Xe 5 p3; states withm ; = 3 /2, spin-up
electrons (left columns) and m; = —3/2, spin-down electrons
(right columns).

In the nonrelativistic limit, the 5p;,, state of Xe with
m; = 3/2 corresponds to the 5p state with m = 1. Similarly,
the state 5p3/, with m; = —3/2 corresponds to the 5p state
withm = —1. The states withm; = 3/2and m; = —3/2 are,

043405-3



I. A.IVANOV AND A. S. KHEIFETS

10
045 T T T T T 027 T T T T T
:5p3/2mj=+3/2 | 5p3/2mj=—3/2
2
2044
8 L
< L
A L L
— ] —————— ]
043 ..... | | | | | 026 ..... | | | | |
20 e T T T T ) """ -5 pro T T T T T
L 5p3/2mj=+3 2 b 5p3/2mj=—3/2
Relativistic — 6 |F
= 3 Nonrelativistic -t
< L L
Z 19 - 7R
% L /’ \/ F
A L [
I 8 r
18 Lo Livens Lovis Livess Livens Lovis 9 L Lovess Lives Livess Livins Livess
0 60 120 180 240 300 360 0 60 120 180 240 300 360
Angle (degrees) Angle (degrees)

FIG. 3. (Color online) Ionization probability (top row) and time
delay (bottom row) as functions of the polar angle in the polarization
plane. Solid (red) line, relativistic calculation; dashed (green) line,
nonrelativistic results. Left column: ionization from the 5ps, state of
Xe with m; = 3/2, spin-up electrons, right column: ionization from
the 5 p3/, state of Xe withm; = —3/2, spin-down electrons. The peak
field strength is 0.01 a.u.

therefore, relativistic counterparts of the corotating(m = 1)
and counter-rotating (m = —1) nonrelativistic states, respec-
tively. It was shown that in the nonrelativistic case the
ionization probabilities for the corotating and counter-rotating
electrons can be very different [23,24]. We have shown [22],
that time delays for these two different initial states can differ
too. The origin of this difference can be elucidated using the
LOPT, which shows that it is primarily due to the difference
of the corresponding Clebsch-Gordan coefficients describing
angular parts of the photoionization matrix elements.

These effects are, therefore, of a nonrelativistic nature,
and we can expect to see them in the relativistic calculations
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FIG. 4. (Color online) Same as Fig. 3. The peak field strength is
0.1 a.u.
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for the Xe atom, which is not a deeply relativistic system.
Fig. 3 and Fig. 4 show that this is indeed the case. The
ionization probability for a corotating electron (left top panels)
is about twice as large as for a counter-rotating one (right
top panels). We also see oscillations superimposed on the flat
background in the angular dependence of both the ionization
probabilities and the time delays. These oscillations are present
both in relativistic and nonrelativistic cases. The nature of these
oscillations was elucidated in our earlier work [22] where we
considered ionization of the Li atom in a similar geometry
using a nonrelativistic approach. We found that for small
fields, when the LOPT treatment is valid, this effect could
be described as a m-periodic modulation. This modulation
can be attributed to a small pulse duration giving rise to an
appreciable probability of ionization processes going without
energy conservation. A similar LOPT analysis can be applied
to the present case. After absorption of a circularly polarized
photon, the initial 5p3/, state with m; = 3/2 makes a dipole
transition to the kds/, continuum with m; = 5/2, where the
momentum k is determined by the energy conservation. This
continuum state can also emit a virtual photon and thus violate
the energy conservation. For a short pulse of only four optical
cycles, this virtual process still has an appreciable probability.
The dipole selection rules for the circularly polarized radiation
lead to the ks1/2, kds />, and kd, > states of even parity with
m; = 1/2. These states are represented in Egs. (9) and (10) by
the spherical harmonics Y,m(l}) with!/ =0,m =0and [ = 2,
m = 0,2. These terms lead to the angular dependence of the
amplitude in the polarization plane o 4+ 8 exp(2i¢), which has
a character of 7 modulation. This modulation is indeed seen
in the time-delay plot shown on the bottom left panel of Fig. 3
for the 5p;/, state withm; = 3/2.

The angular oscillation in the time delay is different for the
ionization from the 5p3/, state with m; = —3/2 for the weak
field of 0.01 a.u. (the bottom right panel of Fig. 3) and for
the time delays for stronger field of 0.1 a.u. (bottom row of
panels of Fig. 4). Here, time-delay behavior as functions of
the polar angle can rather be described as a 27 modulation.
We encountered this type of modulation in the nonrelativistic
case [22], for ionization by stronger fields. It can be explained
as contribution of the higher-order perturbation theory effects.
This explanation relies on the analysis of the contribution of
the higher order terms of the perturbation theory. Such analysis
can be carried with minor modifications in the present case,
with the same conclusion that for stronger fields the time delays
should exhibit a 27 modulation. This can explain behavior of
the time delays that we observe in Fig. 4.

The case which apparently falls apart is the behavior of the
time delay for ionization from the 5 p3/, state withm ; = —3/2
for the weak field strength of 0.01 a.u. (the bottom right panel
of Fig. 3). Here the nonrelativistic calculation (dashed line)
exhibits a 7 modulation, in agreement with the expectations
based on the LOPT. The relativistic calculation, on the other
hand, exhibits a 27 modulation, which we would expect to
occur for higher field strengths, and which indeed occurs for
this state for the field strength of 0.1 a.u. as seen in Fig. 4.
For the 5p3/, stare state with m; = —3/2 relativistic effects,
therefore, lead to earlier manifestation of the nonperturbative
effects. We are not sure how to explain this observation.
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More importantly, we see that while relativistic effects
play only a fairly small role for time delays of the corotating
electron (the bottom left panels of Figs. 3 and 4), they produce
substantial change in the time delays for a counter-rotating
electron (the bottom right set of panels). This change is of
the order of 20% for the electric field strength of 0.01 a.u,
and of the order of 30% for the stronger field of 0.1 a.u.
This can be explained, at least qualitatively, as follows.
The predominant ionization channel of the 5p3/, state with
mj = 3/2is the kds, continuum state with m ; = 5/2. On the
other hand, the dominant ionization pathway of the 5p;,, state
withm; = —3/2is the ks; > continuum state withm ; = —1/2.
The centrifugal barrier, that keeps the continuum electron far
from the nucleus, is much higher in the first case. The spin-orbit
interaction decays very rapidly with the electron-nucleus
distance [as 3 according to Eq. (5)]. It plays, therefore,
much more important role for the ionization from the 5p3/»
state with m; = —3/2. That explanation is consistent with
the well-known formula for the energy correction due to the
spin-orbit interaction [13], which decays fast with angular
momentum for large [.

To make a comparison with nonrelativistic calculation for
the spin-orbit split states with arbitrary values of the total
momentum j, we have to ensure a one-to-one correspondence
of the relativistic and nonrelativistic initial states. This is easily
achieved in the case of the states with the maximum possible
J and m; (for a given [) that we considered so far. Indeed,
in the nonrelativistic limit, the 5p3,, state with m; =3/2
corresponds to the 5p state with the angular momentumm = 1
and the spin projection ;. = 1/2. Similarly, the 5 p3,, state with
m; = —3/2 corresponds to the 5p state with m = —1, u =
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FIG. 5. (Color online) Ionization probability (top) and time delay
(bottom) as functions of the polar angle in the polarization plane for
the 5p,, state with m; = 1/2 (spin up electrons). Solid (red) line,
relativistic calculation; dashed (green), nonrelativistic results. The
peak field strength is 0.1 a.u.
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—1/2. The nonrelativistic limit for a state with an arbitrary
j value is a linear combination of several nonrelativistic
states with different projections of angular and spin momenta.
The nonrelativistic limit of the relativistic 5p;,, state with
m; = 1/2, for example, is a linear combination of the 5p
states withm =1, u = —1/2,and m = 0, u = 1/2 weighted
with the corresponding Clebsch-Gordan coefficients. Taking
such a superposition as an initial state in the nonrelativistic
calculation, we can gauge the role of the relativistic effects.
This is illustrated in Fig. 5 where we present results for the
ionization from the 5p, state of Xe withm; = 1/2.

IV. CONCLUSION

We performed relativistic time-delay calculations for the
photoionization of Xe atom driven by a circularly polarized
electromagnetic pulse. For a moderately heavy Xe atom,
relativistic effects do not play a very important role for the
ionization probabilities. On the contrary, the time delays can
undergo significant modifications if relativistic effects are
considered. This is probably another manifestation of the
general principle that the phase of the amplitude is more
sensitive to small perturbations than its absolute value.

Here we considered initial electron states that are corotating
and counter-rotating with respect to the electric field vector.
We found that, similarly to the nonrelativistic case, the
photoelectron spectra and the time delays are very different for
these two orientations. As in the nonrelativistic case, the time
delays exhibit modulation with respect to the polar angle in the
equatorial plane. The period of this modulation is & for a weak
field becoming 27 for stronger fields. The -modulation effect
can be explained as a manifestation of the processes going
without energy conservation that occur for the ionization by
a short pulse. The 27 modulation is due to the higher order
processes. More important is the finding that while relativistic
effects play only a fairly small role for ionization probabilities
and time delays of the corotating electron, they produce
substantial change in the time delays for a counter-rotating
electron. In the latter case, the effect can reach 30%. This is a
large enough effect to be taken into account in interpretation
of the experiments using the Larmor clock approach. As we
have seen, the magnetic field, which is a part of the measuring
apparatus in the Larmor clock experiment, may itself modify
the measured quantity considerably.

The present study is only the first step in elucidating the
relativistic effects in time-delay calculations. Going beyond
the single active electron approximation and considering
relativistically many-electron effects may prove important
since these effects are known to play significant role for
noble-gas atoms [25]. A study relying on the relativistic
random phase approximation [26] reported new effects, due
to relativity, in the neighborhood of Cooper minima. Study of
the truly relativistic regime of photoionization by strong laser
fields as, i.e., in Ref. [27] is also of considerable interest.
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