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Shifts due to quantum-mechanical interference from distant neighboring resonances
for saturated fluorescence spectroscopy of the 2 3S to 2 3P intervals of helium
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Quantum-mechanical interference with distant neighboring resonances is found to cause shifts for precision
saturated fluorescence spectroscopy of the atomic helium 2 3S-to-2 3P transitions. The shifts are significant (larger
than the experimental uncertainties for measurements of the intervals) despite the fact that the neighboring
resonances are separated from the measured resonances by 1400 and 20 000 natural widths. The shifts depend
strongly on experimental parameters such as the angular position of the fluorescence detector, the intensity and
size of laser beams, and the properties of the atomic beam. These shifts must be considered for the ongoing
program of determining the fine-structure constant from the helium 2 3P fine structure.
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I. INTRODUCTION

In previous work [1,2], we have demonstrated that a
resonance can be shifted by quantum-mechanical interference
with a distant neighboring resonance for a simple three-
or four-level atom interacting with a constant-amplitude
sinusoidal driving field. Similar shifts in more complicated
systems, such as the helium n = 2 triplet states considered
here, depend critically on the experimental technique used
to determine the intervals. An evaluation [3] of interference
effects for microwave transitions between 2 3P states (such as
in the precision measurements of Refs. [4,5]) reveals small
shifts, with the shifts being even smaller for measurements
that use the Ramsey technique of separated oscillatory
fields (such as the precision measurement of Ref. [6]). An
evaluation [7] of interference effects for laser 2 3S-to-2 3P

transitions (such as the precision measurement of Ref. [8]),
on the other hand, reveals shifts larger than the experimental
uncertainty. In that work, the laser transitions are detected
by the transfer of population between metastable 2 3S states.
The effect of interference can be seen more directly when
the resonances are not distant, as has been shown recently
for the overlapping hyperfine components for lithium D
lines [9].

Here we calculate interference shifts for saturated fluores-
cence spectroscopy in an atomic beam of metastable helium
atoms (similar to the experimental work in Refs. [10,11]), and
find that quite substantial shifts occur for this measurement
technique. Saturated fluorescence uses two counterpropagat-
ing laser beams, each with intensity above the saturated
intensity for the transition, and a reduction in fluorescence
is observed when the laser frequency is tuned onto resonance.
This reduction results [12] from the fact that the two lasers
cause atoms in separated velocity classes (Doppler shifts) to
fluoresce when the laser is tuned away from resonance, but
both lasers address the same velocity class when the laser is on
resonance. We consider the effect of neighboring resonances
on saturated fluorescence for the 2 3S1-to-2 3P1 and 2 3S1-
to-2 3P0 transitions (Fig. 1). The 2 3P1-to-2 3P0 fine-structure

*hessels@yorku.ca

interval, which can be used to determine the fine-structure
constant α, can be obtained from the difference between the
two resonance centers.

The program for determining α from the 2 3P intervals has
been ongoing for almost 50 years [13], with theoretical [14–16]
and experimental [4–6,8,10,17–19] contributions continuing,
and a determination of α from these intervals to better than a
part per billion may soon be possible.

II. SATURATED FLUORESCENCE LINE SHAPE

A. Density-matrix equations

As in the saturated fluorescence measurement of
Refs. [10,11], we consider two counterpropagating laser beams
(along ±ŷ), with both beams having the same waist size,
frequency (ω/2π ), peak intensity (I0), and linear polarization
(ẑ). The calculation uses ẑ as the quantization axis, consistent
with the energy levels of Fig. 1. In order to analyze saturated
fluorescence spectroscopy, each Doppler group (with atomic
velocity component vy) within the atomic beam must be
considered separately, with the full signal resulting from the
average of all Doppler groups present. An atom which has
a velocity component vy sees equal and opposite Doppler
shifts ±�ωD = ±2π�fD = ±ωvy/c for the two laser beams.
The two laser beams form a standing wave with the total
�E = ẑES(t) cos (ωt − φ̄) seen by the moving atom as it passes

through the laser beams, where

ES(t) = 2E0 cos (�ωDt + �φ/2)e−2(t−tL)2/T 2
L . (1)

Here, E0 =
√

2I0
ε0c

, φ̄ and �φ are the average and difference

of the phases of the two laser beams, tL is the time at
which the atom passes through the center of the laser beam,
and TL determines the interaction time between the atom
and the laser, and is based on the speed of the atom and
the waist of the laser beam. We ignore the nonresonant
e−iωt term and use the rotating-wave approximation. In this
approximation, using the notation |gμ〉 = |23S1mJ = μ〉 and
|ejm〉 = |23PjmJ = m〉 of Fig. 1, we obtain the density-matrix
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FIG. 1. (Color online) The n = 2 triplet energy levels of helium.
The metastable states are labeled |gμ〉 and the 2 3PJ (mJ = m) states
are labeled |eJm〉. The transitions being considered are shown as
dashed and dotted red arrows, and all radiative decay paths are shown,
with γ

(μ)
Jm being the decay rate from |eJm〉 to |gμ〉. Interference between

decays that have the same �mJ (the same color in the figure) and end
in the same |gμ〉 state leads to the shifts discussed in this work.

equations [1,2,7,20]

ρ̇gμgμ′ =
∑

j,m,j ′,m′
γ

μ′j ′m′
μjm ρejmej ′m′

+ i
∑
j,m


μ′jmρgμejm
− 
∗

μjmρejmgμ′

2
,

ρ̇ejmej ′m′ = ωj − ωj ′

i
ρejmej ′m′

+ i
∑

μ


∗
μj ′m′ρejmgμ

− 
μjmρgμej ′m′

2

−
∑
μ,j ′′

γ
μj ′′m
μjm ρej ′′mej ′m′ + γ

μj ′′m′
μj ′m′ ρejmej ′′m′

2
,

ρ̇gμejm
= ω − ωj

i
ρgμejm

−
∑

μ′,j ′,m′

γ
μ′j ′m′
μ′jm

2
ρgμej ′m′

+ i

2

∑
μ′


∗
μ′jmρgμgμ′ − i

2

∑
j ′,m′


∗
μj ′m′ρej ′m′ ejm

, (2)

where


μjm = 
μjm(t) = eES(t)

�
〈gμ|z|ejm〉, (3a)

γ
μ′j ′m′
μjm = e2ω3

3πε0�c3
〈gμ|�r |ejm〉〈ej ′m′ |�r |gμ′ 〉, (3b)

and the q = 0, ± 1 components of 〈gμ|rq |ejm〉 are

〈gμ|rq |ejm〉 = (−1)1−μ

√
3/

√
2j + 1

(
1 1 j

−μ q m

)
4.385a0.

(4)

The γ
μ′j ′m′
μjm terms in Eq. (2) include the partial rates

γ
(μ)
jm = γ

μjm

μjm for radiative decay from |ejm〉 to |gμ〉 (as shown in

Fig. 1), and the total decay rate 1/τ = γ = ∑
μ γ

(μ)
jm . The latter

has the same value for all |ejm〉 since the 2 3S1-to-2 3Pj energy
interval �ωj = hfj is approximated by its average value �ω in

Eq. (3b). The off-diagonal γ μ′j ′m′
μjm terms represent interferences

between the partial rates, and these interferences lead to
the shifts calculated in this work. Often calculations using
density-matrix equations neglect these terms and therefore do
not include interference effects.

B. Efficient solution method

The 144 coupled equations represented in Eq. (2) are
complete but challenging to solve numerically due to the fast
oscillations caused by the large ωj − ωj ′ and ω − ωj terms.
If we are considering a laser that is nearly resonant with
the |gμ〉-to-|eJm〉 transition (i.e., in resonance with the j = J

state), the other states (ρej ′mej ′m , with j ′ �= J ) obtain very little
population. Similarly to Refs. [1,2], we note that all ωJj ′ =
ωJ − ωj ′ (which are �2π times the He 2 3P fine-structure
splittings of Fig. 1) are more than 1000 times larger than the
other frequency scales in Eq. (2) (γ μ′j ′m′

μjm , 1/TL, 
μjm, and
� = 2π�f = ω − ωJ ), all of which are �1/τ . Introducing
a small scale parameter η which is the ratio of these two
frequency scales allows an expansion of Eq. (2) in η. As in
Refs. [1,2], the η2 terms (e.g., ρej ′mej ′m ) can be ignored and the
density-matrix elements of order η (e.g., ρeJmej ′m and ρej ′mgμ

)
can be eliminated to give modified equations for the dominant
density-matrix elements that are complete to order η:

ρ̇gμgμ′ = i(εμ′ − εμ)ρgμgμ′

+ i

2

∑
m

[
μ′JmρgμeJm
− 
∗

μJmρeJmgμ′ ]

+
∑
m,μ′′

[
ζ Jm
μμ′μ′′ρgμ′′ eJm

+ (
ζ Jm
μ′μμ′′

)∗
ρeJmgμ′′

]

+
∑
m,m′

γ
μ′Jm′
μJm ρeJmeJm′ ,

ρ̇eJmeJm′ = −γρeJmeJm′ − i

2

∑
μ

[

μJmρgμeJm′ − 
∗

μJm′ρeJmgμ

]
,

ρ̇gμeJm
=

∑
μ′

i
∗
μ′Jm

2
ρgμgμ′ −

∑
m′

i
∗
μJm′

2
ρeJm′ eJm

−
∑
μ′

γ
μ′Jm

μ′Jm

2
ρgμeJm

− i(ω − ωJ + εμ)ρgμeJm
. (5)

Here,

εμ =
∑

j ′ �=J,m′

|
μj ′m′ |2
4ωJj ′

and ζ Jm
μμ′μ′′ =

∑
j �=J,m′


μ′′jm′γ
μ′Jm

μjm′

2ωJj

(6)

result from perturbations due to the distant |ej ′m′ 〉 states and
are the only terms of order η in Eq. (5). The εμ terms represent
the ac Stark shift of the |gμ〉 state. The ζ terms lead to the
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FIG. 2. (Color online) The fluorescence signals F0 as a function
of detuning �f from the 2 3S1-to-2 3P1 resonance. Individual Doppler
groups �fD , (a)–(c), give resonances at �f = ±�fD . For small
�fD , F0 depends on the relative phase, as shown for four values of
�φ in (a). At larger �fD , the dependence is reduced substantially,
as shown for the same values of �φ for �fD = 0.4 MHz in (b). The
solid curves represent averages over �φ. The average of F0 over all
Doppler groups leads to the saturated fluorescence dip, as shown in
(d) for �f HWHM

D = 45 MHz (thin red line) and 80 MHz (thick line).
An expanded view of the saturated fluorescence dip within the dashed
area in (d) is shown in (e), along with the amplitude (A) and full width
at half maximum (FWHM) of the dip.

interference shifts being discussed in this work and these terms
are the generalization of the 
′

2 − 
2 terms in Eq. (10) in
Ref. [1] (which treats the three-level system) and of the 
′

2± −

2 and 
′′

2 − 
2 terms in Eq. (3) in Ref. [2] (which treats the
four-level problem). Equation (5) gives 16, 36, or 64 equations
(for J = 0, 1, or 2, respectively), and these equations lack the
fast oscillations found in Eq. (2), and thus require a factor of η

(three orders of magnitude) fewer time steps for the numerical
integration. The results of these integrations agree with those
from Eq. (2) to order η2 (i.e., to better than a part per million).

C. Fluorescence

The fluorescence emitted by the laser-excited atoms can be
obtained from the γ terms in the ρ̇ejmej ′m′ equation of Eq. (2).
The fluorescence has three components Fq (q = 0,±1) which
represents fluorescence for �mJ = 0,±1 decays from the
2 3PJ state to the 2 3S1 state. The fluorescence Fq is given by

Fq =
∫ tf

ti

dt
∑

μ,j,m,j ′
δm+q
μ γ

μj ′m
μjm

ρej ′mejm
+ ρejmej ′m

2
. (7)

Here the Kronecker delta selects the component of the
fluorescence based on the mJ quantum numbers of the upper
and lower states, and the integration is over the time that the
moving atom spends in the laser beam.

Using techniques similar to those from the previous section,
one can find an expression for the terms in Eq. (7) that is correct
to first order in η:

Fq =
∫ tf

ti

dt
∑
μ,m

δm+q
μ

{
γ

μJm

μJm ρeJmeJm

+
∑
μ′

[
ζ Jm
μμμ′ρgμ′ eJm

+ (
ζ Jm
μμμ′

)∗
ρeJmgμ′

]}
. (8)

For each Doppler group, the solution to Eq. (5) can be used to
obtain Fq from Eq. (8). Equal initial populations are assumed
for the three metastable states |gμ〉.

The solutions F0 for the J = 1 case (the 2 3S1-to-2 3P1

transition using I0 = 2 mW/cm2 and T = 1 μs) are shown in
Fig. 2(a) for the �fD = 0 (vy = 0) Doppler group. Note from
the figure that the fluorescence depends strongly on the relative
phase �φ between the two laser fields. As shown in Fig. 2(b), at
larger �fD (larger vy), the dependence on �φ becomes small
because the atoms sample all relative phases while passing
through the standing wave. Since, in practice, this relative
phase would vary, the average over all values of �φ is used, as
shown by the solid lines in Figs. 2(a)–2(c). Figure 2(d) shows
the fluorescence for a weighted average of the Doppler groups
included. Here we have assumed a Gaussian distribution for vy

and therefore a Gaussian distribution of Doppler groups (with
half width at half maximum of �f HWHM

D ). The reduced signal
near resonance is the saturated fluorescence dip, and is shown
in an expanded view in Fig. 2(e).

The amplitude and width of the dip [Fig. 2(e)] as a
function of I0 are shown in Fig. 3 for three values of TL.
For the dip to have a substantial amplitude [Fig. 3(a)], it
is necessary that the laser intensity be above the saturation
intensity for the transition, and at these intensities, the width
[Fig. 3(b)] is broadened relative to the 1.6-MHz natural width
for the transition. For precision measurements of the saturated
fluorescence dip, there is a trade-off between dip amplitude
and dip width, with intensities that lead to widths ranging
from 5 to 15 MHz being reasonable for the measurements.

III. ac STARK SHIFT

Before considering the interference shifts due to off-
diagonal γ

μ′j ′m′
μjm , we analyze the ac Stark shifts. To isolate

these shifts, we solve Eqs. (5) and (8) while temporarily
setting the off-diagonal γ

μ′j ′m′
μjm terms to zero to artificially
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FIG. 3. (Color online) The amplitude and width of the 2 3S1-to-
2 3P1 saturated fluorescence dip [Fig. 2(e)] as a function of intensity
I0 for three choices of interaction time TL, as labeled in (a). The width
of the dips is significantly broader than the natural width [thin dashed
line in (b)] for intensities that lead to dips of substantial amplitude.

suppress the interference shifts. The ac Stark shift results
from εμ of Eq. (6), and it causes all of the resonances of
Figs. 2(a)–2(c) (for all Doppler groups) to shift to the left. The
magnitude of these shifts is complicated by the fact that the ac
electric-field amplitude [Eq. (1)] depends on t , �fD , and �φ.
The t dependence requires an integration over time of Eqs. (5)
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FIG. 4. (Color online) The ac Stark shifts (a) and interference
shifts (b) and (c) of the 2 3S1-to-2 3P1 saturated fluorescence dips. The
graphs show integrated shifts due to Doppler groups ranging from
−|�fD| to |�fD| and show that the shifts change sign for larger
Doppler groups. Here a Gaussian distribution of Doppler groups
with �f HWHM

D = 80 MHz is assumed. The shifts are shown for three
choices of intensity (I0) and interaction time (TL), as labeled in (a).
The total shift (from all Doppler groups) is the value at the right of
each curve.

and (8) to determine the shifted line shape. This line shape is
then averaged over �φ. For small values of �fD , this average
is complicated by the fact that constructive interference leads to
both a large resonance [�φ = 0 of Fig. 2(a)] and a large shift,
whereas destructive interference [�φ ≈ π of Fig. 2(a)] leads
to no signal and no shift. Finally, the shift is complicated by the
�fD dependence, in that a leftward shift of the peak from small
�fD contributions [such as the �fD = 0 case in Fig. 2(c)]
causes the dip of Fig. 2(d) to move to the right. However, since
the higher �fD contributions [such as the �fD = 20 MHz
case in Fig. 2(c)] have dips rather than peaks at the center,
the leftward shift of the contributions from these Doppler
groups cause the dip of Fig. 2(d) to shift left. Figure 4(a)
shows the integrated contribution to the ac Stark shift for all
Doppler groups from −|�fD| to |�fD| (assuming a Gaussian
distribution of Doppler groups with �f HWHM

D = 80 MHz).
From the figure, one can see that the net ac Stark shift [from
all Doppler groups, as can be read from the values at the
right side of Fig. 4(a)] is negative, with positive shifts for
low �fD , and larger negative shifts for intermediate �fD .
The curves of Fig. 4(a) approach their final values already

TABLE I. ac Stark shifts and interference shifts for F0 and
F±1 fluorescence. The shifts are in kHz and are for a selection
of interaction times TL and laser electric-field amplitudes E0, and
assume a Doppler profile with �f HWHM

D = 80 MHz.

E0 TL 2 3S1-to-2 3P0 2 3S1-to-2 3P1

(V/cm) (μs) ac F0 F±1 ac F0 F±1

0.375 0.25 0.09 0.03 −0.08 0.62 0.26 −1.16
0.375 0.5 0.03 0.08 −0.10 0.21 0.47 −1.48
0.375 1 0.01 0.11 −0.13 0.07 0.67 −2.07
0.375 1.5 0.00 0.15 −0.16 0.01 0.89 −2.49
0.375 2 0.00 0.18 −0.18 −0.01 1.15 −2.89
0.375 4 −0.01 0.35 −0.28 −0.06 2.38 −4.47
0.75 0.25 0.05 0.14 −0.14 0.21 1.12 −2.23
0.75 0.5 −0.01 0.28 −0.24 −0.17 2.45 −4.51
0.75 1 −0.02 0.48 −0.37 −0.26 3.74 −6.37
0.75 1.5 -0.03 0.65 −0.47 −0.30 4.95 −7.80
0.75 2 −0.03 0.83 −0.56 −0.31 6.22 −9.23
0.75 4 −0.03 1.51 −0.94 −0.33 11.3 −14.8
1.5 0.25 −0.25 0.98 −0.67 −3.41 12.8 −17.0
1.5 0.5 −0.17 1.48 −0.94 −2.04 13.4 −17.0
1.5 1 −0.15 2.06 −1.25 −1.72 17.0 −21.1
1.5 1.5 −0.15 2.64 −1.55 −1.63 21.2 −25.3
1.5 2 −0.14 3.22 −1.85 −1.56 25.5 −29.8
1.5 4 −0.14 5.48 −3.01 −1.50 42.7 −47.1
2.25 0.25 −0.54 2.87 −1.68 −3.91 19.5 −21.7
2.25 0.5 −0.47 3.36 −1.88 −5.31 30.7 −33.4
2.25 1 −0.38 4.43 −2.42 −4.18 37.4 −40.4
2.25 1.5 −0.35 5.56 −2.99 −3.82 45.8 −48.5
2.25 2 −0.34 6.72 −3.57 −3.65 54.6 −56.8
2.25 4 −0.33 11.2 −5.70 −3.46 89.8 −88.3
3 0.25 −0.68 3.30 −1.71 −11.0 40.0 −38.6
3 0.5 −0.86 5.79 −2.97 −9.79 53.7 −52.8
3 1 −0.68 7.44 −3.80 −7.60 64.6 −63.5
3 1.5 −0.63 9.29 −4.70 −6.89 78.3 −75.9
3 2 −0.61 11.2 −5.58 −6.57 92.8 −88.5
3 4 −0.59 18.6 −8.77 −6.21 152 −136
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FIG. 5. (Color online) Contour graphs for ac Stark shifts and interference shifts vs interaction times TL and laser intensities I0. The shifts
shown in (a), (c), and (e) are for the 2 3S1-to-2 3P0 transition, and those in (b), (d), and (f) are for 2 3S1-to-2 3P1. Plots (a) and (b) are ac Stark
shifts. Plots (c) and (d) are interference shifts (which are to be added to the ac Stark shift) for �mJ = 0 decays [F0 in Eq. (8)], and (e) and (f)
are interference shifts for F±1. A Doppler profile with �f HWHM

D = 80 MHz is used. The shift values given along the black contour lines are in
kHz. Also shown on the plots (white dashed lines) are the widths of the saturated fluorescence dips in MHz.

at �fD ∼ 30 MHz, since the contributions from the larger
Doppler groups [Fig. 2(c)] are well separated in frequency
from the saturated fluorescence dip.

The shifts are determined from the frequencies of the
half-maximum points [see Fig. 2(e)] for the line shapes
obtained from the numerical integrations. Shifts for a range
of interaction times TL and intensities I0 are shown in Table I
and in Figs. 5(a) and 5(b). The ac Stark shifts are identical for
F−1, F0, and F+1. Note that the net shifts depend mostly on
I0, as would be naively expected for ac Stark shifts, but the
graphs show dependence on TL as well. These ac Stark shifts
are small compared to the interference shifts discussed in the
next section.

IV. INTERFERENCE SHIFTS

The interference shifts are the main focus of the current
work. These shifts are obtained using the same methods
as the ac Stark shifts described in the previous section.
The saturated fluorescence line shapes are calculated by
numerically integrating Eq. (5), including the off-diagonal
γ

μ′j ′m′
μjm terms. To determine the line shapes it is again necessary

to do an integral over the time during which the atom passes
through the laser beams, to perform an average over �φ (the
relative phase between the two laser beams), and to average
over all of the Doppler groups �fD in the atomic beam.
Figures 4(b) and 4(c) show that again the sign of the shift
changes between small and larger values of |�fD|. As with
the ac Stark shift, the interference shifts are determined from

the frequencies of the calculated half-maximum points of the
saturated fluorescence dips.

The results of the calculations (for a Doppler profile with
�f HWHM

D = 80 MHz) are shown in Table I and Fig. 5. The
interference shifts in both the table and the figure are in addition
to the ac Stark shifts discussed in the previous section. The
table gives precise values for the shifts at certain values of
TL and I0, and the figure gives contour graphs of the shifts.
The contour graphs show that the interference shifts depend
strongly on both TL and I0. For an actual experiment, the shift
for different atoms in the beam would differ since I0 depends
on which part of the Gaussian laser beam the atom intersects,
and TL depends on the axial speed of the atom.

Table II shows shifts for other Doppler profiles. From this
table it can be seen that the interference shift also depends
on which Doppler groups are present in the beam, as would
be expected from the dependence on �fD shown in Figs. 4(b)
and 4(c). The table shows that the interference shifts for a beam
with a Doppler width �f HWHM

D = 110 MHz are approximately
50% larger than those for �f HWHM

D = 30 MHz.
The interference shift results from a quantum-mechanical

interference between the amplitude for obtaining fluorescence
via an on-resonance laser excitation and the much smaller
amplitude for obtaining fluorescence via a far-off-resonance
excitation to a distant resonance. For example, the shift in
the 2 3S1(m = 0)-to-2 3P0(m = 0) transition (the dashed arrow
in Fig. 1) is due to the far-off-resonance 2 3S1(m = 0)-to-
2 3P2(m = 0) transition. The far-off-resonance transition is
31.9 GHz away (20 000 natural widths), but still shifts the
saturated fluorescence line shape at a level that is relevant for
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TABLE II. The dependence of ac Stark shifts and interference
shifts on the width (�f HWHM

D ) of the Doppler profile of the beam.
Shifts of the 2 3S1-to-2 3P1 saturated fluorescence dip, along with
the FWHM and amplitude A [of Fig. 2(e)], are given for two laser
intensities I0 and two interaction times TL.

I0 TL �f HWHM
D Shifts (kHz) FWHM

(mW/cm2) (μs) (MHz) ac F0 F±1 (MHz) A

1 1 30 −0.45 3.8 −6.1 4.00 0.032
1 1 45 −0.43 4.5 −7.1 4.33 0.024
1 1 60 −0.42 4.9 −7.7 4.52 0.019
1 1 80 −0.41 5.2 −8.2 4.68 0.015
1 1 110 −0.41 5.6 −8.7 4.82 0.011
2 1 30 −1.10 8.2 −10.6 5.05 0.041
2 1 45 −1.09 9.5 −12.5 5.57 0.032
2 1 60 −1.08 10.4 −13.8 5.89 0.026
2 1 80 −1.07 11.3 −15.1 6.16 0.020
2 1 110 −1.06 12.0 −16.2 6.40 0.016
1 2 30 −0.48 6.4 −8.6 4.93 0.054
1 2 45 −0.47 7.4 −10.1 5.34 0.040
1 2 60 −0.46 8.0 −11.0 5.59 0.032
1 2 80 −0.45 8.5 −11.9 5.79 0.025
1 2 110 −0.44 9.0 −12.7 5.97 0.019
2 2 30 −1.04 13.0 −14.6 6.36 0.067
2 2 45 −1.03 14.8 −17.5 7.02 0.053
2 2 60 −1.02 16.1 −19.5 7.42 0.043
2 2 80 −1.01 17.3 −21.4 7.76 0.035
2 2 110 −1.00 18.4 −23.2 8.08 0.027

precision spectroscopy. The F0 shifts are positive, while the
F±1 shifts are negative. The sign difference results from the
opposite signs of γ 020

000 and γ ±120
±100 . The first of these (γ 020

000 )
is used in the interference for 2 3S1(m = 0) atoms which are
laser excited to both the on-resonant 2 3P0(m = 0) state and
the far-off-resonant 2 3P2(m = 0) state, followed by a decay
from these states back down to the 2 3S1(m = 0) state with the
emission of F0 fluorescence. The second (γ ±120

±100 ) is used in
the interference for 2 3S1(m = 0) atoms which are also laser
excited to both the on-resonant 2 3P0(m = 0) state and the
far-off-resonant 2 3P2(m = 0) state, but decay down to the
2 3S1(m = ±1) state with the emission of F±1 fluorescence. For
a typical saturated fluorescence measurement, where the width
of the saturated fluorescence dip is approximately 10 MHz (as,
for example, in Refs. [10,11]), shifts of between 3 and 6 kHz
can be seen in Figs. 5(c) and 5(e).

Whether an experiment is subject to a positive or negative
shift depends on whether it is sensitive to F0 or F±1 fluores-
cence, or to both. For example, if the fluorescence detector is
placed above the laser beam (in the ẑ direction), it is sensitive
only to F±1 fluorescence since the angular distribution of F0

fluorescence is zero in this direction. In general, the shift
is some linear combination of the shifts of Fig. 5(c) and
of Fig. 5(e), with the linear combination determined by the
geometry of the experiment and the polarization sensitivity of
the detectors.

The shifts for the 2 3S1-to-2 3P1 transition (the dotted
arrows in Fig. 1) are much larger, since for this case the
neighboring resonance (the 2 3S1-to-2 3P2 transition) is 1400

natural widths away. These shifts are shown in Figs. 5(d)
and 5(f) for F0 and F±1 fluorescence. Shifts of between 30
and 60 kHz for 10-MHz-wide saturated fluorescence dips
can be seen on the contour graphs. These shifts are very
large compared to the kHz or sub-kHz uncertainties of recent
measurements [4–6,8,10,17–19] of the intervals. As before, F0

and F±1 show opposite shifts, so again the actual shift seen by
a saturated fluorescence experiment depends on the geometry
of the fluorescence detector. Although some cancellation can
be expected between the positive and negative shifts for most
detector geometries, the scale of the expected shifts is still of
the order of 10 kHz, and therefore must be considered very
carefully for precision measurements of the intervals.

As is the case for other instances of interference shifts
from distant neighboring resonances [1–3,7], the scale of
the shifts is given by the resonance width times the ratio
of the resonance width to the frequency separation between
the observed resonance and its neighboring resonance. This
scaling can be seen in Figs. 5(c)–5(f), where the resonance
width contours have the same general shape as the interference
shift contours.

V. CONCLUSIONS

A systematic effect due to interference from distant neigh-
boring resonances is shown to give shifts of tens of kilohertz
for measurements of the 2 3S1-to-2 3PJ energy intervals using
the method of saturated fluorescence spectroscopy. These
interference shifts are larger than shifts obtained using other
measurement techniques for which the power used is near or
below the saturation intensity for the transitions [3,7].

The interference shifts depend strongly on experimental
parameters, including the peak intensity of the laser, the
laser beam waist, the distribution of velocities in the atomic
beam, and the relative detection efficiency for F0 and F±1

fluorescence. The relative detection efficiency determines the
sign of the shift, and is affected by the geometry of the
detector (since F0 and F±1 fluorescence have different angular
distributions) and by the detection efficiency for different
polarizations of light. Since the predicted shifts are large,
careful modeling would be necessary to predict the shift
to <1 kHz accuracy. This modeling would require a full
simulation of the line shape including both the ac-shift and
interference effects discussed in this work. The full simulation
would require a properly weighted average over line shapes
(obtained from integration of the density-matrix equations
presented here) for atoms that experience different values of
TL, I0, and �fD . The value of TL experienced by a particular
atom depends on the laser waist and the speed of the atom,
whereas the value of I0 depends on the power and waist of
the laser, as well as the trajectory of the atom through this
beam. A full simulation would require detailed information
(at the percent level of accuracy) about the speed distribution,
cross-sectional profile, and angular distribution of the atomic
beam, and the waist and power of the laser beam. Additionally,
the relative sensitivity to F0 and F±1 fluorescence would need
to be modeled to the percent level of accuracy, which would
require understanding at this level of the relative detection
efficiency for different polarizations and the relative detection
efficiency for fluorescence emitted at different angles.
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The precise determination of interference shifts will make
the next generation of helium 2 3P measurements using
saturated fluorescence a challenge to interpret. Even for other
laser and microwave measurement techniques, where the
interference shifts are smaller [3,7], the interference shifts will
have to be carefully considered in the program of determining
the fine-structure constant from measurements of the 2 3P

intervals. Similar analyses will have to be performed for
other precise saturated fluorescence measurements, as well
as for precision measurements using other techniques. This

systematic shift has been overlooked in precision mea-
surements, which sometimes determine line centers with
uncertainties that are 1000–10 000 times smaller than the
observed linewidth, where the effect could be significant
even if the nearest-neighboring resonance is 1000–10 000
linewidths away from the resonance being measured.
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