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Close-coupling approach to antiproton-impact breakup of molecular hydrogen
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An ab initio time-dependent convergent close-coupling approach to describing antiproton collisions with
molecular hydrogen or the hydrogen molecular ion has been developed. The approach accounts for all possible
orientations of the molecular target. Averaging over the molecular orientations is performed fully analytically.
For the molecular hydrogen target calculated orientation-averaged total cross sections for single ionization and
proton production are compared with several experiments over the energy range of 1–2000 keV. Results for single
ionization are in good agreement with experiment, except for the region around the experimental maximum. For
proton production reasonable agreement with experiment is observed above 40 keV.
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I. INTRODUCTION

Scattering of antiprotons from molecules is currently
attracting great attention. One of the reasons is the relevance
of the processes occurring during these collisions to radio-
therapy and oncology (see, e.g., Refs. [1,2] and references
therein). In addition, the clear understanding of antiproton
interactions with atoms and molecules is important to the
ALPHA collaboration at CERN that attempts to test the CPT
invariance by forming and trapping antihydrogen [3] and
study the gravitational behavior of antimatter at rest [4–6].
Also, the upcoming Facility for Antiproton and Ion Research
(FAIR) [7] at GSI requires the precise knowledge of the colli-
sion mechanism between antiproton and molecular hydrogen,
since H2 is expected to be one of the dominant residual-gas
molecules.

Another motivation to study antiproton-impact ionization
of molecules is of fundamental interest. The structure of
molecular targets makes the underlying processes occur
through mechanisms not observed for atomic targets. This
point is supported by the latest experiments revealing unex-
pected features in the cross section for single nondissociative
ionization of molecular hydrogen by low-energy (2.4–9.9 keV)
antiproton impact [8]. The measured single ionization cross
section was shown to fall fast with decreasing energy. This
was unlike the observed behavior of corresponding atomic
cross sections and also was in sharp contrast to the results of
prior theoretical calculations.

Among all of the ion-molecule scattering systems the
antiproton-molecular hydrogen collision system is the simplest
example due to the relative simplicity of the target and the
absence of the electron capture channel. It is also the most
convenient system to investigate molecular effects such as the
influence of the vibrations and rotations of the molecule on the
reaction dynamics. For this reason and also because of natural
abundance of the target the antiproton scattering on molecular
hydrogen is the most studied system both experimentally and
theoretically. The cross sections for single nondissociative
ionization of molecular hydrogen have been measured on
three occasions; presently the experimental data exist on a
wide energy range from 2.4 keV to 1.6 MeV [8–10]. Available
theoretical approaches to the problem [11–15] can be classified
into two categories. First, there are studies that employ a
one-electron approximation with the use of model spherical

effective potentials for the description of the target [11,12,14].
These approaches reproduce a reasonably accurate binding
energy by tuning model parameters. Not surprisingly, these ap-
proaches are not sensitive to different molecular orientations.
In addition, as the projectile energy decreases, these methods
yield cross sections that fall off slowly. This is contrary to
the experimental observation. Another class of studies uses a
more accurate description of H2 where the contributions of
electrons and nuclei of the molecular target are taken into
account using the Born-Oppenheimer approximation [13–15].
These approaches obtain the orientationally averaged cross
sections by averaging over only three orthogonal orientations.
Calculations of Lühr and Saenz [13] support the overall
behavior of the ionization cross sections at low energies
that was observed in the experiment, but, there still remains
a significant discrepancy. The approach of Pindzola and
coworkers [14,15] yields results that agree with experiment at
the two lowest calculated energies. However, at higher energies
this approach produces cross sections that are too low.

Recently we have developed a semiclassical time-
dependent convergent close-coupling approach to the
antiproton-impact ionization of H2, which accounts for all pos-
sible orientations of the molecular target [16]. The approach is
valid at all energies, and significantly improves the agreement
between theory and experiment, though some discrepancies
remain. We have presented quantitative confirmation of the
experimentally observed phenomenon of target structure-
induced suppression of the ionization cross section for low-
energy antiproton–molecular hydrogen collisions [8]. Here
we present the details of the method, and additionally apply
it to study antiproton collisions with another homonuclear,
diatomic molecular target, H+

2 . We will also describe the
technique that allows for calculating cross sections for proton
production in antiproton-H2 collisions by combining the
ionization cross section results for H2 and H+

2 targets.
The plan of the paper is as follows. In Sec. II, we describe

our formalism, which starts from the full five-body time-
dependent Schrödinger equation for the antiproton-hydrogen
molecule system. Details of the calculations are given in
Sec. III and our results are presented in Sec. IV. Finally, in
Sec. V we highlight the main findings and draw conclusions
from this work. We use atomic units throughout unless
otherwise specified.
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II. FORMALISM

The treatment of antiproton collisions with molecular
hydrogen or the hydrogen molecular ion requires solving a
multicenter many-body Coulomb problem. Therefore, it is
crucial to choose an efficient approach. In these molecular
targets the electrons are exposed to the superposition of two
potentials with centers at the locations of the target protons.
This causes the electronic wave function to be symmetric
around the molecular axis. Therefore, for the purpose of
target structure calculations it is best to utilize the body frame
coordinates with the origin between the two protons and the z′
axis pointing in the molecular axis direction d. The vector d
can be chosen to be the position of any of the protons relative
to the other one. At the same time the scattering equations
have to be formulated in the laboratory frame with the z axis
along the antiproton incident direction, since they directly
lead to the experimental observables. The time-dependent,
nonrelativistic, Schrödinger equation of a many-body system
consisting of the incident antiproton p̄, two target protons, and
one (H+

2 ) or two (H2) target electrons is

H� = i
∂�

∂t
, (1)

where the total Hamiltonian H = HT + V is the sum of the
target Hamiltonian HT and the Coulombic interaction between
the projectile and the target V . The target Hamiltonian can be
written as a sum of nuclear and electronic parts as

HT = Hnucl + Helec. (2)

Here the nuclear part is

Hnucl = − 1

2M
∇2

R1
− 1

2M
∇2

R2
+ 1

d
, (3)

with M being the mass of a proton. The electronic part is a
function of position vectors of the nuclei (Rn) and electrons
(ri ),

Helec = −1

2

Ne∑
i=1

∇2
ri

−
2∑

n=1

Ne∑
i=1

1

|r i − Rn| +
Ne∑
i=1

Ne∑
j>i

1

|r i − rj | ,

(4)

where Ne = 2 for molecular hydrogen H2 and 1 for the
hydrogen molecular ion H+

2 . Finally, the interaction potential
between the antiproton and the molecular target is

V = − 1

|R − d/2| − 1

|R + d/2| +
Ne∑
i=1

1

|R − r i | , (5)

where R is the position vector of the antiproton in the
laboratory frame (see Fig. 1).

Solving the Schrödinger Eq. (1) with many degrees of
freedom associated with nuclear and electronic motion of
the target directly is extremely difficult. However, because
of their much larger mass, the nuclei in a molecule move
much slower than the electrons. This implies that the electrons
can almost immediately adjust their positions to a changed
nuclear configuration. In addition, we assume that the rate of
the molecular oscillations is much smaller than the speed of
the projectile v. With these assumptions we can express the

FIG. 1. (Color online) Sketch of the laboratory frame. The z axis
is parallel to the incident antiproton direction.

total wave function in a form where its nuclear and electronic
variable dependent parts are separated, i.e.,

�(t,r,R,d) = ψ(t,r,R)χνjm(d), (6)

where χνjm(d) = χ̃νj (d)Yjm(θd,φd ) are the molecular wave
functions representing the dependence on the internuclear
distance within the target and ψ is the electronic wave function.
Here and elsewhere r collectively denotes the position vectors
of all target electrons (r = {r1,r2} for H2 and r = {r1} for
H+

2 ). Although Eq. (6) assumes the constant internuclear
distance within the target throughout the collision, we will
later investigate the effect of molecular oscillations using the
Franck-Condon principle [17]. With the total wave function
defined this way we can first solve the electronic problem with
fixed nuclei:

(Helec + V )ψ(t,r,R) = i
∂ψ(t,r,R)

∂t
, (7)

and then use the solution that depends parametrically on
the nuclear coordinates to restore the total wave function
�. The wave functions and corresponding energies for the
rovibrational motion of the molecular target, χνjm(d) and Enucl

νj ,
can be found from the following equation that also stems from
Eq. (1): (

Hnucl + Eelec
f

)
χνjm(d) = Enucl

νj χνjm(d), (8)

where Eelec
f is the total electronic energy of the final target

state.
In this work we neglect the rotational degrees of freedom

of the molecular target and consider the total wave function as

�(t,r,R,d) = 1√
4π

ψ(t,r,R)χ̃ν00(d) ≡ ψ(t,r,R)χ̃ν(d),

(9)
where ν is the vibrational quantum number.

A. Scattering equations

In this section we will describe the method of solving the
electronic part of the problem with fixed nuclei [Eq. (7)]. We
use the semiclassical impact-parameter approach. However,
the molecular target electron(s) is(are) treated fully quantum
mechanically. The incident antiproton is assumed to be moving
along a straight-line trajectory R(t) = b + vt , where the
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impact parameter b points along the x axis in the laboratory
frame (see Fig. 1).

Following the ideas of the convergent close-coupling
method we expand the electronic scattering wave function in
terms of a certain set of target pseudostates 
f according to

ψ(t,r,R = b + vt,d) =
∑
f

Af (t,b,d) exp(−iεf t)
f (r,d),

(10)

where εf is the energy of the target electronic state f . The
expansion coefficients Af (t,b,d) define the probability for
transitions into electronic bound and continuum states.

With this representation of the total scattering wave function
the semiclassical Schrödinger equation can be transformed
into a set of coupled-channel differential equations for the
time-dependent coefficients Af (t,b,d),

i
dAf (t,b,d)

dt
=

∑
i

Ai(t,b,d)〈
f |V (t,r,b,d)|
i〉

× exp[i(εf − εi)t]. (11)

Equation (11) is solved with the initial conditions Af (t0 =
−∞,b,d) = δf 0, as the target is initially in the ground state

0.

In contrast to atomic targets, which are spherically sym-
metric, for collisions with molecular targets solving just
one set of coupled equations (11) is not sufficient. Here
calculations for all molecular orientations have to be car-
ried out in order to find orientationally averaged transition
probabilities. A straightforward approach to solving Eq. (11)
for all molecular orientations is computationally expensive.
In previous studies that accounted for the multicenter nature
of H2, therefore, the calculations were limited to only three
orthogonal molecular orientations [13–15]. As far as the p̄-H+

2
system is concerned, Sakimoto [18] accounted for 11 × 5
orientations for (θd,φd ). Later, Lühr and Saenz [19] compared
their results obtained using only three orthogonal orientations
with the results of Sakimoto [18], and found good agreement.
They concluded that averaging over the three orientations
was adequate for p̄-H+

2 . Whether this is the case for p̄−H2

collisions as well, remains to be seen. To this end we have
developed an alternative approach. Before giving details of
the approach we need to describe how the target structure is
treated.

B. Treatment of molecular hydrogen and the
hydrogen molecular ion

As indicated above the target structure calculations are
performed in the body frame (BF) coordinates that are denoted
with primed variables (Fig. 2). For the description of the H2

electronic functions a single-center configuration-interaction
(CI) expansion around the midpoint of the internuclear axis is
used:


BF
f (r ′

1,r ′
2,d) =

∑
αβ

B
f

αβ(d)φα(r ′
1)φβ(r ′

2). (12)

FIG. 2. (Color online) Sketch of the body frame. The z′ axis is
parallel to the internuclear axis of the target.

One-electron orbitals φα are defined as

φα(r) = ξ
(λlα )
klα

(r)

r
Ylαmα

(θ,φ), (13)

where Ylαmα
(θ,φ) are the spherical harmonics. One-electron

functions ξkl(r) are constructed using Laguerre polynomials
as

ξ
(λl )
kl (r) =

√
λlr(k − 1)!

2(k + l)(k + 2l)!
(λlr)l+1

× exp

(
−λlr

2

)
L2l+1

k−1 (λlr), (14)

where k ranges from 1 to the basis size Nl . The choice of
the exponential fall-off parameter λl will be discussed later.
The expansion coefficients B

f

αβ and target energy levels εf are
found by diagonalizing the target Hamiltonian HT . Presently,
for the purpose of describing single ionization of H2, we restrict
the upper limit of one of the indices in Eq. (12) in order
to prevent the inner electron from ejecting. Specifically, we
include only one-electron {1s,2s,2p,3s,3p,3d} orbitals for
the description of the inner electron excitations. The other
index representing the one-electron states of the outer electron
can be as large as required to ensure converged results.

For the one-electron target, H+
2 , the electronic functions

have a simpler form:


BF
f (r ′

1,d) =
∑

α

Bf
α φα(r ′

1). (15)

Laboratory-frame electronic pseudostates 
f (r,d) can be
generated from the body-frame pseudostates (12) and (15)
by rotating the latter into laboratory frame 
f (r,d) =
D̂
BF

f (r,d), where D̂ is the rotation operator. In the following
section we derive the matrix elements 〈
f |V (t,r,b,d)|
i〉 for
both p̄-H2 and p̄-H+

2 collision processes.

C. Matrix elements

Straightforward, laboratory-frame calculations of
〈
f |V (t,r,b,d)|
i〉 are computationally expensive, since
the available body-frame target pseudostates first need to be
converted into the laboratory frame before taking integrals.
However, if we factor out the molecular-orientation-dependent
part from the interaction potential (5), it will become irrelevant
to what coordinate frame is used for taking the integrals over
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the configuration space of the electrons. The validity of the
technique has been confirmed by obtaining exactly the same
results as in the laboratory-frame calculations. The technique
allows us to use the pseudostates defined in the body frame.

For p̄-H2 collisions the matrix elements
〈
f |V (t,r1,r2,b,d)|
i〉 can be written as

〈
f |V (t,r1,r2,b,d)|
i〉

=
∫

d r ′
1d r ′

2

BF∗
f (r ′

1,r ′
2,d)

×
(

− 1

|R − d/2| − 1

|R + d/2| + 1

|R − r1| + 1

|R − r2|
)

×
BF
i (r ′

1,r
′
2,d), (16)

where primed coordinates are relative to the body frame.
Integration of the part corresponding to the interaction of the
projectile with the target nuclei I1 is straightforward due to the
orthogonality of the target pseudostates and gives

I1 =
∫

d r ′
1d r ′

2

BF∗
f (r ′

1,r ′
2,d)

×
(

− 1

|R − d/2| − 1

|R + d/2|
)


BF
i (r ′

1,r ′
2,d)

= −δf i

(
1

|R − d/2| + 1

|R + d/2|
)

. (17)

However, the remaining part I2 is more challenging and
involves partial-wave decomposition. By considering the
symmetry with respect to interchanging r1 and r2 we can
rewrite it as

I2 = 2
∫

d r ′
1d r ′

2

BF∗
f (r ′

1,r ′
2,d)

1

|R − r1|

BF
i (r ′

1,r ′
2,d)

= 8π
∑
λμ

1

2λ + 1
Y ∗

λμ(R̂)
∫

d r ′
1d r ′

2

BF∗
f (r ′

1,r ′
2,d)

×
BF
i (r ′

1,r ′
2,d)vλ(R,r1)Yλμ(r̂1), (18)

where

vλ(R,r1) =
{

Rλ

rλ+1
1

if R < r1,

rλ
1

Rλ+1 otherwise.
(19)

With the target pseudostates defined as in Eq. (12) this term
becomes

I2 = 8π
∑
λμ

∑
αβγ δ

1

2λ + 1
B

f

αβBi
γ δY

∗
λμ(R̂)〈φβ |φδ〉

×
∫

dr1ξnαlα (r1)ξnγ lγ (r1)vλ(R,r1)

×
∫

dr̂ ′
1Y

∗
lαmα

(r̂ ′
1)Ylγ mγ

(r̂ ′
1)Yλμ(r̂1). (20)

In order to perform the angular integration in Eq. (20), the
coordinate r1 originating from the partial-wave decomposition
of the potential must be transformed to the body frame. Yλμ(r̂1)

in the body frame becomes

Yλμ(r̂1) =
∑
m

Yλm(r̂ ′
1)Dλ∗

μm(φd,θd,0), (21)

where Dλ∗
μm(φd,θd,0) is the usual Wigner rotation matrix

with φd and θd being the azimuthal and polar angles of the
internuclear axis d. We finally obtain

I2 = 4
√

π
∑
λμ

Dλ∗
μmα−mγ

(φd,θd,0)Y ∗
λμ(R̂)

×
∑
αβγ δ

B
f

αβBi
γ δ

√
2lγ + 1

(2λ + 1)(2lα + 1)
C

lα0
lγ 0λ0C

lαmα

lγ mγ λmα−mγ

×〈φβ |φδ〉
∫

dr1ξnαlα (r1)ξnγ lγ (r1)vλ(R,r1), (22)

with CLM
λμsq denoting standard Clebsch-Gordan coeffi-

cients [20].
In order to combine this term with the term corresponding

to the interaction of the projectile with the target nuclei, we
also expand Eq. (17) into partial waves in a similar way as

1

|R − d/2| + 1

|R + d/2|
= 8π

∑
λμ

mod(λ,2)

2λ + 1
vλ(R,d/2)Y ∗

λμ(R̂)Yλμ(d̂)

= 4
√

π
∑
λμ

Dλ∗
μ0(φd,θd,0)Y ∗

λμ(R̂)
mod(λ,2)√

2λ + 1
vλ(R,d/2),

(23)

where vλ(R,d/2) is defined by Eq. (19). Finally, using
Eqs. (16), (22), and (23) we can write the matrix elements
in the following form:

〈
f |V (t,r1,r2,b,d)|
i〉 =
∑
λμ

Vf i

λμ(t,b,d)Dλ∗
μ,mf −mi

(φd,θd,0),

(24)

where the molecular orientation-independent parts Vf i

λμ(t,b,d)
are defined as

Vf i

λμ(t,b,d) = 4
√

πY ∗
λμ(R̂)√

2λ + 1

⎛
⎝−δf imod(λ,2)vλ(R,d/2)

+
∑
αβγ δ

B
f

αβBi
γ δ

√
2lγ + 1

2lα + 1
C

lα0
lγ 0λ0C

lαmα

lγ mγ λm〈φβ |φδ〉

×
∫

dr1ξnαlα (r1)ξnγ lγ (r1)vλ(R,r1)

⎞
⎠. (25)

Expressing the interaction matrix elements in this form is
important and will further help to eliminate the molecular
orientation dependence from the scattering equations.

Antiproton collisions with the hydrogen molecular ion H+
2

are also modeled by the same equation (11). However, in
this case the matrix elements should be calculated using the
H+

2 pseudostates and the appropriate interaction potential.
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Following similar steps the matrix elements for the p̄-H+
2

collision can be shown to have the same form as Eq. (24).
For this process the reduced matrix elements are independent
of the molecular orientation and can be written as

Vf i

λμ(t,b,d) = 4
√

πY ∗
λμ(R̂)√

2λ + 1

⎛
⎝−δf imod(λ,2)vλ(R,d/2)

+ 1

2

∑
αβ

Bf
α Bi

β

√
2lβ + 1

2lα + 1
C

lα0
lβ 0λ0C

lαmα

lβmβλm

×
∫

drξnαlα (r1)ξnβ lβ (r1)vλ(R,r1)

⎞
⎠. (26)

D. Equation for the molecular orientation-independent part
of the scattering amplitude

We express the time-dependent coefficients in Eq. (11) in a
form similar to (24) according to

Af (t,b,d) =
∑
λμ

Af

λμ(t,b,d)Dλ∗
μ,mf

(φd,θd,0), (27)

where Af

λμ(t,b,d) are the probability amplitudes independent
of the molecular orientation. The expansion indices are limited
by the maximum allowed total orbital angular momentum.

We substitute expansions (24) and (27) into Eq. (11) and,
using the following identities for the Wigner functions,

∫ 2π

0
dφ

∫ π

0
dθ sin θD

J2∗
M2M

′
2
(φd,θd,0)DJ1∗

M1M
′
1
(φd,θd,0)

= 4π

2J2 + 1
δJ1J2δM1M2δM ′

1M
′
2
,

∫ 2π

0
dφ

∫ π

0
dθ sin θD

J3∗
M3M

′
3
(φd,θd,0) (28)

×D
J2

M2M
′
2
(φd,θd,0)DJ1∗

M1M
′
1
(φd,θd,0)

= 4π

2J3 + 1
C

J3M3
J1M1J2M2

C
J3M

′
3

J1M
′
1J2M

′
2
,

derive coupled differential equations for the molecular-
orientation-independent parts of the scattering amplitudes
Af

λμ(t,b,d):

i
dAf

λμ(t,b,d)

dt
=

∑
i

exp[i(εf − εi)t]
∑
LM

Ai
LM (t,b,d)

×
∑
sq

2λ + 1

2L + 1
CLM

λμsqC
Lmi

λmf smi−mf
Vf i

sq (t,b,d).

(29)

This set of equations is solved subject to the initial conditions
Af

λμ(t0 = −∞,b,d) = δf 0δλ0δμ0. This boundary condition
also implies that at infinite distance the antiproton does not
feel the anisotropic nature of the molecular target.

E. Calculation of cross sections

Let us first consider antiproton collisions with molecular
hydrogen. Cross sections for excitation and ionization are
written in terms of the probabilities for the corresponding
transitions between the initial and final states of H2. Those
probabilities can be calculated via corresponding transition
amplitudes, which are the overlap between the total wave
function at t = ∞ and the final state of the target,

ff 0(b) = 1√
4π

∫
ddd r1d r2[ψ(r1,r2,t = ∞,d)χ̃0(d)]∗

×
f (r1,r2,d)χ̃ r
ν (d). (30)

Here, χ̃0(d) describes the first vibrational level in the ground
electronic state of the H2 molecule, whereas χ̃ r

ν (d) describes
the residual H+

2 ion, in the vibrational state ν of the particular
electronic state f . The factor 1/

√
4π is the normalization

coefficient for molecular orientation averaging. The calcula-
tion of the integrals (30) is computationally expensive, since
it involves generating a new set of pseudostates and solving
the electronic problem for many internuclear distances d. For
our collisions of interest, however, the dependence on d is
weak and almost linear as indicated in [18]. Therefore, it
is possible to expand the electronic part of the integrand,
[ψ(r1,r2,t = ∞,d)]∗
f (r1,r2,d), into a Taylor series around
the equilibrium distance d0 and use only the first term
[ψ(r1,r2,t = ∞,d0)]∗
f (r1,r2,d0). With this we can factor
out the integration over d and write Eq. (30) in the following
form:

ff 0(b) ≈ 1√
4π

∫
d2ddχ̃0(d)χ̃ r

ν (d)

×
∫

dϕddθdd r1d r2 sin θd [ψ(r1,r2,t = ∞,d0)]∗

×
f (r1,r2,d0). (31)

Given the orthogonality properties of the target electronic
states the transition probabilities, which are the square of the
absolute transition amplitudes, can be written as a product of
two factors as

Pf 0(b) = 1

4π

∣∣∣∣
∫

d2ddχ̃0(d)χ̃ r
ν (d)

∣∣∣∣
2

×
∣∣∣∣
∫

dϕddθd sin θdAf (t = ∞,b,d0)

∣∣∣∣
2

. (32)

The first factor | ∫ d2ddχ̃0(d)χ̃ r
ν (d)|2, also known as the

Franck-Condon (FC) factor, carries information on proba-
bilities for transitions between the vibrational levels in one
electronic state and vibrational levels in any other electronic
states of the molecule. Since we mainly concentrate on single
ionization of H2 in the present work, we will need a list of FC
factors for transitions between the first vibrational level in the
ground state of the H2 molecule and all possible vibrational
levels in the ground state of the residual ion H+

2 . For this
purpose we use the database of FC factors for molecule-ion
reactions of H2 calculated by Wünderlich and Fantz [21] and
Hunter et al. [22].
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With this the total single ionization cross section indepen-
dent of the molecular axis of the target is

σ ν
ion =

∑
f ∈[εf �0]

∫
dbPf 0(b)

=
∣∣∣∣
∫

d2ddχ̃0(d)χ̃ r
ν (d)

∣∣∣∣
2 ∑

f ∈[εf �0]

∑
λμ

2π

2λ + 1

×
∫ ∞

0
|Af

λμ(t = +∞,b,d0)|2bdb. (33)

This cross section describes single ionization of H2 where
the residual ion H+

2 in the ground electronic state is in the
νth vibrational level. At this point, if we are not concerned
about the state of the residual ion and concentrate purely on
the event of single ionization of the molecular target, we can
sum up the ionization cross sections for all vibrational levels
corresponding to both bound and continuum vibrational states.
Since

∑
ν | ∫ d2ddχ̃0(d)χ̃ r

ν (d)|2 = 1, the single ionization
cross section can simply be calculated as

σion =
∑

f ∈[εf �0]

∑
λμ

2π

2λ + 1

∫ ∞

0

∣∣Af

λμ(t = +∞,b,d0)
∣∣2

bdb.

(34)

However, experimental data for single ionization of H2 by
antiproton impact are available only for the process where the
residual H+

2 ion stays bound. In other words, the experiment
does not account for processes where the residual ion breaks
apart into two protons before reaching the detector. Therefore,
to take into account the possible experimental uncertainties we
can use the following formula:

σ exp
ion =

∑
ν∈[εν<0]

∣∣∣∣
∫

d2ddχ̃0(d)χ̃ r
ν (d)

∣∣∣∣
2

σion, (35)

where the summation is done over the negative energy (εν < 0)
vibrational levels.

Similarly, not being concerned about the fate of the residual
ion, we can write the single ionization cross section, which is
differential in the angular coordinates of the molecular axis,
as

σion(θd,φd ) =
∑

f ∈[εf �0]

∫
db|Af (t = ∞,b,d0)|2. (36)

The consistency of the results for orientation-dependent
cross sections calculated from solving Eq. (29) with those
obtained from the direct solution of Eq. (11) has been checked.

For antiproton collisions with H+
2 orientationally averaged

and orientation-dependent cross sections are calculated the
same way as in Eqs. (34) and (36), but using the scattering am-
plitudes, Af

λμ(t = +∞,b,d0) and Af (t = ∞,b,d0) calculated
for the p̄−H+

2 collision system. For the H+
2 target we do not

consider the influence of molecular oscillations and calculate
the cross sections only in a pure fixed-nuclear approximation.

F. Proton production in antiproton collisions with H2

Measurements of cross sections for proton production in
antiproton collisions with H2 were performed almost two

decades ago [10]. However, the only theoretical work available
so far significantly underestimates the experimental data [19].
Let us consider mechanisms in p̄-H2 collisions that may lead to
the production of protons. First, the double-electron ionization
of the target results in the production of two protons. Second,
the incident antiproton can ionize the molecular target, leaving
the residual ion H+

2 in (electronic) excited states that may
further dissociate into atomic hydrogen and a proton. In the
present work we use the so-called independent-event model
(IEV). In this model all of the residual ions dissociate, since
H+

2 with the internuclear distance of H2 (d = 1.4 a.u.) does
not support any bound state. Thus, summing cross sections for
processes that produce protons we can write

σH+ = 2σdi + σie, (37)

where σdi and σie are the cross sections for double ionization
and ionization with excitation, respectively.

To calculate these processes we follow the idea suggested
in [23] and implemented in [19]. We implement the IEV
model within the current time-dependent CCC method. In the
IEV model the double ionization is considered as a two-step
process. In the first and second steps single ionization of H2

and H+
2 occur, respectively. Hence the total double ionization

probability should be equal to the product of the probabilities
for these single ionization processes:

σdi = 2π

∫
P H2

ion (b)P H2+
ion (b)bdb. (38)

Similarly, the cross section for ionization with excitation can
be expressed as

σie = 2π

∫
P H2

ion (b)P H2+
exc (b)bdb. (39)

It should be noted that in calculating probabilities for H+
2 the

internuclear distance of the target is taken the same as for H2,
i.e., d0 = 1.4 a.u, since the events are happening at the same
time. Clearly, calculating cross sections this way neglects any
interference between the two effects. However, this appears to
be a good approximation for calculations of double ionization
in p̄-He collisions [23].

III. DETAILS OF CALCULATIONS

The calculations for the H2 target presented below have
been performed with Z ≡ vt from −100 to +100 a.u. at all
energies. In constructing the target basis we have included all
H2 target states with the maximum value of angular momentum
projection mmax equal to lmax. To improve the accuracy of the
calculations the Laguerre 1s orbital was replaced with the
H+

2 1sσg orbital, which was obtained via diagonalization of
the H+

2 Hamiltonian in the same Laguerre basis. The full set
of antisymmetric two-electron configurations comprises two
separate sets. The frozen-core (1s,nlm) configurations, where
one electron is limited to the 1s orbital of the H+

2 ion, while
the other occupies any of the Laguerre orbitals (nlm). The
other set takes all possible (n′l′m′,nlm) configurations with
principle quantum numbers of Laguerre orbitals n′ and n � 3.
The frozen-core configurations allow for a square-integrable
representation of the target continuum and coupling to the
ionization channels in the scattering calculations. The primary
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TABLE I. Convergence of the total single ionization cross section
with increasing lmax when nmax = 20.

Energy (keV) l = 0 l = 1 l = 2 l = 3 l = 4

10 0.7762 0.1274 1.177 1.174 1.176
50 0.3924 1.559 1.653 1.653 1.653
100 0.2313 1.293 1.437 1.488 1.489

reason for including the (n′l′m′,nlm) configurations is to
increase the accuracy in accounting for electron-electron
correlations in the ground and low-lying excited states.

The accuracy of the final results for the orientationally
averaged ionization cross section has been checked by per-
forming calculations with several structure models that differ
in the value of maximum orbital angular momentum lmax and
number of one-electron Laguerre functions Nl = nmax − l.
The convergence studies have been carried out in the entire
energy region considered in this work. We give typical
examples at the projectile energies 5, 50, and 100 keV, i.e., at
the position of the maximum in the experimentally measured
total single ionization cross section (see below) and at some
distance from the maximum on both sides.

First, we fix the basis parameter nmax at some large value
and systematically increase the parameter lmax starting from
0. Table I illustrates the convergence pattern of the total
single ionization cross section (TSICS) with increasing lmax,
while nmax = 20 for each symmetry. One can see that at all
considered energies convergence to within 0.2% is observed
at lmax = 4. Next, we check whether nmax = 20 is sufficiently
large in terms of the convergence of the cross section as a
function of the principal quantum number of included states.

In Table II, we examine the convergence of the TSICS
with nmax by setting lmax = 4. The convergence in the cross
section when nmax changes from 5 to 20 is within 5%. A
similar rate of convergence has been achieved across the entire
energy range with the target model consisting of 674 states,
where lmax = 4, Nl = 20 − l, and a Laguerre basis exponential
fall-off parameter λl = 2. The ground-state energy obtained
with this basis is −1.16497 a.u., which compares well with
the accurate value of −1.1745 [24]. We have also checked
the consistency of the calculations obtained using the present
code with the previous fully quantum-mechanical results for
the helium target [25], by taking the internuclear separation to
zero (i.e., considering He as the united atom limit of H2).

For the calculations of p̄-H+
2 collisions with the target

internuclear distances d0 = 1.4 and 2.0 a.u. we use the basis
with the same parameters. Because of the relative simplicity
of H+

2 compared to H2, the number of molecular target states
is reduced to 430.

TABLE II. Convergence of the TSICS with increasing nmax when
lmax = 4.

Energy (keV) n = 5 n = 10 n = 15 n = 20

10 0.6382 1.154 1.156 1.146
50 1.281 1.793 1.664 1.662
100 1.130 1.627 1.469 1.479

Due to the partial-wave decomposition the dimension of
the set of differential equations for the molecular-orientation-
independent coefficients (29) is equal to the number of target
channels multiplied by the number of partial waves repre-
senting the molecular target state. Thus, with lmax = 4 these
numbers for H2 and H+

2 are 81 554 and 52 030, respectively.

IV. RESULTS OF CALCULATIONS

A. p̄-H2 collisions

In our recent publication [16] we have presented the energy
dependence of the total cross section for single nondissociative
ionization in p̄-H2 collisions. The CCC results obtained using
analytical averaging over all molecular orientations produced
excellent agreement with experiment across the whole range
of energies except for a small region from 20 to 90 keV. In
this work we study the quality of approximate averaging that
is obtained from a limited number of molecular orientations.
This knowledge could be useful in the treatment of molecular
collisions where the analytical averaging is not possible.
We consider three perpendicular directions, (θd,φd ) = (0,0),
(π/2,0), and (π/2,π/2), as used by Lühr and Saenz [13] and
Lee et al. [15]. In addition, we consider two other intermediate
orientations (θd,φd) = (π/4,0) and (−π/4,0). The energy
dependence of the total ionization cross sections for these five
orientations is presented in Fig. 3. One can see that the curves
differ considerably for different orientations. As the projectile
energy increases above 100 keV the results for molecular
orientations lying on the plane with φd = 0 converge to the
same value. At lower energies there is considerable variation
in the energy dependence of the cross sections. Compared to
the results for other displayed orientations, cross sections for
the molecular orientation (π/2,π/2), which is perpendicular
to the φd = 0 plane are significantly larger at lower calculated
energies and significantly smaller above 20 keV. A similar
situation is observed in the calculations of Lühr and Saenz [19]
for antiproton-impact ionization of H+

2 . The results for the
(π/2,π/2) orientation are significantly different from the
results for the other two, (0,0) and (π/2,0), orientations.

In Fig. 4 we present the energy dependence of our
single ionization cross sections averaged using two techniques
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FIG. 3. (Color online) The total cross section for single ioniza-
tion of H2 by antiprotons for different molecular orientations.
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FIG. 4. (Color online) The total cross section for single ioniza-
tion of H2 by antiprotons. Present CCC results obtained using various
averaging techniques are compared with the experimental data of
Andersen et al. [9], Hvelplund et al. [10], and Knudsen et al. [8], and
two-electron calculations of Lee et al. [15] and Lühr and Saenz [13].

together with the experimental measurements [8–10] and
the two-electron calculations of Lühr and Saenz [13] and
Lee et al. [15] obtained using three orthogonal molecular
orientations. The results of Lühr and Saenz [13], being in
excellent agreement with experiment at high energies clearly
overestimates it at energies below 20 keV, whereas the
results of Lee et al. [15] are generally lower and agree with
experiment only at lower calculated energies. It should be
noted that the calculations of Lee et al. [15] are for single
ionization of the target with allowance for excited H+

2 states.
Their calculations without account of excited H+

2 states (not
shown) produced even smaller cross sections. Interestingly,
our present results obtained from three orthogonal molecular
orientations disagree with other calculations based on the
three-orientation approximation. At the same time the present
three-orientation results slightly overestimate our analytically
averaged results at low energies, and significantly underes-
timate them at energies above 20 keV. In order to check
whether the present results with approximate averaging come
closer to the analytical results with increasing number of
included molecular orientations we have considered two more
intermediate orientations [(θd,φd) = (π/4,0) and (−π/4,0)].
The averaged results over five orientations indeed are closer
to the analytical results. As seen in Fig. 4 the difference
between the analytical results and the results based on the
three-orientation approximation can be as large as 20% at
some energies. This suggests that the typical inclusion of only
three orthogonal molecular orientations is not sufficient and
an accurate method of orientation averaging is important. The
present analytical averaging technique has certainly improved
the agreement with experiment.

The discrepancy between theory and experiment in the
energy region around 50 keV still remains, and it is not likely to
be related to the method of orientation averaging. As indicated
in the previous section, after single nondissociative ionization,
the residual ions of H+

2 can dissociate before they reach the
detector, provided they are in the vibrational continuum states.
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FIG. 5. (Color online) The total cross section for single ioniza-
tion of H+

2 by antiprotons. Present CCC results are compared with the
two-center molecular-target calculations of Lühr and Saenz [19] and
Sakimoto [18]. CCC results for the He+ target are also presented.

Therefore, to evaluate the cross section that was measured
in the experiment we have to use Eq. (35), which contains
the Franck-Condon estimates for transitions from the ground
vibrational level of H2 into all the negative energy vibrational
levels of H+

2 . The Franck-Condon factors were obtained from
the database provided by Wünderlich and Fantz [21] and
Hunter et al. [22]. The modified results are 1.7% lower than
the results shown in Fig. 4. This way we find that at most 1.7%
of the residual H+

2 ions may dissociate before reaching the
detector. A similar estimate gives 0.5% for the D+

2 ions used
in the experiment. Thus, possible excitation of the vibrational
continuum has little effect on our results.

B. p̄-H+
2 collisions

In Fig. 5 the present Franck-Condon results for total ion-
ization obtained by analytical molecular-orientation averaging
are compared to the corresponding results of Sakimoto [18]
obtained from 11 × 5 orientations and those by Lühr and
Saenz [19] obtained using only three orientations. While the
previous two calculations [18,19] are in good agreement with
each other, the present results are slightly lower at low energies
and slightly higher at the energies where the cross section has
a maximum. Overall, the disagreement between the present
results and the results of Lühr and Saenz [19] is surprisingly
small in comparison with the disagreement observed for
the molecular hydrogen target (Fig. 4). This observation is
counterintuitive. The hydrogen molecular ion, H+

2 , with the
equilibrium internuclear distance (d0 = 2.0 a.u.) larger than
that of the neutral molecule, H2 (d0 = 1.4 a.u.), exhibits larger
deviation from the spherical symmetry. Consequently, using
only three molecular orientations for the purpose of calculating
the orientationally averaged cross section for antiproton-
impact ionization of H+

2 should have produced results that are
in larger disagreement with the present analytically averaged
results. This, however, is not the case.

In Fig. 5 we also present our results for antiproton-impact
ionization of He+ which is the united atom limit of H+

2 . One can
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FIG. 6. (Color online) The electron distribution dynamics in antiproton collisions with H+
2 at 1 keV. The snapshots are taken at the impact

parameter b = 1 a.u. and several representative values of Z = vt . The corresponding projectile position is shown by red dots. The target nuclei
are shown by black dots.

see that the ionization cross section for He+ has a maximum
near 100 keV and slowly falls with decreasing impact energy,
practically becoming flat at the lowest calculated energies. At
all presented energies the cross section for ionization of He+
is significantly less than the cross section for ionization of H+

2
due to the large difference in the binding energies. One can
see strong suppression of the H+

2 cross section at low energies.
The reason for this is the same as in the molecular hydrogen
case. In order to see this point we have calculated the electron
cloud distribution of the H+

2 target during the collision similar
to what we did for the p̄-H2 process [16]. The snapshots shown
in Fig. 6 reveal that the suppression mechanism is indeed the
same, however, the electron movement from one target proton
to another under the influence of the incoming antiproton is
more pronounced than in the case of antiproton collisions with
molecular hydrogen. This is related to the fact that the distance
between the protons in the H+

2 ion is larger than the correspond-
ing distance within the H2 molecule. In other words, when the
antiproton is close to one of the protons in H+

2 , the electron has
a chance to be bound to the other proton which is more isolated
from Coulomb fields of the antiproton and the first proton.

C. H+ production in p̄-H2 collisions

In Fig. 7 the present CCC results for σdi, σie, and σH+ are
compared with the experimental data of Hvelplund et al. [10].
Also shown are the corresponding cross sections calculated by
Lühr and Saenz [19]. In spite of the two-step approximation the
present results agree reasonably well with experiment above
40 keV. Below 40 keV our results are systematically higher
than experiment, indicating that the IEV model becomes less
reliable at low energies. In addition, it is worth mentioning
that the mechanism of H+ production due to ionization with

excitation contributes more than twice compared to double
ionization.

The results of Lühr and Saenz [19] are systematically lower
than experiment at all available energies. The individual cross
sections for double ionization and ionization with excitation of
the target are also systematically lower than the corresponding
present results. We emphasize that Lühr and Saenz [19]
performed σH+ calculations using an internuclear distance
d0 = 2.0 a.u. for H+

2 and 1.4478 a.u. for H2, despite the
fact that the two-step approximation requires using the same
internuclear distance d0=1.4478 a.u. for both targets. They
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FIG. 7. (Color online) Cross sections leading for production of
H+ (see text) in antiproton collisions with H2. Present CCC results
obtained within the two-step approximation (see text) are compared
with the experimental data of Hvelplund et al. [10] and calculations
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indicated that similar calculations with d0=1.4478 a.u. for H+
2

produced even lower cross sections.

V. CONCLUSIONS

Antiproton collisions with H2 have been studied using a
time-dependent convergent close-coupling approach. While
still taking advantage of the commonly used fixed-nuclei
approximation, the present approach accounts for all possible
orientations of the molecular target by analytically averaging
over the molecular orientations. A set of scattering equations
that are independent of the molecular orientation has been
derived. A similar technique can be implemented in studies
of projectile collisions with other molecular targets. The
presented approach is valid at all energies, and significantly
improves the agreement between theory and experiment for
p̄-H2 single ionization cross sections. The strong suppression
of the single ionization cross section at low energies has been
shown to be attributed solely to the structure of the molecular
target. Studies of the time evolution of the electron cloud
distribution during the antiproton collisions with atomic and
molecular hydrogen showed that the electron, which would
have gone into the continuum in the atomic hydrogen case, gets
caught by one of the target protons in the molecular hydrogen
case. A small region near the experimental maximum, where
a discrepancy is observed needs further attention from both
theorists and experimentalists.

In addition, to complete the picture of the full target
breakup, the cross sections for ionization with excitation, dou-
ble ionization, and proton production in antiproton-molecular
hydrogen collisions have been calculated using a two-step
approximation. Good agreement with experiment for proton
production was found above 40 keV. Apparently, the two-step
approximation employed in the calculations is problematic at
lower energies. A more accurate treatment of the two-electron
processes is yet to be developed.

The approach has been extended to study antiproton-
impact ionization of another homonuclear diatomic molecule,
H+

2 . Except for minor discrepancies the present results with
analytical orientational averaging are in good agreement with
previous studies that used only three orthogonal orientations
of the H+

2 target.
As a future direction, the study of proton collisions with

molecular hydrogen is highly interesting. The mechanism of
ionization, which is governed by the interplay of attractive
Coulomb fields of three protons and also competes with the
electron capture channel, certainly deserves attention.
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