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Scattering of near-zero-energy electrons and positrons by H2
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The parameters for S-wave elastic scattering of near-zero-energy electrons and positrons by H2 molecules are
calculated using the stabilization method with explicitly correlated Gaussians. The confined variational method is
applied to optimize the Gaussians to describe the short-range interaction of incident e± with H2 in the fixed-nuclei
approximation. For e+-H2 scattering the scattering length of previous work [Phys. Rev. Lett. 103, 223202 (2009)]
is substantially improved. More importantly, for e−-H2 scattering, from first principles, the scattering length is
computed as a function of the internuclear distance. In the case that the two nuclei are at the equilibrium distance
the results are in a good agreement with values derived from fitting experimental total and diffusion cross sections
to the modified effective range theory.
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I. INTRODUCTION

The scattering of e± from H2 is of fundamental interest and
has been the subject of intensive theoretical and experimental
investigations for decades [1–23]. Due to the dual-center
nature of molecular H2, theoretical calculations for the low-
energy e± scattering are much more challenging than for the
scattering by He atoms. Hence there exist few well-converged
first-principles calculations, even for H2 in the fixed-nuclei
approximation. In the case of low-energy scattering, the
incident e± can interact with the target for a relatively
long period of time before moving away. Therefore, the
scattering depends significantly on the complicated correlation
interaction with the target.

In this work, the low-energy e±-H2 scattering is stud-
ied using the stabilization method [24,25] in the fixed-
nuclei approximation. Explicitly correlated Gaussians (ECGs)
[26–28] are chosen as basis functions, which have the advan-
tage that the Hamiltonian matrix elements of the scattering
system can be evaluated analytically. To improve the descrip-
tion of the complicated short-range interaction, the confined
variational method is adopted to optimize the ECGs. The idea
of adding a confining potential to the Hamiltonian previously
has been used to study e± and positronium scattering [29–32].
For the e+-H2 scattering, the scattering lengths of previous
ECG calculations [32] can be significantly improved by larger
basis sets, by optimizing the energy of the lowest pseudostate
for each confined system rather than optimizing the mean
energy of the lowest two pseudostates, and by taking into
account the polarization correction. For the e−-H2 scattering,
our present scattering length of 1.24a0 is in good agreement
with the values obtained by the modified effective range
theory (MERT), Ascat = 1.27 ± 0.01a0 [33,34], 1.29a0 [35],
and 1.30a0 [23].
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II. THEORY AND COMPUTATIONAL METHOD

Atomic units are used throughout this paper. The Hamilto-
nian for e±-H2 scattering is

H = −
3∑

i=1

∇2
i

2
+

3∑
j>i=1

qi qj

|rj − ri |

+
3∑

i=1

{
qi

|ri − R/2| + qi

|ri + R/2|
}
, (1)

where ri is the coordinate of the ith light particle (electron or
positron) relative to the midpoint of the internuclear axis, qi is
the corresponding charge, and ±R/2 represents the displace-
ment of the two protons, respectively, from the midpoint. The
basis functions for the interaction region have the form

φk = P̂ exp

(
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⎞
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The vector Sk,i displaces the center of the ECG for the ith
particle to a point on the internuclear axis, ensuring that the
wave function is of � symmetry. The operator P̂ forces the
wave function to have �g symmetry. Each ECG has a total of
nine parameters ak,ij , bk,i , and Sk,i , which are adjusted in the
optimization process.

To improve the description of correlations between the
incident e± and molecular electrons, a confining potential
WCP(ri) for each lepton is added in the Hamiltonian, given by

WCP(ri) = 0, ri < R0, (3)

WCP(ri) = G(ri − R0)2, ri � R0, (4)

where G is a small positive number, 1.55 × 10−4 for e+
scattering and 6.0 × 10−5 for the e− scattering. Moreover,
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TABLE I. Convergence of calculations for the �g e+-H2 system at R = 1.4a0 with respect to the number of ECGs. Results for R = 1.45a0,
calculations by other groups, and experimental measurements are included. Energies ENinner , wave numbers k, and scattering lengths Ascat are
given in atomic units.

Ninner + Nouter ENinner k Ascat,‖ Ascat,⊥ Zeff,‖ Zeff,⊥

R = 1.4
600 + 36 −1.169 468 17 0.635 577 × 10−2 −2.508 −2.763 14.37 14.59
1000 + 36 −1.169 470 50 0.635 547 × 10−2 −2.496 −2.771 14.65 14.87
1400 + 36 −1.169 472 07 0.635 530 × 10−2 −2.478 −2.793 14.62 14.88
2600 + 36 −1.169 472 22 0.635 511 × 10−2 −2.450 −2.809 14.66 14.95
Mean value −2.63 14.80
Stabilization: ECG [32] −1.169 461 86 0.635 551 × 10−2 −2.53 −2.63 14.74 14.83
Kohn: ECG [40] −2.565 14.61
Kohn: Method of models [12,42,48] −2.2 12.6
Kohn: Method of models [42] 0.01 −2.56 13.5

R = 1.45
1600 + 36 −1.169 089 17 0.635 264 × 10−2 −2.594 −2.982 15.67 16.00
Mean value −2.79 15.80
Kohn: ECG [40] −2.709 15.70
MERT fit [23,44] −2.51
MERT fit [23,45] −3.13
Experiment, k ≈ 0.045a−1

0 , R ≈ 1.448a0 [7] 14.7(2)
Experiment, k ≈ 0.045a−1

0 , R ≈ 1.448a0 [13] 14.61(14)
Experiment, k ≈ 0.045a−1

0 , R ≈ 1.448a0 [8] 16.02(08)

R0 must be larger than the interaction region in order to
avoid disturbing the interaction between e± and target. We
use R0 = 18a0 for all calculations presented in this article.
By applying the confining potential, the continuum state
problem is converted into a problem of discrete energy levels.
Therefore, the basis set for the short-range interaction is
optimized by minimizing the lowest energy of the confined
system by the stochastic variational method [28,36,37].

To enlarge the basis, we merge several basis sets, each
being well optimized for a specific interatomic distance. For
e+-H2 scattering, for example, the basis sets for R = 1.4 and
1.6a0 are merged to form the basis set of the interaction region
for R = 1.4a0. As compared to e+-H2 scattering, for e−-H2

scattering the optimization of the inner basis functions is
much more time-consuming and difficult. Besides the more
complicated permutation symmetry, the main reason is that
the near-linear dependence frequently occurs when the size of
the basis set is larger than 800. We again merge several well
optimized basis sets for different interatomic distances. For
example, the basis set of the interaction region for R = 1.4a0

is composed of the basis sets for R = 1.4, 1.6, and 1.8a0. For
some values of R the Schrödinger equation for the confined
system cannot be solved with the merged basis set. However, in
most cases a solution is possible when the confining potential is
excluded. By adding a certain number of basis functions each
time and trying to solve the Schrödinger equation without
confining potential, we determine which basis functions
cause the near-linear dependence. After a successful solution,
we obtain the corresponding eigenenergies and eigenwave
functions, which are orthonormalized to each other. The lowest
eigenenergy, which is higher than the ground-state energy of
fixed-nuclei H2, becomes lower when the number of basis
functions increases. Otherwise, the near-linear dependence
occurs and the basis functions added in the last step must be

removed. In addition, the quality of the finally selected inner
basis functions is confirmed for mutual consistency by the
convergence of the scattering parameters (see Tables I and II).

For scattering at very low energy, the convergence of the
scattering parameters can be improved by including exterior
basis sets to describe the asymptotic region, which are given
by products of H2 wave functions and Gaussians,

�i,outer = ψH2 (r1,r2) exp
(− 1

2αir2
3

)
. (5)

The H2 wave functions for different distances R are rep-
resented by linear combinations of 100 or 120 ECGs. For
example, the calculated ground-state energy of H2 for R =
1.40a0 is −1.174 475 54 hartree using a basis set of 120
ECGs, i.e., only 1.7 × 10−7 hartree higher than the close-
to-exact value −1.174 475 71 hartree [38]. The Gaussians are
introduced to represent the asymptotic behavior of the incident
particle. Moreover, {αi} is an even tempered set given by
the relation αi = α1/T i−1 with α1 = 18.59 and T = 1.435.
A total of 36 long-range functions is added to each interaction
region basis set.

The Hamiltonian matrices (excluding the confining poten-
tial) are constructed with both inner and exterior basis func-
tions. Diagonalization leads to a set of eigenenergies and wave
functions. In the stabilization method [24,25] eigenwave func-
tions with positive energy are reasonable approximations to the
exact scattering wave functions. The phase shifts are derived by
a least-squares fit to the overlap of the target wave function and
the wave function of the e±-H2 scattering. The overlap function

C(r3) =
∫

d3r1d
3r2ψ

H2 (r1,r2)�(r1,r2,r3) (6)

depends on the distance r3 of the incident e± from the
internuclear midpoint and the angle θ3 with respect to the
internuclear axis.
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TABLE II. Convergence of the calculations for the �g e−-H2 system at R = 1.4a0 with respect to the number of ECGs. Energies ENinner ,
wave numbers k, and scattering lengths Ascat are given in atomic units.

Ninner + Nouter ENinner k Ascat,‖ Ascat,⊥

1000 + 36 −1.169 430 34 0.640 734 × 10−2 1.161 1.333
1500 + 36 −1.169 435 11 0.640 723 × 10−2 1.149 1.338
2000 + 36 −1.169 435 41 0.640 715 × 10−2 1.124 1.353
2500 + 36 −1.169 435 60 0.640 712 × 10−2 1.118 1.355
Mean value 1.24
MERT fit by Fedus and co-workers [23] 1.30
MERT fit by Chang [33] 1.27 ± 0.01
MERT fit by Fabrikant [35] 1.29

During the scattering the e± experiences a long-range
potential of which the dominating part is given by

VLR(r3) � − α

2r4
3

− α2

2r4
3

P2(cos θ3) − Q

2r3
3

P2(cos θ3), (7)

where α and α2 are the isotropic and anisotropic polarizabilities
of H2, respectively [34]. P2(cos θ3) is a Legendre polynomial
of order two and the third term represents the quadrupole
potential, Q being the quadrupole moment of H2. For the
scattering of near-zero-energy electrons by ground-state H2 the
S-wave elastic scattering dominates, while other channels as
well as channel coupling effects of the orientation-dependent
part of the long-range potential are negligible [39]. Thus
the fixed-nuclei approximation is reasonable. The effect of
isotropic potential on the phase shifts is taken into account by
integrating the asymptotic form B(θ3) sin[kr3 + δk(θ3)] of the
wave functions inward to the inner boundaries of the least-
squares fits, which are made over the interval [R1,R2] at fixed
values of θ3. The value of R1 should be sufficiently large for the
projectile and target wave functions to have minimal overlap,
typically R1 = 15a0 for few-electron atomic and molecular
targets. The value of R2 should ensure that the probability
density of the particle remains a reasonable fraction (e.g., 20%)
of the peak probability density, typically R2 = 25 to 30a0. In
this work we chose R1 = 18a0 and R2 = 30a0. For the e+-H2

scattering the positrons may annihilate with the electrons of
H2 to create photons. The annihilation parameter Zeff , which
represents the effective number of electrons available for an-
nihilation, is determined by the normalization constant B(θ3).

III. RESULTS AND DISCUSSION

A. Near-zero-energy positron scattering from H2

Table I addresses the convergence of the calculations for the
�g e+-H2 system at R = 1.4a0 as a function of the number
of ECGs, Ninner + Nouter, where Ninner is the number of inner
region basis functions and Nouter is the number of outer region
basis functions. The energy of the lowest state in the confining
potential is given by the ENinner column. The wave number
k (in a−1

0 ) refers to the lowest-energy pseudostate when the
entire basis is diagonalized without confining potential. Ascat

(in a0) and Zeff are derived from the wave-function projections
parallel (‖) and perpendicular (⊥) to the internuclear axis.
While we optimize the basis sets for the inner region by
minimizing the energy of the lowest pseudostate, in previous

ECG calculations [32,40] the mean energy of the two lowest
pseudostates has been minimized during the optimization. In
addition, since the size of the present basis sets is larger and
the polarization effect of H2 is taken into account, improved
results can be expected.

As the number of basis functions increases, ENinner , k, Ascat,
and Zeff change monotonically; see Table I. The inner basis set
is optimized for R = 1.4a0 up to a size of 1400. For calculating
the scattering parameters with the stabilization method 1200
basis functions optimized for R = 1.6a0 are added, which
improves the results by about 0.5% to 1% though the
corresponding ENinner is just slightly lower than for 1400 basis
functions. As compared to the previous ECG calculation in
Ref. [32], our Ascat,‖ is 3% larger and our Ascat,⊥ is 7% smaller.
As expected, the difference between these two quantities
grows when the number of basis functions increases. Armour
and co-workers have calculated Ascat and Zeff by the Kohn
variational method [41–43]. Their phase shift for k = 0.01a−1

0
gives a scattering length of −2.56a0 [42]. Fedus and co-
workers have obtained MERT scattering lengths of −2.51a0

and −3.13a0 [23] by fitting the experimental data of Hoffmann
and co-workers [44] and Karwasz and co-workers [45],
respectively. The fit values are close to the limits of our
Ascat,‖ and Ascat,⊥ for R = 1.45a0 (i.e., almost the equilibrium
distance 1.448a0). The experimental Zeff = 14.7 [7], 16.02 [8],

FIG. 1. (Color online) Scattering length Ascat as a function of the
angle θ3 for e+-H2 scattering.
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FIG. 2. (Color online) Annihilation parameter Zeff as a function
of the angle θ3 for e+-H2 scattering.

and 14.61 [13] are included in Table I for comparison, showing
reasonable agreement with the theoretical results. As pointed
out earlier [32], the variation among the experimental values
is probably related to different densities of the H2 gas [8].

Figures 1 and 2 present for e+-H2 scattering the scattering
length Ascat and annihilation parameter Zeff as function of the
angle θ3, respectively, for different values of R. Due to the
symmetry plane passing through the center-of-mass of
the molecule perpendicular to the molecular axis, the values
for θ3 and π − θ3 are the same and we can restrict the plots to
the range 0 � θ3 � π/2. Corresponding plots of Ascat and Zeff

as a function of the internuclear distance R are given in Figs. 3
and 4, respectively, separately for θ3 = 0 and θ3 = π/2. The
minimum in the scattering length around R ≈ 3.4a0 indicates
the formation of a virtual state [32,46]. The effect of the
polarization on the scattering length lies within a range of
1% to 5% for 1a0 � R � 4a0. For R = 1.4a0, for example, it
is 3.0%. Since Ascat,‖ and Ascat,⊥ for the same R deviate by

FIG. 3. (Color online) Scattering length Ascat as a function of the
internuclear distance R for e+-H2 scattering.

FIG. 4. (Color online) Annihilation parameter Zeff as a function
of the internuclear distance R for e+-H2 scattering. The experimental
values are those from Table I.

not more than 13% throughout all calculations, the near-zero
energy e+-H2 scattering can be approximately described by a
system of spherical symmetry.

B. Near-zero-energy electron scattering from H2

Table II addresses the convergence of the calculations
for the �g e−-H2 system for R = 1.4a0 as a function of
the number of ECGs. For an increasing number of short-
range basis functions Ascat,‖ decreases while Ascat,⊥ increases
monotonically. For low-energy electron scattering by nonpolar
molecules, the total and diffusion cross sections can be
approximately expressed as a function of the wave number
k. The fitting parameters include the scattering length Ascat,
which largely depends on the short-range interaction. By fitting
the experimental diffusion cross sections of Crompton and
co-workers [3], Chang found Ascat = 1.27 ± 0.01a0 [33,34]

FIG. 5. (Color online) Scattering length Ascat as a function of the
angle θ3 for e−-H2 scattering.
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FIG. 6. (Color online) Scattering length Ascat as a function of the
internuclear distance R for e−-H2 scattering. Empty and filled circles:
Ascat,‖ without and with polarization correction, respectively. Empty
and filled squares: Ascat,⊥ without and with polarization correction,
respectively. The triangle and diamond symbols refer to the references
from Table II.

and Fabrikant estimated Ascat = 1.29a0 [35]. The small dif-
ference is mainly due to the fact that Chang determined the
isotropic part of the polarizability as α = 5.4 ± 0.1a3

0 , whereas
Fabrikant used α = 5.18a3

0 . Fedus and co-workers obtained
Ascat = 1.30a0 and α = 5.314a3

0 [47]. All three MERT values
of Ascat are within the range of our Ascat,‖ and Ascat,⊥.

Figure 5 presents for e−-H2 scattering the scattering length
Ascat as a function of the angle θ3. The difference between
R = 1.4 and 1.45a0 is less than 0.5%, whereas for e+-H2

scattering this difference is about 6.0%. According to Fig. 5,
the mean scattering length is 1.24a0, in agreement with the
accurate MERT values within 3% to 4% [23,34,35]. Since the
size of the optimized basis set for the e+-H2 system (1400) is
much larger than that for the e−-H2 system (1000), it is likely
that the accuracy of our calculations in the former case is better
than 4%. This indicates that the uncertainty of the experimental
scattering lengths is large. Figure 6 gives Ascat,‖ and Ascat,⊥ as

functions of the internuclear distance R. As compared to the
e+-H2 scattering, the effect of polarization is much larger for
the e−-H2 scattering. The polarization correction lies within a
range of 8% to 35% for 1.4a0 � R � 3.6a0. For R = 1.4a0,
for example, it is 8.5%. Since the convergence is slower for
Ascat,‖ than for Ascat,⊥ for each R when the number of basis
functions increases, we expect that Ascat,‖ is less accurate,
especially for large R. In addition, it is less accurate for large
R than for small R. Ascat,‖ shows a tendency to decrease
when R increases, reaching a minimum at R = 3.2a0. On the
other hand, Ascat,⊥ increases slightly for increasing R, with a
maximum at R = 3.2a0.

IV. CONCLUSION

To conclude, the near-zero-energy e±-H2 scattering has
been studied by the stabilization method with ECGs. For
e+-H2 scattering, the presented results are significantly more
accurate than previous ECG calculations [32,40], as well as
Kohn variational calculations [41,43]. The results of Ascat

agree with MERT values. In addition, the obtained values
for Zeff are compatible with the experiment. In particular,
the success of the e+-H2 calculations testifies the potential
of merged basis sets for different distances R. This strategy
also turnes out to be very useful for e−-H2 scattering, as
it avoids near-linear dependencies for increasing basis size.
Our results represent a first principles determination of the
scattering length without model potentials. The calculated
mean scattering length at R = 1.45a0 shows good agreement
with MERT values [23,34,35].
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