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Electron dynamics of a He atom in strong, oscillating magnetic fields
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The present numerical, time-dependent density-functional study of a He atom interacting with strong,
oscillating magnetic fields shows that this scenario is quite different from the case of a laser electric field–He
atom interaction. Signatures of sluggish electron dynamics are found in this study, while through a mechanical
analogy the flow of electron density under such conditions has been explained. These calculations take into
account both exchange and correlation. Through several calculated dynamical quantities, we have shown that,
in contrast to the case of the (one-electron) H atom studied earlier, the nonlinear dependence of interelectronic
repulsions (a combination of Coulomb, exchange and correlation terms) on the magnetic field plays a significant
role in this strong-field electron dynamics in the He atom, which cannot be explained by a perturbative
approach.
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I. INTRODUCTION

The interaction between an atom or molecule and strong
(�105–108 T), static magnetic fields has been a subject of
contemporary interest. These studies have been motivated by
an urge to understand similar interactions between excitonic
(electron-hole bound states) systems in semiconductors [1,2]
for which the H atom is an atomic model. Later, astronomical
discoveries of small atoms and molecules on the surfaces
of extraterrestrial giant magnetic field sources (e.g., pulsars,
white dwarfs, and neutron stars) have enhanced the relevance
of such studies [3]. Among them He is the lightest many-
electron system present. Therefore, the detailed electronic
structure and dynamics of He atom under strong magnetic
fields assumes considerable significance.

However, magnetic fields of such strengths cannot be
achieved in terrestrial laboratories yet (the largest pulsed
magnetic field achieved so far seems to be limited to 102 T
[4]), thereby restricting the progress on this subject largely
to theoretical studies. The interaction between such strong,
static magnetic fields and the He atom has been studied
extensively. These numerical studies span a wide spectrum
of increasingly sophisticated techniques from Hartree-Fock
[5,6], full configuration-interaction [7–9], and quantum Monte
Carlo [10,11] to Kohn-Sham density-functional theory meth-
ods [12,13]. Such studies, most of which include accurate
correlation effects, suggest an elongation of electron density
in the direction of the applied strong magnetic field. It is
also proposed that He atoms can make a long chain through
this elongated electron density in the presence of such strong
magnetic fields [12–15].

On the other hand, the interaction between a time-dependent
(TD) magnetic field and the He atom (or any other many-
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electron atom or molecule) has not been explored yet. To our
knowledge, there are only two recent works which deal with the
dynamics [16] and quantum chaos [17] in H atom interacting
with strong, oscillating magnetic fields. These studies reveal
the existence of a considerably slower dynamics than that of
the incident magnetic field, a resonance-energy-transfer phe-
nomenon, and a nonlinear time evolution for the (one-electron)
H atom. For a many-electron atom like the He atom, the
situation is even more complicated due to the interelectronic
repulsion. In contrast to this situation for strong, TD magnetic
fields, its electrical counterpart, i.e., laser-atom and laser-
molecule interactions have been dealt with extensively due
to the routine availability of such intense lasers, in terrestrial
laboratories. It has been shown by numerous theoretical studies
including TD Hartree-Fock [18], quantum Monte Carlo [19],
TD DFT [20,21] and pseudospectral methods [22] that the
density interacting with an oscillating laser electric field moves
back and forth, leading to a gradual oozing out through
ionization channels. However, no such study appears to have
been made so far for an oscillating, strong magnetic field
interacting with two- and many-electron systems. However,
as in the cases for laser fields, such strong-field interactions
have to be treated nonperturbatively, because the perturbation
here is not small compared to the unperturbed Hamiltonian.

The present work explores the electron dynamics of a
He atom under strong, oscillating magnetic fields. For this
purpose, the Deb-Chattaraj (DC) equation [23] has been
extended to the strong, in general time-dependent, magnetic
field regime using the quantum fluid dynamical route to TD
DFT [24]. In this paper the real-time DC equation, involving
both charge and current densities, will be solved numerically
for He atom under strong, oscillating magnetic fields using an
accurate numerical methodology developed in our laboratory
[20,21,23,25].

The plan of the paper is the following: Sec. II briefly
discusses the derivation of the DC equation followed by
the computational methodology. Results will be discussed in
Sec. III while Sec. IV summarizes the work.
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II. FORMULATION

The TD Schrödinger equation for the He atom in a
TD, arbitrarily strong, z-directional, spatially homogeneous
magnetic field B(t) is given by (atomic units are employed
throughout unless mentioned otherwise)(
−(1/2)

∑
k

{[pk − Ak(t)/c]2 − 1/rk} + 1/|r1 − r2|
)

ψ(r1,r2)

= i∂�(r1,r2)/∂t, (1)

where pk = −i∇k is the canonical momentum of the kth
particle (in the present case, k = 1,2) and c is the speed of light.
Under a symmetric gauge [15], the vector potential assumes
the form

Ak(t) = [B(t)/2](ykex − xkey). (2)

In order to satisfy the gauge condition, the two-particle wave
function � (normalized to unity) transforms as

� → �exp(iλ/c) (3)

while the vector potential transforms as

Ak(t) → Ak(t) + ∇kλ. (4)

This problem of nonuniqueness associated with the phase
of the wave function however does not exist in purely density-
based quantities since the complex phase is “washed out” by
the modulus operation to obtain the one-particle density:

ρ(r,t) =
∫

|�(r,r2)|2dr2. (5)

To obtain the electron density of the He atom directly,
bypassing Eq. (5), we extend the QFDFT approach [23,24] (QF
denotes Quantum Fluid) to include the presence of magnetic
fields (with the formalism developed in Refs. [26,27]) as fol-
lows: The expectation value of the TD Hamiltonian in Eq. (1) is

〈H 〉(t) = 〈�|H |�〉, (6)

which can be partitioned into two parts, viz., a field-free term
E0 and a magnetic term Em. E0 contains the electron-nuclear
attraction energy, kinetic energy, and interelectronic repulsion
terms, both classical and quantal in origin. The Em term con-
tains the effect of the TD magnetic field through the expression

Em = (c2/2)〈�|
∑

k

A2
k|�〉 − (i/2c)〈�|

∑
k

Ak · ∇k|�〉. (7)

The first term on the right-hand side is a local operator and
yields

〈�|
∑

k

A2
k|�〉 = [β2(t)/2]

∫
ρ(r,t)(x2 + y2)dr, (8)

where β(t) = B(t)/B0; B0 (not in atomic units) = 2m2e3c/h3 =
4.7010 × 105 T, m and e being the mass and charge of
the electron, respectively. The second term on the right-hand
side of Eq. (7) vanishes identically under the assumption of
cylindrical symmetry [27]. This assumption is equivalent to
〈Lz〉 = 〈∑k Lk

z〉 = 0, where Lk
z is the z component of the

orbital angular momentum of the kth electron. The above
assumption can be justified in the following manner : Since
the operator Ak · ∇k is proportional to B · Lk

z, i.e.,
∑

k Ak · ∇k

is proportional to B · Lz(Lz = ∑
k Lk

z), the operator Lz com-
mutes with the Hamiltonian [Eq. (1)], provided B is not a
function of space. Therefore, Lz turns out to be a constant of
motion even for TD magnetic fields. Since the t = 0 state is
the 1S0 field-free ground state of the He atom, viz., 1S0 where
〈Lz〉 = 0, 〈Lz〉 will remain zero throughout the time evolution.
Therefore, following the earlier work by Deb and Ghosh [24]
the effective potential density for the electron fluid becomes∫

drh[ρ] =
∫

dr{G[ρ] + 1

2

∫
ρ(r′,t)ρ(r,t)/(|r − r′|)dr′

+Vext(r)ρ(r,t) + [β2(t)/2]ρ(r,t)(x2 + y2)},
(9)

where Vext(r) is the external potential and G[ρ] includes
exchange and correlation terms. Hence, a strong magnetic field
introduces only an additive term in the potential. Following
the variational path created by the addition of the resultant
Navier-Stokes and continuity equations, we obtain the final
DC equation for the He atom in strong, TD magnetic fields as

[−(1/2)∇2 + Veff]�(r,t) = i∂�(r,t)/∂t, (10)

where the effective potential

Veff(r,t) = Vatt(r,t) + Ve- e(r,t) + Vx(r,t) + Vcorr(r,t)

+Vm(r,t) + δTcorr/δρ (11)

and the complex-valued hydrodynamical function �(r,t)
generates the TD normalized electron density

ρ(r,t) = |�(r,t)|2, (12)∫
ρ(r,t)dr= 2. (13)

In Eq. (11), the attraction potential Vatt(r,t) = −2/r, the
Coulomb repulsion Ve−e(r,t) = ∫

ρ(r′,t)/(|r − r′|)dr′ and
the magnetic potential Vm(r,t) = [β2(t)/2]ρ(r,t)(x2 + y2) are
classical terms whereas the exchange potential Vx(r,t) and the
correlation potential Vcorr(r,t) are purely quantum in origin.
The last term of Eq. (11) is the kinetic-energy correction
term added to the Weizsäcker kinetic energy. For two-electron
systems, Tcorr is negligible and vanishes identically for a
Hartree-Fock wave function. Although we include electron
correlation in the present work, we neglect Tcorr because for
the He atom the correlated density is locally quite close to the
Hartree-Fock density. Note that so far no approximate, though
accurate, universal functional for Tcorr has been found. Once
found, the long-prevailing kinetic-energy problem [28] will
be solved, leading to a drastic simplification of the electronic
structure calculations of N -electron systems through a single
DC equation, instead of solving N coupled equations as in
any other method. Although the contribution from Tcorr to the
total energy has been shown to be positive, we assume that
due to its smallness no qualitative change would occur in our
conclusions even if it were included.

In the present work, we have used the exact exchange
functional [29]

Vx(r,t) = (−1/2)
∫

ρ(r′,t)/(|r − r′|)dr′ (14)
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while a parametrized Wigner correlation functional is used. It
is known that the Wigner correlation functional

Vcorr(r,t) = δEcorr/δρ

= −[a + cρ(r,t)−1/3]/[a + bρ(r,t)−1/3]2, (15)

where a = 9.81, b = 21.437, and c = (4/3)b = 28.582 667,
provides a very good estimate of correlation energies for
various atoms and molecules [25,27,29,30], in both ground and
excited states, due to the correct local and global behavior of
the functional as well as its functional derivative. The quantity
Ecorr(t) given by

Ecorr(t) = −
∫

ρ(r,t)/[a + bρ(r,t)−1/3]dr (16)

is used as the TD correlation “energy.” Note that the one-
to-one correspondence between the charge density and the
external potential is strictly applicable only for the ground
state. The current density j(r,t) is also required to uniquely
determine any other stationary state. It is also shown that
both Ex and Ecorr depend on j (r, t) in the presence of
magnetic fields [26]. Although the functional forms of Ex and
Ecorr have been formulated for a static electron density, we
phenomenologically translate the same forms to dynamical
cases incorporating the time dependence implicitly through
ρ(r,t) which contains information, in principle, about all
stationary states.

The scaled magnetic field β(t) is chosen as

β(t) = βmaxf (t)sin(ωBt), (17)

where the ramp function f (t) is

f (t) =
{

t/t0 if t < t0,

1 if t � t0,
(18)

t0 being the time to complete five magnetic cycles. This linear
ramp function has been introduced to avoid a sudden shock
to the electron density from the external field which, even in
true experimental conditions, takes a finite time to reach its
peak value. Note also that a free electron would rotate in a
circular orbit with radius equal to the innermost Bohr radius
(a0) for the peak value of the magnetic field, i.e., βmax =
0.5 [15]. It can be seen from the form of Vm that, due to its
sine-squared dependence on ωB , Vm has a frequency 2ωB , i.e.,
2sin2(ωBt) = 1 − cos(2ωBt).

To solve Eq. (10) numerically, we follow the Alternating
Direction Implicit (ADI) scheme [23,25] in cylindrical co-
ordinates (0 � ρ̃ � ∞, −∞ � z̃ � +∞, 0 � ϕ � 2π ), the
magnetic field being applied along z̃, i.e., the axis of the
cylinder. The space grid has been discretized as follows:

ρ̃ = x2,

xi = δ + ih, δ = 1 × 10−6, i = 1,2, . . . ,N1,

z̃k = [−(N2 − 1)/2 + k]h, k = 1,2, . . . ,N2,

h = 0.02 a.u., t = 0.002 a.u., N1 = 121, N2 = 501.

Due to cylindrical symmetry, ϕ has been integrated out.
Each magnetic cycle contains 4096 time steps while the
magnetic field frequency ωB = 2π/(4096t) = 0.767 a.u.
We have followed the dynamics for 50 magnetic cycles, i.e.,

409.6 a.u. or 9.9082 fs (1 a.u. = 0.024 19 fs), covering 204 830
time steps. Important physical features of the interaction
develop by this time. The calculations were launched by
taking the Hartree-Fock ground-state density from Ref. [31]
as the initial (t = 0) density. Nevertheless, since we have
incorporated electron correlation in our TD DC equation, the
results incorporate the correlation effects by the end of the
ramp and continue up to the end of the 50th cycle. Because of
the large number of time steps involved in this computation,
the internal consistency of the results has been thoroughly
checked.

III. RESULTS AND DISCUSSION

In this section, we will interpret in detail the features of
the electron density in the He atom under the influence of
strong, oscillating magnetic fields. In particular, differences
from the H atom due to the presence of another electron will
be highlighted.

We start by calculating the average distance in the ρ̃

direction [〈ρ̃〉(t)] of the electron density,

〈ρ̃〉(t) =
∫

ρ̃ρ(r,t)dr, (19)

for βmax = 0.2, 0.4, 0.6, 0.8, and 1.0 (Fig. 1). For βmax =
0.2 and 0.4, short- and long-time-period components of the
oscillations in 〈ρ̃〉(t) are detected. Both these time periods,
however, are larger than the incident magnetic field time
period; the time period of the faster component �10.24 a.u.
or 0.255 fs. Note that the electron density does not respond to
the two halves of a magnetic cycle (in a magnetic cycle, the
magnetic potential reaches its peak value twice) separately for
βmax = 0.2. When the field strength increases to βmax = 0.4, the
density starts responding to the two halves separately, leading
to prominent bifurcations in the fast oscillations. For βmax =
0.6, the 〈ρ̃〉(t) decreases initially but attains an almost steady
mean value at the end of the ramp (five magnetic cycles) around
which the fast oscillations occur. The bifurcations of the peaks
are now more prominent. At this field strength, therefore, the
density contracts significantly in the ρ̃ direction (perpendicular
to the magnetic field) and responds individually to each of
the two halves of a magnetic cycle. For βmax = 0.8 and 1.0,
significant increase in 〈ρ̃〉(t) occurs after the ramp, indicating
an expansion of density along the ρ̃ direction.

In order to explain these results we invoke interelectronic
repulsion, which results from a combination of Coulomb,
exchange, and correlation terms. Consider the zero-field
electron density as a spherical “ball of jelly” at t = 0. When
a nonzero magnetic field is applied along the z̃ direction the
oscillating magnetic potential

Vm(r,t) = [β2(t)/2]ρ̃2 (20)

“pressurizes” the electron density along the ρ̃ direction.
As a result of this oscillating “squeezing” potential the
interelectronic repulsion also varies periodically, resisting
further density contraction. The “force” due to Vm,

Fm = −β2(t)ρ̃, (21)
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FIG. 1. The time evolution of 〈ρ̃〉(t) for βmax = 0.2, 0.4, 0.6, 0.8,
and 1.0 from the bottom to the top. Note the change of appearance for
βmax � 0.6 which signifies a distinct change in dynamics, i.e., from
elastic to plastic flow (atomic units).

moves a fictitious particle of unit mass always towards the
nucleus (since Fm � 0; for all t) with acceleration

a(r,t) = − [β2(t)]ρ̃. (22)

However, even when the magnetic field (hence, the acceler-
ation) vanishes in the middle or at the end of a magnetic cycle,
the particle is allowed to move with a constant “velocity” v
such that

dv/dt = Fm= 0. (23)

Therefore the motion of electron density is sustained even
when the magnetic field temporarily vanishes until the in-
creased interelectronic repulsion forces the density to expand
again. This expansion continues until the magnetic “force”
overrides the decreased interelectronic repulsion again. For
this reason the electron density follows a slow dynamics under
strong, oscillating magnetic fields. Note that the acceleration
due to a z̃-directional laser electric field is

aL = E0sin(ωLt)ez, (24)

where E0, ωL, and ez represent the peak electric field, laser
frequency, and unit vector in the z̃ direction, respectively. Since
the acceleration changes sign for this case the direction of v
also alters twice in an optical cycle. As a result, when the laser

electric field vanishes the electron density halts momentarily
at a z̃-symmetric configuration.

Next we examine the density [Fig. 2(a)] and the difference
density [Fig. 2(b)]

ρ(r,t ;βmax) = ρ(r,t ;βmax) − ρ(r;βmax = 0) (25)

to elucidate the density reorientation in further detail. Positive
and negative ρ values signify density accumulation and
depletion, respectively, separated by the zero ρ lines, in
different regions of space, thereby giving a detailed picture
of the TD charge reorganization as a result of the interaction.
The present results are obtained at the end of the 30th magnetic
cycle (i.e., when the field vanishes). Since no significant visual
change has been detected for βmax = 0.2, we report only the
results for βmax = 0.4, 0.6, 0.8, and 1.0. For βmax = 0.4, the
density is accumulated in the ρ̃ direction as well as in the z̃

direction. A prominent density depletion is also observed near
the nucleus along the ρ̃ direction. At t = 0, the electron density
falls exponentially from the nuclear site. Therefore when the
magnetic field tries to pull more electron density towards
the nucleus, the interelectronic repulsion increases largely near
the nucleus. This process finally leads to a density depletion
from this region in order to decrease the interelectronic
repulsion. As the field strength increases to βmax = 0.6, the
density expands more in the z̃ direction compared to the ρ̃

direction which explains the decrease in the 〈ρ̃〉(t) profile at
this magnetic field. For βmax = 0.8 and 1.0, the density again
expands along the ρ̃ direction. Additionally, an increase in
the size of the negative ρ region near the nucleus for each
of these two cases is observed, which indicates an increased
interelectronic repulsion for βmax = 0.8 and 1.0.

However, we negate the possibility of density reflections
from the grid boundaries which cause unphysical effects in
density reorientation through the following arguments: First,
the density at the grid boundaries drops significantly to at
most 10−5 for all the cases reported here. Second, during
computation at each time step, the non-normalized electron
density, when integrated over space, deviates from 2 only by
a small amount, which retains the same order of magnitude
throughout the time evolution (e.g., for βmax = 1.0, this
deviation is ±10−4 throughout the time evolution). Had the
density been reflected from the grid boundaries it would
increase significantly after reflection. Note that such reflections
cause a serious problem in studying the interactions between
intense laser fields and atoms or molecules.

The above discussions require an investigation of the
interelectronic interaction as a function of time. However,
due to the inevitable energy-time uncertainty relation in
quantum mechanics, “energy” is not an observable in any
dynamical situation, including the present case. Nevertheless,
one can invoke the notion of TD quasienergy as a measure of
interelectronic interaction considering a time step as a fictitious
“snapshot” of the dynamics, while it should be borne into mind
that these quantities are of only formal use. Thus, we use the
TD expectation value of the Coulomb repulsion potential as
repulsion “energy,” viz.,

Erep(t) = (1/2)
∫

Ve- e(r)ρ(r,t)dr, (26)
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FIG. 2. (a) The electron density ρ, and (b) the corresponding difference density ρ plots for βmax = 0.4, 0.6, 0.8, and 1.0. For density
plots, the outer and inner contours correspond to ρ = 0.008 and 0.22, respectively. For ρ > 0, marked as thick solid lines, the contour values
are 0.007, 0.01, 0.014, and 0.018. For ρ < 0, marked by thin solid lines, the outer and inner contour lines represent −0.01 and - 0.26 density
values, respectively. The dotted lines are for ρ = 0 (atomic units).

which is expected to play an important role in the dynamics.
These results for βmax = 0.2, 0.4, and 0.6 are presented
in Fig. 3. For βmax = 0.2, the profile follows a similar
structure to that presented in Fig. 1 for 〈ρ̃〉(t) at this magnetic
field. This feature indicates that as the electron density tries
to come back to its original state, the repulsion “energy”
increases and subsequently decreases once the electron density
moves away from its original configuration, leading to the
periodic temporal variations. Clearly, at lower magnetic fields
one of the major contributors to the electron dynamics
is the interelectronic repulsion. This conclusion is supported by
the TD repulsion “energy” plot for βmax = 0.4, where it follows
the same pattern as for βmax = 0.2. Supporting the above
conclusion, the Erep(t) plot for βmax = 0.6 shows an oscillating
rise, which is justified from the fact that at this magnetic field
the electron density experiences a pressure which deforms its
shape (Fig. 3) significantly but still tries to retain its original
structure. Therefore, one can identify this magnetic field as
a threshold field where the repulsion has reached such a high

value that with slightly higher pressure the electron density will
“flow away” from its ground state structure like a “plastic”
material. Indeed, the cases for βmax = 0.8 and 1.0 (Fig. 4)
support such a plastic flow. The buildup of the interelectronic
repulsion during the ramp is evident for both cases. On the
other hand, the consequent decay to a lower repulsion “energy”
occurs through the spreading of density along the z̃ direction,
thereby decreasing interelectronic repulsions. Although for
both these magnetic fields the repulsion “energy” profile looks
similar, one notices that for βmax = 0.8 the electron density
reaches its maximum around the end of the magnetic cycle
while for βmax = 1.0 it attains the same earlier and the decay
starts even before the ramp ends at t = 40.96 a.u. This
feature arises from the fact that for higher magnetic field
the “elastic limit” for the density is attained earlier due to
increased pressure. Therefore, there is a possibility that an
“elastic threshold” does exist for the electron dynamics.

Since the present method also incorporates electron corre-
lation effects, apart from Coulomb and exchange interactions,
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FIG. 3. TD interelectronic repulsion energies (a.u.) for βmax =
0.2, 0.4, and 0.6. The repulsions increase for a particular magnetic
field strength due to the “pressure” by magnetic fields.

as a part of interelectronic repulsion, one can calculate
the TD correlation “energy” Ecorr(t) in the same spirit as
the Coulomb repulsion and kinetic “energies” mentioned
above; this is defined in Eq. (16) of the previous section.
Since we have used exact exchange for the He atom in
the present calculations—numerically half of the Coulomb
repulsion—these results along with Erep(t) encompass all the
interelectronic effects in He atom dynamics in the present
study. Figure 5 depicts Ecorr(t) for βmax = 0.2, 0.4, and 0.6.
One can conclude from these results that electron correlation
does not change drastically until βmax = 0.6 although an
increasing sensitivity to the magnetic fields with the increase
of magnetic field strengths is apparent. This implies that up
to βmax = 0.6, the electronic configuration of He does not
vary much with the increase in field strength, indicating that
highly excited states of He have not been reached. Since
all the doubly excited states of He are autoionizing [21]
because of interelectronic repulsions, this situation means that
through its spread in the z̃ direction, the electron density does
not ooze out until βmax = 0.6. To check this conclusion for
higher magnetic fields, we calculated Ecorr(t) for βmax = 0.8
and 1.0. From these results (Fig. 6), one can see that the
correlation effects actually decrease as the density begins its
“plastic flow” along the z̃ direction at βmax = 0.8, indicating
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FIG. 4. TD interelectronic repulsion energies (a.u.) for βmax =
0.8 and 1.0. The sharp decrease signifies a relaxed response due to
density spreading.

diminished interelectronic repulsions. However, note that,
although diminished, the value of Ecorr(t) remains high enough
to warrant a beyond-Hartree-Fock type of description in such
cases.

To get a better insight into the details of the dynamics
we have recorded the density values seen by six space-fixed
observers, viz., A, B, C, D, E, and F corresponding to space
points (3.0276,0), (1,0), (3.0276,3), (3.0276,−3), (1,3), and
(1,−3), respectively, where the values in parentheses denote
the (ρ̃,z̃) coordinates of the points. These space points are
chosen such that density fluctuations over space, with changes
in magnetic field strengths, can be depicted graphically. On the
other hand, since the values of C and D or E and F are identical
due to the z̃ parity of the system, proving a numerical check
on our computations, we will present only the results of points
A, B, C, and E for βmax = 0.4, 0.6, 0.8, and 1.0. Due to their
relative insignificance in the interpretive process, the results
for βmax = 0.2 are not presented here. The time-dependent
density fluctuations as seen by observer A, i.e., ρA(t), for
four magnetic fields are presented in Fig. 7. It is seen that
as the magnetic field strength increases from βmax = 0.2 to
0.4, the density contracts along the z̃ direction but as βmax

reaches 0.8 a significant amount of density builds up at the A
point. For βmax = 1.0, this effect is even more significant. This
may appear counterintuitive but, as explained in the context
of Fig. 2, the increased electron repulsion due to the magnetic
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FIG. 5. TD correlation “energies” (a.u.) for βmax = 0.2, 0.4, and
0.6. Note the smallness of the overall change with increasing magnetic
fields.

fields actually accumulates a significant amount of electron
density along the ρ̃ direction.

From Fig. 2 one realizes that this density buildup happens
at the cost of a density depletion near the nucleus along the
ρ̃ direction. Figure 8 depicts the TD density fluctuations as
observed by observer B. These reveal that while for βmax =
0.4 and 0.6 the overall densities do not change significantly
at B, for βmax = 0.8 a sharp decay after the ramp indicates
a rapid density depletion at B. The same conclusion can also
be drawn for βmax = 1.0. Moreover, a little rise in density
at B followed by a fall for βmax = 0.8 reveals a competition
between the effects caused by the electron-nuclear attraction
and the TD magnetic field. Although initially dominated by
the TD magnetic field, after some time it again tries to return
to its original form which of course is transient. Therefore,
as expected, when the magnetic dominance is increased
via the increased magnetic field strength (βmax = 1.0), the
density can no longer be dominated by nuclear attraction, and
interelectronic repulsions begin to play a significant role in the
overall phenomenon.

However, for the observer C, depicted in Fig. 9, the density
is swept away as the magnetic field increases from βmax = 0.4
to 0.6 which is a consequence of magnetic pressure along the
ρ̃ direction. But, when the magnetic field increases further to
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FIG. 6. Ecorr(t) values (a.u.) for βmax = 0.8 and 1.0. Note that
although the value decreases as the density spreads, it does not become
negligible in either case.

βmax = 0.8, the density again flows back to this point. On the
contrary, for an even stronger magnetic field βmax = 1.0, the
density again contracts along the ρ̃ direction. This behavior is
a consequence of the fact that for βmax = 0.8 the density that
has been squeezed and has escaped from Coulomb attraction
experiences too much interelectronic repulsion to be stable
and therefore, as a trade-off, it tries to accommodate itself
along the ρ̃ direction but away from the nucleus, which in turn
diminishes the interelectronic repulsion. But, for βmax = 1.0,
due to the increased magnetic pressure along the ρ̃ direction,
that opportunity does not arise. Note that for all the four βmax

values in Fig. 9, density does not decrease at all; rather, it
increases significantly for βmax = 0.8 and 1.0. Therefore, it
appears that the increased density at C also comes from the
region near the nucleus where the observer B is stationed.

Figure 10 depicts the density fluctuations as experienced
by observer E. For βmax = 0.4, 0.6, and 0.8, the electron
density increases when the magnetic field increases, while
for βmax = 1.0 the density does not increase at E compared
to the situation for βmax = 0.8. On the contrary, a slight
decrease in density is observed for βmax = 1.0. Therefore, this
figure indicates an initial z̃ movement of density due to the
increased pressure of the magnetic field. However, supporting
our previous conclusion, the density begins a significant
movement along the ρ̃ direction until it again experiences
the magnetic pressure, leading to the results of Fig. 10.
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FIG. 7. Density variations (a.u.) for an observer at position A (ρ̃ = 3.0276, z̃ = 0).

The above analyses make it clear that the electron den-
sity responds in quite different ways to the TD magnetic
fields depending upon βmax. In a nutshell, for βmax � 0.4
it shows an elastic behavior which tries to maintain its
original configuration through the interplay between nuclear-
electronic attraction and interelectronic repulsion. However,
for βmax�0.8, the electron density cannot resist its deformation
any more. Clearly, βmax = 0.4 represents one extreme while
βmax = 1.0 represents the other. Thus, βmax = 0.6 lies on the
borderline where the electron density is deformed although it
still tries to get back to its original configuration. Therefore,
we now explore how these reorientations of density occur over
time for a particular magnetic field strength.

For βmax = 0.4, we have calculated the difference densities
defined by Eq. (25) at the ends of 6, 8, 10, and 12 magnetic
cycles (where the field vanishes); the results are depicted in
Fig. 11. We began with the sixth magnetic cycle since for
all cases mentioned here the dynamics which continues to
the end starts by the end of the ramp, i.e., the fifth magnetic
cycle. Thus, through these plots we obtain an insight into
how such dynamics develops with time. On the other hand,
since the dynamics has been found to retain a part of its
sluggish motion when the field vanishes, we expect to see
such long-time signatures in these plots. As revealed by the
ρ at the end of the sixth magnetic cycle, a small amount
of density starts accumulating along both ρ̃ and z̃ at the
cost of a depletion zone near the nucleus. At the end of the

eighth magnetic cycle, this depletion zone expands due to
increased interelectronic repulsions and the density primarily
gets accumulated along ρ̃. This density accumulation increases
at the end of the tenth magnetic cycle and the depletion zone
advances along ρ̃, penetrating the positive ρ region. This
plot therefore indicates increased interelectronic repulsions
within such density accumulation, which tries to minimize its
interelectronic stresses by partial segregation along z̃. Such
a segregation pattern has already been seen in Fig. 2. Thus,
through such a spreading pattern, the electron density orients
itself in small pockets along the z̃ direction.

In order to check whether such dynamics continues until
the end of time evolution, we examine the difference densities
for the aforementioned magnetic fields at the ends of 44, 46,
48, and 50 magnetic cycles in Fig. 12. At the end of the
44th magnetic cycle, one sees a small density accumulation
along the z̃ direction instead of the ρ̃ direction. Along with
the fact that the negative ρ region is now more prominent
compared to those in Fig. 11, such lateral accumulation of
density implies an initiation of the “density flattening” clearly
visible for higher magnetic fields. At the end of the 46th
magnetic cycle, however, the density again builds up along
ρ̃ and starts augmenting the density in the z̃ direction through
two antennalike structures seen as a bridge between these two
regions. These antennas vanish at the end of the 48th cycle
where larger and denser accumulation of density is noticed in
both the ρ̃ and z̃ directions. Again, due to the pressure of the
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FIG. 8. Density variations (a.u.) for an observer at position B (ρ̃ = 1, z̃ = 0).

magnetic field these two positive ρ regions are seen to be
joined at the end of the 50th magnetic cycle, but at this time
the positive ρ region along ρ̃ shrinks because of the pressure
of the magnetic field, which has been relieved by supplying
density along the z̃ direction. Note that the negative ρ region
becomes more and more compact with time—an indication of
increased interelectronic repulsions.

In Fig. 13, we present the difference density plots at the
ends of 6, 8, 10, and 12 magnetic cycles for βmax = 1.0;
these plots are helpful in understanding the dynamics at the
“plastic limit”. At the end of the sixth magnetic cycle, one
sees a compact density buildup along ρ̃ while the positive
ρ region spreads along z̃ at the end of the eighth magnetic
cycle. Furthermore, this latter accumulation is segregated into
parts, confirming large interelectronic repulsions due to high
magnetic pressure. Also, note that the negative ρ region
has increased significantly in volume, which supports our
conclusion about increased repulsive interactions. However, at
the end of the tenth magnetic cycle, the density almost comes
back to its original shape, leaving a small residual part leaving
the z̃ direction, which is compensated through a large negative
ρ region. Thereafter, the density again starts deforming along
z̃, leading to a significant lateral (along z̃) density accumulation
at the end of the 12th magnetic cycle. Interestingly, there is
a small region of density buildup along z̃ on two sides of the
nucleus, which is the initiation of a new density accumulation
region. Clearly, at the end of the 12th magnetic cycle the

positive ρ region shows a significant expansion along ρ̃,
which is caused by the increased interelectronic repulsions that
the squeezed density has to suffer due to the magnetic field.

Figure 14 depicts ρ profiles for βmax = 1.0 at the end of
44, 46, 48, and 50 magnetic cycles. These plots complete the
picture of density motions over a range of time. As expected,
we notice that at the end of the 44th magnetic cycle the
electron density accumulates in pockets extending themselves
along ρ̃ due to increased interelectronic repulsion and kinetic
energy, as mentioned before. A large negative ρ region is
also formed, consistent with above explanations. However,
the density accumulates more along ρ̃ at the end of the 46th
magnetic cycle, making itself more vulnerable to magnetic
pressure in the next magnetic cycle. Therefore, at the end of the
48th magnetic cycle we notice a number of compact, positive
ρ regions at lower ρ̃, built by the interplay of magnetic
pressure and interelectronic repulsions. Such compactness,
in turn, is bound to increase the interelectronic repulsions
again, and at the end of the 50th magnetic cycle, the density
expands again towards ρ̃. It is noteworthy that a small density
accumulation region is visible at large ρ̃, which is evidence of
increased pressure along ρ̃ creating a pocket at that point.

From the above discussions it is clear that the electron
dynamics within a single magnetic cycle would elucidate
further details of the interaction. Since one magnetic cycle
contains two equivalent halves due to the sine-squared
potential, we have treated the dynamics of these two halves
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FIG. 9. Density variations (a.u.) for an observer at position C (ρ̃ = 3.0276, z̃ = 3).

separately and compared among themselves. For the present
case we have chosen the 21st magnetic cycle for βmax =
0.8 due to the fact that by this time the density is already
undergoing “plastic motion” while it is still not too far from
the initial state; this is helpful for comparing the phenomenon
with other cases already discussed before. For this purpose,
we have defined a new difference density

20ρ(r,t) = ρ(r,t) − ρ(r;t = 40π/ωB ), (27)

where ρ(r; t = 40π/ωB ) is the density after the completion
of 20 magnetic cycles. Therefore, this quantity indicates how
the electron density changes over one magnetic cycle with
respect to the previous cycle.

For the first half of the magnetic cycle, 20ρ(r,t) has been
calculated with a difference of t = π/4ωB and presented in
Fig. 15, left-bottom panel. The first plot indicates the situation
at half of the magnetic field buildup. The positive 20ρ region
indicates that as the magnetic field starts increasing density
begins to move along the z̃ direction, although an expansion
along ρ̃ is also visible. However, at the peak value (Fig. 15,
left-top panel) the expanded electron density is pressed enough
by the magnetic field to be deformed along the z̃ direction
leading to greater interelectronic repulsion. This repulsive
effect becomes operative once the magnetic field strength
starts decreasing and, halfway to attaining a zero value, it
again accumulates along ρ̃ (Fig. 15, top-right panel). Note

that this accumulation still has a pattern which is similar to
its previous distribution along the z̃ direction. Finally when
the field vanishes at exactly halfway into the magnetic cycle
(Fig. 15, bottom-right panel), the density starts expanding
along ρ̃ in order to minimize interelectronic repulsions; this
is also supported by the negative 20ρ region besides the
positive region near the nucleus. However, in the next half
when the magnetic field again builds up, the expanded density
is suppressed along ρ̃ (Fig. 16, left-bottom panel) which
resembles the situation of the top right panel of Fig. 16, where
the magnetic field strength is the same as in the present case.
On the other hand, when the magnetic field again attains its
peak value, the situation does not match the previous case
where the magnetic field attained its peak. The density is now
seen to be expanded along the ρ̃ axis due to interelectronic
repulsions (left-top panel, Fig. 16). This feature appears to
indicate that the electron density retains a memory of its
previous configurations because of interelectronic repulsions.
The situation of 20ρ halfway to attaining a zero magnetic field
at the end of the 21st magnetic field is depicted in the right-top
panel of Fig. 16. Since the magnetic field now decreases from
its peak value, the density expands along ρ̃, creating a depletion
region near nucleus. At the end (right bottom panel, Fig. 16),
when the field vanishes again, one finds a residual change in the
density distribution compared to the situation of the end of the
20th magnetic cycle. As expected, this density is now extended
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FIG. 10. Density variations (a.u.) for an observer at position D (ρ̃ = 3.0276, z̃ = −3).

freely towards ρ̃ in the absence of any magnetic pressure. This
analysis confirms that even after the field vanishes the density
does not come back to its initial shape and therefore retains a
memory which then accumulates over a few magnetic cycles,
thereby initiating a long-range dynamics.

Now, to understand how the system departs from the ground
state over time as the magnetic field increases, we evaluate the
autocorrelation function

C(t) = |〈�(t)|�(0)〉|2. (28)

Clearly, if C(t) remains near its t = 0 value of unity, the
system does not deviate significantly from its ground state
and the effect of the magnetic field provides simply a slight
perturbation. On the contrary, for cases where C(t) shows a
significant decay from unity as time progresses, the system
traverses more and more excited states. Figure 17 depicts the
C(t) plots for βmax = 0.2, 0.4, 0.6, 0.8, and 1.0. For βmax = 0.2,
C(t) remains close to 1 but oscillates with a slightly larger time
period than the magnetic field, the feature observed at 〈ρ̃〉(t)
(Fig. 1) for the same magnetic field. Therefore, the emergence
of a slightly slower dynamics due to the confrontation between
the magnetic pressure and the interelectronic repulsions is
also manifested here. It is also clear from this C(t) plot
that the external pressure due to the TD magnetic field is
not strong enough to deform the electron density permanently
and the “electron jelly” is still elastic. One can also note that
just as in Fig. 1, C(t) for βmax = 0.2 also shows a slight

bifurcation signature which is again amplified at βmax = 0.4.
The low-amplitude oscillation in the envelope of C(t) with a
longer time period confirms our previous analysis of Fig. 1.
A comparison between Figs. 1 and 17 also suggests that both
of these oscillations with shorter and longer time periods are
opposite in phase for 〈ρ̃〉(t) and C(t), which is consistent with
the above explanations.

For βmax = 0.6, the C(t) plot still remains close to 1 but
contains more and more inner structures. It is also noted that
the oscillation in the envelope is absent in this plot. While in
Fig. 1 we can see a clear contraction of electron density in
the ρ̃ direction, the present result indicates that the electron
density is still trying to regain its initial structure, with partial
success. However, it is clear from both Figs. 1 and 17 that
during the ramp, both 〈ρ̃〉(t) and C(t) for βmax = 0.6 resemble
their shapes at lower magnetic fields (i.e., βmax = 0.2 and
0.4), confirming that these effects gradually build up with
increasing magnetic fields. On the other hand, for βmax = 0.8,
C (t) drops significantly from unity near the end of the ramp
(40.96 a.u.) and continues to decrease until t � 50 a.u., where
it shows a small rise, but falls again until t � 125 a.u. (15th
magnetic cycle). After that it shows a broad archlike structure
until t � 245 a.u. (30th magnetic cycle) and continues with
an oscillatory nature until the 50th magnetic cycle. However,
later oscillations show smaller time periods compared with
those at earlier times. Along with this oscillatory nature the
envelope decays almost exponentially to zero. This decay in
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FIG. 11. Difference density (ρ) plots (a.u.) at the end of 6, 8, 10, and 12 magnetic cycles for βmax = 0.4. Note that there is no such case
where the density assumes its original shape. The inner and outer contour values are the same as in Fig. 2 for both positive and negative ρ.

the envelope indicates that the system leaves the ground state
almost entirely after some point of time while it keeps on
trying to come back. This feature indicates a process of “tug
of war” between two rival forces, viz., Coulomb attraction due
to the nucleus, which tries to maintain a cylindrical symmetry
of the electron density and the magnetic force that tries to
squeeze the electron density along the z̃ direction. Therefore,
our earlier conclusion drawn through the difference-density-
based analyses is confirmed. On the other hand, for βmax =
1.0, the oscillating feature of C(t) with a broad time period
is not prominent. Nevertheless, oscillations are observed with
smaller time periods. It is noteworthy that while, for βmax =
0.8, C(t) decays to zero, for βmax = 1.0, C(t) approaches zero
only around t � 350 a.u. (42nd magnetic cycle). Thus, C(t)
for βmax = 0.8 appears to indicate a resonance energy transfer
phenomenon as we reported for the H atom in TD magnetic
fields [16].

In order to understand this further, we additionally investi-
gate C(t) for two intermediate magnetic fields, viz., βmax = 0.7
and 0.9 along with a higher magnetic field, viz., βmax = 1.2.
Figure 18 shows these results. It can be seen that at βmax =
0.7 C(t) indeed starts decreasing significantly from 1 but it
stays near 0.4 without going down further or returning to 1.
After the ramp, C(t) starts showing indications of oscillation.
For βmax = 0.9, C(t) loses the broad oscillating structure of
βmax = 0.8 by and large while still containing a resemblance
of these oscillations. Moreover, C(t) for βmax = 0.9 does not
approach zero as frequently as in the βmax = 0.8 case. For

βmax = 1.2, on the other hand, the oscillating nature of C(t) can
still be seen; it always stays above zero and rarely goes below
0.2. Based on these features one can draw two conclusions: (i)
The oscillations of C(t) do not depend upon its overall decay
and the oscillation time periods become closer together as the
magnetic field increases. (ii) As the magnetic field increases,
the electron density first departs more and more from its ground
state, but then with increasing magnetic fields, the extent of
departure decreases. While the first conclusion implies that
with higher magnetic fields the dynamics becomes more and
more limited within a fewer states, transitions between them
cause more harmonic variations in C(t). Alternatively, one can
argue that, rather than populating fewer states, more and more
states stay at resonance, as in the case of the H atom. The
former reason appears more plausible than the latter since the
oscillation persists over a rather wide range of magnetic field
strengths to be a resonance phenomenon, and the regularity
builds up quite smoothly with increasing magnetic fields,
which is not a characteristic feature of resonance phenomena.
The second point suggests that with an increased magnetic
field the electron dynamics is restricted near its ground state.
This conclusion seems to be justified since the electron density
is reduced near ρ̃ = 0, and more and more density returns to the
vicinity of the nucleus, with the result that the t = 0 state gets
populated. These two explanations, taken together, imply that
with increased magnetic field, a substantial part of the electron
density remains close to the nucleus even for large magnetic
fields. In other words, the electron density becomes “stiff”
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FIG. 12. Difference density (ρ) plots (a.u.) at the end of 44, 46, 4 and 50 magnetic cycles for βmax = 0.4.The inner and outer contour
values are the same as in Fig. 2 for both positive and negative difference densities.

with an increase in magnetic field strength. These effects are a
mixed consequence of (a) an increased nuclear attraction on the
density as it returns closer to the nucleus, and (b) an available
space along the z̃ direction which can accommodate the
electron density but at the cost of diminished nuclear attraction.
Clearly, electron density occupies this space since it comes out
of the nuclear attraction through a confrontation between the
diamagnetic force and the interelectronic repulsive force.

Therefore, we perform a fast Fourier transformation on the
complex correlation function

C̃(t) = 〈ψ(t)|ψ(0)〉 (29)

for βmax = 0.2, 0.4, 0.6, 0.8, and 1.0, in order to obtain the
power spectra

C(ω) =
∣∣∣∣
∫

C̃(t) exp(−iωt)dt

∣∣∣∣
2

. (30)

The results are shown in Fig. 19. It has been observed
previously for He atom in intense laser fields that C(ω)
contains peaks which match well with several excited-state
energies of the atom [20,32,33]. While there is no rigorous
proof yet that for all cases such signatures can be seen or that
the peaks will correspond to pure states rather than dressed
states, we found that for βmax = 0.2, 0.4, and 0.6 we do not
see more than a single peak with no peak at ω � 0. For βmax =
0.2, the peak position is at ω = −0.8868 a.u., which shifts to
ω = −0.8149 a.u. for βmax = 0.4 and to ω = −0.7191 a.u. for

βmax = 0.6. It is observed that the energies of the 1S (1s2s) and
1P 0 (1s2p) states have energies −0.8384 a.u. and −0.8629
a.u., respectively, while there is no state which has energy
near −0.7191 a.u. Thus, the peaks at βmax = 0.4 and 0.6 are
relatively shifted from the 1P 0 and 1S states by almost the same
amount, i.e., 0.024 a.u. Clearly, for βmax = 0.2, the density
contains a significant contribution from the 1s2p configuration
while at βmax = 0.4 the dominant contribution is from 1s2s.
However, for βmax = 0.6, the peak corresponds to a dressed
state. Since compared to the βmax = 0.2 case the density is
more squeezed towards the nucleus at βmax = 0.4, the electron
density occupies the 1s2s configuration which is more compact
than 1s2p. The increased effect of magnetic fields at βmax =
0.6, therefore, changes the system itself to a quite different
system such that the major contribution now arises from a
dressed state rather than a shifted atomic state of the He atom.
For βmax = 0.8, one sees that the single peak is now split into
ten distinct peaks. The peak positions are recorded at −0.5512
a.u. (a), −0.8149 a.u. (b), −0.9827 a.u. (c), −1.0306 a.u. (d),
−1.1025 a.u. (e), −1.1504 a.u. (f), −1.2464, a.u. (g), −1.3183
a.u. (h), −1.3902 a.u. (i), and −1.4381 a.u. (j). Among them,
peaks (b) and (c) represent 1s2p (1P 0) and 1s4s (3S) states,
again shifted by −0.0239 a.u. The other peaks do not match
any other unperturbed state of He. For βmax = 1.0, again ten
peaks appear with energies −0.7669 a.u. (a), −0.8149 a.u. (b),
−0.9827 a.u. (c), −1.1025a.u. (d), −1.1744 a.u. (e), −1.2463
a.u. (f), −1.2943 a.u. (g), −1.3662 a.u. (h), −1.4141a.u. (i),
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FIG. 13. Difference density (ρ) plots (a.u.) at the end of 6, 8, 10, and 12 magnetic cycles for βmax = 1.0. Note the positive ρ pocket as
a consequence of electronic repulsions. The inner and outer contour values are the same as in Fig. 2 for both positive and negative ρ.
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FIG. 14. Difference density (ρ) plots (a.u.) at the end of 44, 46, 48, and 50 magnetic cycles for βmax = 1.0. The number of positive
difference density pockets has increased, showing their own dynamics.
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FIG. 15. The difference density (20ρ), defined by Eq. (27) in a.u., at the 21st magnetic cycle for βmax = 0.8. The sequence of snapshots
is from bottom left clockwise to bottom right, where the field vanishes.
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Eq. (28) for βmax = 0.2, 0.4, 0.6, 0.8, and 1.0 from bottom to top.
Notice the change of structure, from βmax = 0.6 to βmax = 0.8, as in
Fig. 1.

and −1.4620 a.u. (j). We can again identify (b) and (c) as
1s2p and 1s4s states, while others remain unidentified and
correspond to dressed states. However, it is observed that the
(a) peaks of these two cases, are shifted from each other by
−0.2157 a.u. while there is no shift for (b) and (c), a shift of
−0.959 a.u. for (d), a common −0.0479 a.u. shift for (e) and
(f), and a common −0.0239 a.u. shift for (g) and (h) for the two
magnetic fields concerned. Further investigations are required
to understand such shifts.

All the above discussions assumed the z̃ parity of the
electron density throughout. Consequently, throughout the
time evolution no significant electrical dipole moment (a
measure of z̃ asymmetry) should be seen. For all the cases
dealt with in this paper, the electric dipole moments are seen
to be �10−3 and fluctuate randomly over time around zero.
Although the magnitudes of such fluctuations increase from
10−5 upwards with increasing magnitudes of the magnetic
fields, we attribute these fluctuations to numerical inaccuracies
rather than a physical phenomenon for the following reasons:

With an increase in magnetic field strength, numerical
errors occur near grid boundaries since the magnetic field
spreads the electron density in the z̃ direction. A small error
δ in the density at a single point near a grid boundary causes
an electric dipole moment of δ multiplied by the distances
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FIG. 18. C(t) plots (a.u.) for βmax = 0.7, 0.9, and 1.2. The gradual
changes in features are now seen clearly and hence these plots bridge
the transition noted in Fig. 17 (see text).

between the two z̃ boundaries, i.e., 10δ in the present case.
Due to our quadratically scaled ρ̃ axis, most of the z̃ boundary
grid points are close to the nucleus, which might magnify
the errors. With an increase of βmax, more and more density
accumulates near the nucleus, which increases this dipole
moment further. However, had the electric dipole moment
been a physical phenomenon it would not show a random
time structure which does not follow the magnetic field time
structure at all. Moreover, in the presence of such a physical
electric dipole moment, the presence of m�0 states in the
time-evolved density cannot be ruled out, which would nullify
our analyses in the previous section, and the DC equation in
this present form itself would not be valid. In view of the
internal consistency of our analysis we can conclude that the z̃

parity of the system is retained over the entire time evolution.

IV. CONCLUSION

In the present work, we have demonstrated that the electron
density of a He atom interacting with strong, oscillating mag-
netic fields responds through a sluggish dynamics. Sluggish
dynamics was also observed in the case of the H atom [16].
In the case of the H atom, the electron dynamics was a
consequence of a confrontation between the nuclear field
and the magnetic field. However, in the case of the He

042516-16



ELECTRON DYNAMICS OF A He ATOM IN STRONG, . . . PHYSICAL REVIEW A 89, 042516 (2014)

0

 0.25

 0.5

-2 -1.5 -1 -0.5 0  0.5 1  1.5 2

C
 (ω

) 
(a

.u
.)

ω (a.u.)

βmax = 0.2

0

 0.25

 0.5

C
 (ω

) 
(a

.u
.)

βmax = 0.4

0

 0.25

 0.5

C
 (ω

) 
(a

.u
.)

βmax = 0.6

0

 0.02

 0.04

C
 (ω

) 
(a

.u
.)

βmax = 0.8

0

 0.02

 0.04
C

 (ω
) 

(a
.u

.)
βmax = 1.0

FIG. 19. C(ω) plots (a.u.) corresponding to the C(t) plots of
Fig. 17. These plots also show a paradigm shift above βmax = 0.6
(see text).

atom, the presence of an additional electron ensures that such
dynamics occurs due to a triangular confrontation between
interelectronic repulsions, the nuclear field, and the magnetic
field, leading to rich features in the density variations as
discussed in detail in the text. In particular, this triangular
confrontation leads to a spread in the electron density along a
direction perpendicular to that of the magnetic field. At first
sight, this might appear counterintuitive, but actually it is not.
Second, unlike for the H atom, there is now a threshold value
of the magnetic field for the electron density to change over
smoothly from an “elastic flow” to a “plastic flow” at higher
magnetic fields. This is because, as we observe in this work,
under strong, TD magnetic fields the electron density behaves
either like an “elastic” or a “plastic ball of jelly” depending
upon the magnetic field strength.

The interelectronic repulsions’ (a combination of Coulomb,
exchange, and correlation terms) nonlinear dependence on the
magnetic field strength plays a significant role in deciding
where in space the electron density should be augmented
and where it should be depleted. Such density distributions
tend to minimize interelectronic stresses. In particular, the TD
correlation “energy”, a significant part of the interelectronic
repulsions, decreases at higher magnetic fields as the electron
density begins its plastic flow. Interestingly, at higher magnetic
fields, the electron density responds differently to the two
halves of a magnetic cycle, leading to prominent bifurcations in
the density oscillations. Note that the interelectronic repulsion
terms’ dependence on the magnetic field strength occurs
through their dependence on the electron density which itself
depends on the magnetic field. Needless to say, the present
strong-field results cannot be explained by a perturbative
approach in which the perturbation is much smaller compared
to the unperturbed Hamiltonian.

Although, in the present study, we did not find any indi-
cation of ionization due to magnetic fields, further studies on
different atoms or molecules under wider ranges of magnetic
field strengths would be of interest. While we did not study
the effects of the magnetic field frequencies on the dynamics,
such studies should also form a subject of future interest.
The present study also suggests that, for certain parameters, a
resonance-type phenomenon may be operative between the He
atom and the magnetic fields, as occurs with the H atom [16].
A detailed identification of unperturbed, Zeeman-shifted, and
dressed states would help to provide more insights into the
nature of such interactions.

Finally, it is worthwhile to note that a completely general
treatment of the present TD problem, valid for all states
of known space-spin symmetries, in terms of either the
many-electron TD wave function or the two-electron TD
reduced density matrix, would be very complicated and may
no longer remain transparent to physical interpretation, unlike
the present treatment. Additionally, the density matrix would
suffer from the intractable N -representability problem besides
severe computational difficulties. The density-functional ap-
proach, as described in the present work, offers a simple,
accurate and physically transparent alternative.
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