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The E2 and M1 transition rates among the lowest five states ([4So
3/2]′,[2Do

5/2]′,[2Do
3/2]′,[2P o

3/2]′,[2P o
1/2]′), i.e., the

[2Do
5/2,3/2]′ → [4So

3/2]′ and [2P o
3/2,1/2]′ → [4So

3/2]′ transitions, in the 2p3 configuration of a nitrogenlike isoelectronic
sequence (from Z = 7 to Z = 79) are calculated by using a large-scale multiconfiguration Dirac-Fock method.
The scaling laws of the excitation energies, fine-structure splittings, forbidden transition rates, line strengths,
and ratios of line intensities varying with Z are investigated. The underlying physical mechanism leading to the
change of the scaling laws from low Z to high Z are discussed. The calculated transition probabilities and scaling
laws are expected to be useful for astrophysical and plasma physical applications.
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I. INTRODUCTION

The transitions [2Do
5/2,3/2]′ → [4So

3/2]′ and [2P o
3/2,1/2]′ →

[4So
3/2]′ in the 2p3 configuration for a nitrogenlike isoelectronic

sequence are forbidden for electric dipole (E1) radiation
because of the same odd parity of the initial and final states,
but they are allowed for electric quadrupole (E2) and magnetic
dipole (M1) radiations. Here [4So

3/2]′,[2Do
5/2]′,[2Do

3/2]′,[2P o
3/2]′,

and [2P o
1/2]′ represent the five lowest states of the 2p3

configuration, for which LS coupling is appropriate at low
Z while jj coupling is appropriate at high Z. The accurate
atomic data, e.g., the energy levels and transition probabilities,
of the nitrogenlike isoelectronic sequence play an important
role in astrophysical and plasma physics [1,2]. For example, in
planetary nebulas (PNs), the ratio of forbidden line intensities
of [2Do

5/2,3/2]′ → [4So
3/2]′ transitions provides much valuable

astrophysical information for density diagnostics when good
observation is combined with high-quality atomic data [1].
The forbidden lines of Mg5+, Si7+, and S9+ can be used to
diagnose the electron densities in the inner corona [3]; the
forbidden lines of higher ionized atoms, such as Ti15+ and
Fe19+, are very useful for fusion plasma diagnostics [4].

Since it is difficult to experimentally provide the atomic
data for these forbidden line intensities of the isoelectronic
sequence in a terrestrial laboratory, a great deal of theoretical
efforts have been devoted to provide the atomic data. For
example, Zeippen [5] calculated transition probabilities for
all forbidden lines in the 2p3 configuration from Z = 7 to
Z = 26 for the nitrogenlike isoelectronic sequence by using
the SUPERSTRUCTURE code [6] with a Breit-Pauli relativistic
correction to the nonrelativistic Hamiltonian. This work made
an improvement in the astrophysically needed atomic data
through a set of more expanded orbital bases up to 4s as well as
improved electron correlations, excitation energy corrections,
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and corrections to the magnetic dipole operators compared
with previous works [7–12]. Then, following the development
of the computational resources, Fischer and Tachiev [13]
reported their calculated forbidden line intensities for the
same isoelectron sequence from Z = 7 to Z = 11 by using
the multiconfiguration Hartree-Fock (MCHF) method [14]
with relativistic effects included through the Breit-Pauli (BP)
Hamiltonian based on orbital bases up to 7g. Recently, Wang
et al. [15] calculated the energy levels of the 2p3 configuration
along the sequence from Z = 7 to Z = 100 with a fully
relativistic multiconfiguration Dirac-Fock (MCDF) method
based on a set of orbital bases up to n = 7. Chen et al. [16]
and Han et al. [17] reported the ratio of [2Do

5/2,3/2]′ → [4So
3/2]′

transitions for O II by using a large-scale fully relativistic
MCDF method including the quantum electrodynamic (QED)
corrections as perturbations based on the orbital bases up to
n = 7 and n = 9, respectively. Particularly, the calculations of
Ref. [17] take into account large-scale electron correlations (in-
cluding the valence- and core-excitation correlations) within
the “quasicomplete” basis scenario; thus the convergence
happens in a systematical and uniform manner, and a better
convergence is achieved.

Motivated, on the one hand, by the application requirement
for updating atomic data, in this work, we calculate the
E2 and M1 transition rates of [2Do

5/2,3/2]′ → [4So
3/2]′ and

[2P o
3/2,1/2]′ → [4So

3/2]′ transitions of a N-like isoelectronic
sequence from Z = 7 to Z = 79 by using a large-scale fully
relativistic MCDF method based on a set of quasicomplete
bases. On the other hand, we note that previous works [15,18–
20], which investigated the dependence of the relativistic effect
of the isoelectronic sequence on Z, mainly focused on the
energy levels. However, for a many-electron atomic system,
especially for a forbidden transition within the same configura-
tion, the dependence of the transition probabilities on Z has not
been well known in a quantitative way up to now. In this work,
based on our systematically convergent calculation results, the
scaling laws of the transition energies, fine-structure energy
splittings, and forbidden E2 and M1 transition rates of the
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[2Do
5/2,3/2]′ → [4So

3/2]′ and [2P o
3/2,1/2]′ → [4So

3/2]′ transitions
are determined. Along with the evolution of the above physical
quantities with Z, some interesting features, e.g., the change
in the scaling law, are found. In general, these features reflect
the competitions between the spin-orbit interactions and the
electron-electron interactions.

II. THEORETICAL METHOD

Since detailed descriptions of the MCDF method have
been presented elsewhere [21–25], a brief outline will be
given here. The interactions in a many-electron atomic system
can be separated into two types: longitudinal and transverse
interactions. In the Coulomb gauge, the atomic Hamiltonian
with only the longitudinal electron-nucleus and electron-
electron interactions can be expressed as (atomic units are
used throughout the paper if not otherwise specified)

HDC =
∑

i

[
c�α · �pi + (β + 1)c2 − Z

ri

]
+

∑
i<j

1

�ri − �rj

. (1)

The transverse interactions and the interactions with radiation
fields are treated as perturbations. Based on the Dirac-
Coulomb Hamiltonian given in Eq. (1), the atomic state
functions (ASFs), |�PJM〉, can be calculated by solving the
following equation:

HDC |�PJM〉 = E�|�PJM〉, (2)

where P is the parity and J and M are the total angular
momentum and magnetic quantum number, respectively.
� denotes the �th atomic eigenstate function. The ASFs
are N -electron eigenstate wave functions, which are linear
combinations of configuration state functions (CSFs) with the
same P , J , and M , namely,

|�PJM〉 =
nc∑

r=1

Cr�|γrPJM〉, (3)

where Cr� is the expansion coefficient and γr represents all
other information to define the CSF uniquely. The CSFs,
|γrPJM〉, which form a quasicomplete basis set for an
N -electron atomic system in Hilbert space, are linear combi-
nations of Slater determinants of atomic orbital wave functions
(AOs). By applying the variational method to solve Eq. (2),
we can obtain the mixing coefficients Cr� as well as the
AOs self-consistently. The quality of the AOs is extremely
crucial to the final extensive configuration interaction (CI)
calculations. Many works have illustrated procedures to obtain
a set of AO bases, such as the single-configuration Dirac-Fock
method [26], the B-spline method [27], and the MCDF
method [28–35]. The MCDF method was proved to be a very
powerful one. Many computer packages are developed to carry
out MCDF calculations. GRASP92 [21] and an updated version,
GRASP2K [22], are the most successful ones.

On the other hand, it is known that performing the MCDF
calculation is not a straightforward procedure using the
GRASP codes. For example, the configurations adopted in the
calculations must be judiciously chosen. We have investigated
how to guarantee the convergence of the multiconfiguration
self-consistent-field (MCSCF) calculations systematically by
using the quasicomplete basis scenario [36]. In brief, we call

the basis which satisfies the desired accuracy of calculations a
quasicomplete basis, which consists of spectroscopic orbitals
(with n − l − 1 nodes) and pseudo-orbitals (without fixed
nodes). Based on the GRASP2K codes, we developed the GRASP-
JT edition to implement our calculation scenario automati-
cally. Some auxiliary programs are developed to streamline
the whole calculation. In order to guarantee the properties
required by our quasicomplete basis definitions, the specific
configurations used in the optimization processes of the
spectroscopic orbitals and pseudo-orbitals are generated based
on our previous MCDF calculation experience implemented
in various atomic systems [17,36–40]. More specifically,
the construction of our calculations can be divided into the
following three main steps. The first step is to prepare the
spectroscopy orbitals by optimizing the main physical states.
The spectroscopic orbitals are used to represent the main
physical states, whose quantum defects should have channel
properties according to the quantum defect theory; that is, the
quantum defects of the orbitals in an eigenchannel should be
a smooth function of the excitation energy. To achieve this,
the quantum defects of these orbitals are extracted from the
calculations and are used as an important criterion for the
convergence. The configurations for the N -electron system
used to obtain the spectroscopy orbitals are generated by a
single excitation from the key configurations. The second step
is to prepare the pseudo-orbitals based on the fixed spectro-
scopic orbitals. Note that the character of the spectroscopy
orbitals influences the optimization of the pseudo-orbitals.
The pseudo-orbitals are used to deal with the important
electron correlations, involving the monopole, dipole, and
some quadrupole dynamical correlations. The effects of the
limited pseudo-orbitals in the CI calculation are very close to
the full CI result using the infinite configurations of the whole
Hilbert space. Therefore the pseudo-orbitals can be viewed as
a specific linear combination of infinite-bound-type Rydberg
orbitals and continuum orbitals. To avoid the failure of the
self-consistency optimization procedure, the configurations
in the optimization are chosen according to the multipole
expansion of 1/r12, i.e., monopole, dipole, and so on. More
specifically, the configurations adopted in the former step are
taken as reference configurations here. Given the information
about the active electrons as an input, an analysis of these
reference configurations is carried out in order to generate all
of the monopole and dipole polarization of the active electrons.
Note that, from the definition of the MCSCF calculation, our
pseudo-orbital bases are a subset of the correlation orbitals
in Refs. [28–35], which are obtained by choosing more
configurations in the optimization. Finally, the third step is
a large-scale CI calculation, i.e., calculating the energy levels
and transition probabilities based on the quasicomplete bases
using the same RCI program as in the GRASP2K codes. The
configurations adopted are generated by the single, double, and
some higher excitations from the key configurations in the first
step, through which all of the monopole, dipole, and important
quadrupole polarization correlations can be considered. By
using our GRASP-JT codes, it may be easier to get a systematical
convergence for the atomic structure calculations, especially
for the present case of forbidden transition rate calculations.
For example, the convergence of Chen’s calculation [16] for
the forbidden transitions of O II using the GRASP2K codes is

042514-2



SCALING LAW FOR TRANSITION PROBABILITIES IN 2 . . . PHYSICAL REVIEW A 89, 042514 (2014)

TABLE I. The transformation matrix between the two sets of CSFs arising from the 2p3 configuration by LS coupling and jj coupling [43].

CSF(A)
{LSj} :4 So

3/2 CSF(B)
{LSj} :2 Do

5/2 CSF(C)
{LSj} :2 Do

3/2 CSF(D)
{LSj} :2 P o

3/2 CSF(E)
{LSj} :2 P o

1/2

CSF(a)
{jj} : [(2p2

1/2)0(2p1
3/2)3/2]J π = 3/2o

√
2/3 0 −√

5/18 1/
√

2 0

CSF(b)
{jj} : [(2p1

1/2)1/2(2p2
3/2)2]J π = 5/2o 0 1 0 0 0

CSF(c)
{jj} : [(2p1

1/2)1/2(2p2
3/2)2]J π = 3/2o

√
5/3 0 2/3 0 0

CSF(d)
{jj} : [(2p3

3/2)3/2]J π = 3/2o −√
2/3 0

√
5/18 1/

√
2 0

CSF(e)
{jj} : [(2p1

1/2)1/2(2p2
3/2)0]J π = 1/2o 0 0 0 0 1

not in a uniform manner. However, our previous calculations
of O II [17] using the GRASP-JT codes surpass the precision of
Chen’s, and the convergent behavior is in a uniform manner.

In this work we implement the quasicomplete basis scenario
to calculate all the relevant AO bases. More specifically,
the AOs with principal quantum numbers n = 1,2 are op-
timized together by MCSCF iterations to minimize the
statistic weight summation F of the lowest five energy levels
([4So

3/2]′,[2Do
5/2,3/2]′,[2P o

3/2,1/2]′) of the 2p3 configuration. Here
the multiconfigurations are generated by single (S) and double
(D) electron excitations from the reference configuration
1s22s22p3. The AOs with n = 1,2 are spectroscopic orbital
bases. The AOs with n = 1,2 are fixed, and the AOs with
n = 3 are obtained by MCSCF iterations to optimize the same
F , where the configurations are generated by S and D electron
excitations from the reference configurations 2p3 and 2p23p

to all the AOs with n = 2,3 and l = 0, . . . ,n − 1 (namely, the
occupation number of the 1s orbital of all the configurations is
fixed to be 2). In succession, once the AOs (n � 3) are fixed,
the AOs are extended to nmax from n to n + 1 by optimizing
F with the multiconfigurations generated by S and D electron
excitations from the reference configurations 2p3 and 2p23p to
the AOs with n = 2, . . . ,nmax and l = 0, . . . ,min(nmax − 1,7).
None of the nodes of AOs with n � 3 are fixed, and they are
expected to be pseudostate orbitals. We note that for higher Z,
the calculation results converge faster; namely, for higher Z a
smaller nmax can guarantee the convergence of the calculations.
Thus for Z � 10 we adopt nmax = 9, while for Z > 10 we
adopt nmax = 7.

Based on the AOs, all sorts of physical values are calculated
with the CI method, including the S and D electron excitation
configurations from the reference configuration 1s22s22p3,
which means the core (1s2) and valence (2s22p3) are all

relaxed. So the valence- and core-excitation correlations are
all taken into account, which is important for convergence.
The QED corrections, especially the Breit interaction, are
added to the atomic Hamiltonian as a perturbation in the
CI calculations. The Breit interaction is the most important
high-order correction not only for the energy levels but also
for the transition rates. The Breit (transverse) interaction
represents the relativistic retardation effect of electromagnetic
interactions with the finite velocity of light [41,42], especially
the retarded magnetic interactions among the electron cur-
rents [26]. In our calculations the results considering the Breit
interaction and the other QED effects are nearly equal to the
results considering only the Breit interaction, and generally,
their difference is only about one in a thousand or even less;
thus in the following we present only the calculation results
considering the Breit interaction.

III. RESULTS AND DISCUSSIONS

Table I shows the transformation matrix between the two
sets of CSFs arising from the 2p3 configuration by LS coupling
and jj coupling [43]. Table II shows our calculated square of
the expansion coefficients Cr� based on these two sets of CSFs
for the lowest five states of the 2p3 configuration for the N atom
and Au72+ ion. It can be seen that for the N atom the mixing
among the set of CSF{LSj} is weak and that the LS coupling is a
good coupling scheme since the electron-electron interactions
are dominant at low Z, while for the Au72+ ion the mixing in
the set of CSF{jj} is weak and the jj coupling is an appropriate
choice since the relativistic effects are dominant at high Z. The
competition between the relativistic effects, mainly the spin-
orbit interactions, and the electron-electron interactions leads
to some interesting changes in the dependence of the energy

TABLE II. The square of expansion coefficients for the lowest five levels in 2p3 configurations for the N atom and Au72+ ion expanded by
CSF{jj} and CSF{LSj} (listed in Table I).

State CSF(a)
{jj} CSF(b)

{jj} CSF(c)
{jj} CSF(d)

{jj} CSF(e)
{jj} Others CSF(A)

{LSj} CSF(B)
{LSj} CSF(C)

{LSj} CSF(D)
{LSj} CSF(E)

{LSj} Others

N [4So
3/2]′ 0.2154 0.5339 0.2117 0.0390 0.9610 0.0390

[2Do
5/2]′ 0.9583 0.0417 0.9583 0.0417

[2Do
3/2]′ 0.2731 0.4259 0.2593 0.0417 0.9582 0.0418

[2P o
3/2]′ 0.4585 0.4759 0.0656 0.9344 0.0656

[2P o
1/2]′ 0.9345 0.0655 0.9345 0.0655

Au72+ [4So
3/2]′ 0.9994 0.0006 0.2347 0.2742 0.4908 0.0004

[2Do
5/2]′ 0.9998 0.0002 0.9998 0.0002

[2Do
3/2]′ 0.9996 0.0002 0.5547 0.4449 0.0004

[2P o
3/2]′ 0.9939 0.0061 0.2097 0.2797 0.5047 0.0059

[2P o
1/2]′ 0.9994 0.0006 0.9994 0.0006
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FIG. 1. (Color online) The scaling law of the energy difference
for a N-like isoelectronic sequence. (a) For the [2Do

5/2]′ → [4So
3/2]′

transition. (b) For the [2Do
3/2]′ → [4So

3/2]′ transition. (c) For the
[2P o

3/2]′ → [4So
3/2]′ transition. (d) For the [2P o

1/2]′ → [4So
3/2]′ transition.

levels and transition probabilities on Z, which are investigated
in the following.

Scaling law for energy. Figure 1 shows the excitation
energies of the four excited states [2Do

5/2,3/2]′ and [2P o
3/2,1/2]′

relative to the lowest state [4So
3/2]′ of the 2p3 configuration

from Z = 7 to Z = 79. It is easy to see that the excitation
energies can be divided into roughly two parts, and each part
has a different scaling law.

More specifically, in the high-Z region (roughly corre-
sponding to Z > 28), the excitation energy can be scaled by
ZQ3, where Q = Z − 6 is the effective nuclear charge number
which makes Q equal to unity for a neutral N atom. In this
high-Z region, the relativistic effects, mainly the spin-orbit
interactions ( α2Z

2
l·s
r3 , where α is the fine-structure constant), are

dominant compared with the electron-electron interactions;
thus the energy difference of 2p1/2 and 2p3/2 is proportional
to ZQ3, where the relation r ∝ Q−1 [44] is used. Therefore
the excitation energy of the four excited states [2Do

5/2,3/2]′

and [2P o
3/2,1/2]′ is proportional to �qZQ3, where �q is the

excited electron number from 2p1/2 to 2p3/2 orbitals in the
chief CSF{jj} for the four excited states compared with the
ground state. Note that the excitation energies of [2Do

5/2,3/2]′

and [2P o
1/2]′ states are half of those of the [2P o

3/2]′ state at the
same Z. The reason for the double relation is that �q for
[2Do

5/2,3/2]′ and [2P o
1/2]′ states are all 1, while �q for [2P o

3/2]′
state is 2, as shown through the combination of Tables I and II.

In Fig. 1, in the low-Z region (roughly corresponding to
Z < 28) the excitation energy is scaled by Q. This is due to
the dominant electron-electron interactions. We can estimate
that at Z = 28, the electron-electron interactions (described
by 1/r12 and scaled by Q) ∼Q (≈22) are larger than the
spin-orbit interactions ∼ZQ3α−2 (≈16). With decreasing Z,
ZQ3α−2 decreases faster than Q. Thus in the low-Z region the
excitation energy follows the scaling law of Q. From the high-
Z region to the low-Z region, the change of the scaling law for
excitation energy illustrates the competition between the spin-

×10−6

×10−2

FIG. 2. (Color online) The scaling law of the fine-structure en-
ergy splittings in the high-Z region for [2Do

5/2,3/2]′ and [2P o
3/2,1/2]′

states.

orbit interactions and the electron-electron interactions. At the
lower Z, e.g., corresponding to Z < 13, the electron-electron
interactions become more complicated; therefore the scaling
law deviates Q and approaches Q0.6.

Figure 2 shows the fine-structure splittings of [2Do
5/2,3/2]′

and [2P o
3/2,1/2]′ states. From Tables I and II, we can see that

the difference of the chief CSF{jj} for [2Do
5/2]′ and [2Do

3/2]′
states is only the coupling coefficient between the 2p1/2 and
2p3/2 orbitals. The different coupling coefficient reflects the
different space distances between the electrons in the 2p1/2

and 2p3/2 orbitals, which means the different electron-electron
interactions. Thus the splitting of [2Do

5/2,3/2]′ is scaled by Q in
the high-Z region. For [2P o

3/2]′ and [2P o
1/2]′ states, the dominant

difference of the chief CSF{jj} is the occupation number of the
2p1/2 and 2p3/2 orbitals; thus their splitting is scaled by ZQ3

in the high-Z region. In the low-Z region, the fine-structure
splittings are small and sensitive to the subtle competition
between the Breit and spin-orbit interactions and are difficult
to scale by a simple analytical law.

For [2Do
5/2,3/2]′ states, our calculated fine-structure split-

tings at Z = 7–26 agree with the experimental values [45]
within a few percent. In general, our theoretical results agree
better with the experimental measurements than the theoretical
results of Ref. [5] and agree with the theoretical results of
Ref. [13] within 4% except for Na4+, which is within ∼9%. For
[2P o

3/2,1/2]′ states, our calculated fine-structure splittings agree
with the experimental values [45] by about 2% for Z = 13–26.
For Z < 13, since the absolute values of the splittings are
tiny (∼10−6), the convergence is difficult, and our theoretical
results differ from the experimental values by several tens of
percent. The theoretical results of Ref. [5] and our theoretical
results are in an agreement within 7% for Z = 11–26, while for
Z = 7–10 the difference is from 20% to 80%. For Z = 7–10
our results differ from the results of Ref. [13] by magnitude,
while for Z = 11 the two theoretical results agree within about
2%.

Scaling law for transition rate and line strength. Table III
shows the scaling law for the electric (Eλ) and magnetic
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TABLE III. The scaling law for the excitation energy, the multipole (λ) transition rate, and the corresponding line strength S.

Multipole fields Coupling Transition ratea Scaling law for �E Scaling law for rate Scaling law for S

Electric multipole (λ) Charge coupling ∝�E2λ+1(rλ)2 ∝ZQ3 (for high Z) ∝Z2λ+1Q4λ+3 ∝Q−2λ

(major) ∝Q (for low Z) ∝Q ∝Q−2λ

Magnetic momentum ∝�E2λ+1(rλ�E)2 ∝ZQ3 (for high Z) ∝Z2λ+3Q4λ+9 ∝Z2Q−2λ+6

coupling (minor) ∝Q (for low Z) ∝Q3 ∝Q−2λ+2

Magnetic multipole (λ) Magnetic momentum ∝�E2λ+1(rλ−1)2 ∝ZQ3 (for high Z) ∝Z2λ+1Q4λ+5 ∝Q−2λ+2

coupling (major) ∝Q (for low Z) ∝Q3 ∝Q−2λ+2

Charge coupling ∝�E2λ+1(rλ+1�E)2 ∝ZQ3 (for high Z) ∝Z2λ+3Q4λ+7 ∝Z2Q−2λ+4

(minor) ∝Q (for low Z) ∝Q ∝Q−2λ

aReaders can consult Ref. [46] for details, and a concise description is given in the Appendix.

(Mλ) multipole transition rates derived from the nonrelativistic
Hamiltonian in a single-particle model approximation, as
shown in detail in Ref. [46]; a concise description is given
in the Appendix. Here the scaling law of excitation energy
�E is from Fig. 1.

For E2 (λ = 2) and M1 (λ = 1) transitions, the relation
between the rate Aij (in s−1 unit) and line strength Sij is given
by [5]

Aij (E2) = 2.6733 × 103 × (Ei − Ej )5 1

gi

SE2
ij , (4)

Aij (M1) = 3.5644 × 104 × (Ei − Ej )3 1

gi

SM1
ij , (5)

where gi is the statistical weight of level i. The energy is
in Rydberg units, and length is in units of the Bohr radii a0.
Figure 3 shows our calculated E2 and M1 forbidden transition
rates of the [2Do

5/2,3/2]′ → [4So
3/2]′ and [2P o

3/2,1/2]′ → [4So
3/2]′

transitions. The scaling law for the forbidden transition rates
and S are summarized from Fig. 3 and are listed in Table IV.
Comparing the scaling laws in Table IV and the regular ones
in Table III, many differences exist, especially in the low-Z
region and for the two-electron transition, [2P o

3/2]′ → [4So
3/2]′,

in the high-Z region. In the following, we will discuss the
irregular scaling law in detail.

FIG. 3. (Color online) Our calculated E2 and M1 transition rates
for the [2Do

5/2,3/2]′ → [4So
3/2]′ and [2P o

3/2,1/2]′ → [4So
3/2]′ transitions

varying with Z.

E2 transition. Figure 4 shows the electric quadrupole E2
transition rates and line strengths SE2

ij for the [2Do
5/2,3/2]′ →

[4So
3/2]′ and [2P o

3/2,1/2]′ → [4So
3/2]′ transitions varying with Z.

In the high-Z region, where jj coupling is appropriate, for the
single-electron transitions (by comparing the chief CSF{jj} of
the upper and lower states), including [2Do

5/2,3/2]′ → [4So
3/2]

and [2P o
1/2]′ → [4So

3/2]′ transitions, the scaling laws of the
rate and S agree with the corresponding scaling laws listed
in Table III with λ = 2. For the two-electron transition,
[2P o

3/2]′ → [4So
3/2]′ (by comparing their chief CSF{jj}), the

scaling law for S is Z−2Q−8, which totally deviates from
the regular scaling law of Q−4 listed in Table III with
λ = 2. To understand this irregular scaling law we start
from the transition matrix element with the final-state wave
function expanded within the framework of perturbation
theory,

〈ψi |O|ψf 〉 = 〈ψi |O
∣∣ψ (0)

f

〉 + 〈ψi |O
∣∣ψ (1)

f

〉 + 〈ψi |O
∣∣ψ (2)

f

〉
= 〈ψi |O

∣∣ψ (0)
f

〉 + ∑
n�=f

H ′
nf(

E
(0)
f − E

(0)
n

) 〈ψi |O
∣∣ψ (0)

n

〉

+
∑
m�=f

[ ∑
n�=f

H ′
mnH

′
nf(

E
(0)
f − E

(0)
m

)(
E

(0)
f − E

(0)
n

)
− H ′

mf H ′
ff(

E
(0)
f − E

(0)
m

)2

]
〈ψi |O

∣∣ψ (0)
m

〉 + high orders,

(6)

where |ψ (0)
f 〉, |ψ (1)

f 〉, and |ψ (2)
f 〉 are the zero-order, first-order

perturbation, and second-order perturbation wave functions,
respectively. H ′

mn is the perturbation interaction matrix el-
ement. O is the interaction operator. The first term of
Eq. (6) is the zero-order contribution; the second and third
terms are the first-order and second-order perturbation con-
tributions, respectively. Since [2P o

3/2]′ → [4So
3/2]′ is a two-

electron transition, the transition matrix element between
the zero-order wave functions is forbidden, and the main
contribution of the transition matrix element should arise from
the first-order perturbation part, i.e.,

H ′
nf

(E(0)
f −E

(0)
n )

〈ψi |r2|ψ (0)
n 〉.

Here H ′
nf is the electron-electron interaction matrix element

and is scaled by Q. (E(0)
f − E(0)

n ) is the energy differ-
ence based on the zero-order wave function and scaled
by ZQ3. Therefore the transition matrix element can be
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TABLE IV. The scaling law for the electric quadrupole E2 and magnetic dipole M1 transition rate and the line strength S summarized
from Figs. 4 and 5.

Transition Multipole Rate of high Z S of high Z Rate of low Z S of low Z

[2Do
5/2]′ → [4So

3/2]′ E2(λ = 2) ∝Z5Q11 ∝Q−4 ∝Z2Q5 ∝Z2a

[2Do
3/2]′ → [4So

3/2]′ E2(λ = 2) ∝Z5Q11 ∝Q−4 ∝Z2Q5 ∝Z2

[2P o
3/2]′ → [4So

3/2]′ E2(λ = 2) ∝Z3Q7 ∝Z−2Q−8b ∝Z2Q7 ∝Z2Q2c

[2P o
1/2]′ → [4So

3/2]′ E2(λ = 2) ∝Z5Q11 ∝Q−4 ∝Z2Q7 ∝Z2Q2

[2Do
5/2]′ → [4So

3/2]′ M1(λ = 1) ∝Z3Q9 ∝Q0 ∝Z4Q9 ∝Z4Q6d

[2Do
3/2]′ → [4So

3/2]′ M1(λ = 1) ∝Z3Q9 ∝Q0 ∝Z4Q9 ∝Z4Q6

[2P o
3/2]′ → [4So

3/2]′ M1(λ = 1) ∝Z−1Q ∝Z−4Q−8e ∝Z2Q7 ∝Z2Q4f

[2P o
1/2]′ → [4So

3/2]′ M1(λ = 1) ∝Z3Q9 ∝Q0 ∝Z2Q7 ∝Z2Q4

aArising from the first-order perturbation part of Eq. (6). Here H ′
nf is the spin-orbit interaction and is scaled by ZQ3. (E(0)

f − E(0)
n ) is the energy

difference based on the zero-order wave function and is scaled by Q. Thus S is

∼
∣∣∣∣ H ′

nf(
E

(0)
f − E

(0)
n

) 〈ψi |r2
∣∣ψ (0)

n

〉∣∣∣∣
2

∝ [(ZQ3Q−1)Q−2]2 = Z2.

bArising from the first-order perturbation part of Eq. (6). Here H ′
nf is the electron-electron interaction and is scaled by Q. (E(0)

f − E(0)
n ) is the

energy difference based on the zero-order wave function and is scaled by ZQ3. Thus S is

∼
∣∣∣∣ H ′

nf(
E

(0)
f − E

(0)
n

) 〈ψi |r2
∣∣ψ (0)

n

〉∣∣∣∣
2

∝ [QZ−1Q−3Q−2]2 = Z−2Q−8.

cArising from the first-order perturbation part of Eq. (6). Here H ′
nf is the spin-orbit interaction and is scaled by ZQ3. (E(0)

f − E(0)
n ) is the energy

difference based on the zero-order wave function and is scaled by Q. Note that the transition is mainly from the minor magnetic momentum
coupling since for the E2 transition �L = 2 is preferred. Thus S is

∼
∣∣∣∣ H ′

nf(
E

(0)
f − E

(0)
n

) 〈ψi |r2�E
∣∣ψ (0)

n

〉∣∣∣∣
2

∝ [ZQ3Q−1Q−2Q]2 = Z2Q2.

dArising from the second-order perturbation part of Eq. (6). Here H ′
nf is the spin-orbit interaction and is scaled by ZQ3. (E(0)

f − E(0)
n ) is the

energy difference based on the zero-order wave function and is scaled by Q. Note that the transition is mainly from the minor charge coupling
since for the M1 transition �L = 1 is preferred. Thus S is

∼
∣∣∣∣
[

H ′
mnH

′
nf(

E
(0)
f − E

(0)
m

)(
E

(0)
f − E

(0)
n

) − H ′
mf H ′

ff(
E

(0)
f − E

(0)
m

)2

]
〈ψi |r2�E

∣∣ψ (0)
m

〉∣∣∣∣
2

∝ [ZQ3Q−1ZQ3Q−1Q−2Q]2 = Z4Q6.

eArising from the second-order perturbation part of Eq. (6). Here H ′
nf is the electron-electron interaction and is scaled by Q. (E(0)

f − E(0)
n ) is

the energy difference based on the zero-order wave function and is scaled by ZQ3. Thus S is

∼
∣∣∣∣
[

H ′
mnH

′
nf(

E
(0)
f − E

(0)
m

)(
E

(0)
f − E

(0)
n

) − H ′
mf H ′

ff(
E

(0)
f − E

(0)
m

)2

]
〈ψi |r0

∣∣ψ (0)
m

〉∣∣∣∣
2

∝ [QZ−1Q−3QZ−1Q−3r0]2 = Z−4Q−8.

fArising from the first-order perturbation part of Eq. (6). Here H ′
nf is the spin-orbit interaction and is scaled by ZQ3. (E(0)

f − E(0)
n ) is the energy

difference based on the zero-order wave function and is scaled by Q. Thus S is

∼
∣∣∣∣ H ′

nf(
E

(0)
f − E

(0)
n

) 〈
ψi |r0

∣∣ψ (0)
n

〉∣∣2 ∝ [ZQ3Q−1r0]2 = Z2Q4.

scaled by Q

ZQ3 r
2 ∝ Q

ZQ3 Q
−2 = Z−1Q−4. Accordingly, the

line strength, corresponding to the square of the transition
matrix element, is scaled by Z−2Q−8, and the rate is scaled
by Z3Q7.

In the low-Z region of Fig. 4, where LS coupling is
appropriate, the scaling laws of rate and S are totally different
from those in the high-Z region. From the LS coupling view,
the [2Do

5/2,3/2]′ → [4So
3/2]′ and [2P o

3/2,1/2]′ → [4So
3/2]′ transition

matrix elements between the zero-order wave functions (i.e.,

the chief CSF{LSj}) are all forbidden because of their different
spin quantum number. So the transition matrix elements
should mainly arise from the first-order or even higher-order
perturbation part of Eq. (6). Note that in the low-Z region the
electron-electron interactions are dominant, and the spin-orbit
interactions are treated as a perturbation. Thus H ′

nf is the
spin-orbit interaction and is scaled by ZQ3. (E(0)

f − E(0)
n ) is

the energy difference based on the zero-order wave function
and is scaled by Q. For [2Do

5/2,3/2]′ → [4So
3/2]′ transitions, the
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TABLE V. The E2 and M1 transition rates of [2Do
5/2,3/2]′ → [4So

3/2]′ and [2P o
3/2,1/2]′ → [4So

3/2]′ for Z = 7–26 for (a) this work, (b) Zeippen [5],
and (c) Fischer and Tachiev [13].

[2Do
5/2]′ → [4So

3/2]′ [2Do
3/2]′ → [4So

3/2]′ [2P o
3/2]′ → [4So

3/2]′ [2P o
1/2]′ → [4So

3/2]′

Ion E2 M1 E2 M1 E2 M1 E2 M1

N I (a) 8.79[-6]; 3.93[-7] (a) 5.82[-6]; 1.71[-5] (a) 5.41[-7]; 6.94[-3] (a) 1.07[-7]; 2.78[-3]
(b) 7.08[-6]; 1.94[-7] (b) 4.59[-6]; 1.56[-5] (b) 5.38[-9]; 6.58[-3] (b) 3.27[-7]; 2.71[-3]
(c) 6.60[-6]; 9.71[-7] (c) 4.34[-6]; 1.60[-5] (c) 5.28[-10]; 6.50[-3] (c) 4.57[-7]; 2.61[-3]

O II (a) 3.94[-5]; 3.02[-6] (a) 2.59[-5]; 1.50[-4] (a) 1.27[-6]; 5.87[-2] (a) 5.28[-8]; 2.35[-2]
(b) 3.64[-5]; 1.83[-6] (b) 2.36[-5]; 1.41[-4] (b) 1.58[-9]; 5.64[-2] (b) 1.71[-6]; 2.32[-2]
(c) 3.38[-5]; 7.42[-6] (c) 2.21[-5]; 1.41[-4] (c) 1.23[-8]; 5.65[-2] (c) 1.51[-6]; 2.27[-2]

F III (a) 1.40[-4]; 1.75[-5] (a) 9.16[-5]; 9.65[-4] (a) 2.35[-6]; 3.17[-1] (a) 6.20[-8]; 1.27[-1]
(b) 1.35[-4]; 1.30[-5] (b) 8.77[-5]; 9.36[-4] (b) 2.91[-8]; 3.08[-1] (b) 6.66[-6]; 1.26[-1]
(c) 1.31[-4]; 4.07[-5] (c) 8.51[-5]; 9.39[-4] (c) 3.60[-9]; 3.09[-1] (c) 5.07[-6]; 1.24[-1]

Ne IV (a) 4.11[-4]; 9.19[-5] (a) 2.69[-4]; 5.29[-3] (a) 3.21[-6]; 1.29[ 0] (a) 1.14[-6]; 5.19[-1]
(b) 4.06[-4]; 7.76[-5] (b) 2.64[-4]; 5.28[-3] (b) 1.10[-6]; 1.27[ 0] (b) 2.64[-5]; 5.21[-1]
(c) 3.94[-4]; 1.88[-4] (c) 2.56[-4]; 5.25[-3] (c) 7.00[-8]; 1.27[ 0] (c) 1.60[-5]; 5.10[-1]

Na V (a) 1.05[-3]; 4.39[-4] (a) 6.81[-4]; 2.57[-2] (a) 2.73[-6]; 4.30[ 0] (a) 8.18[-6]; 1.74[ 0]
(b) 1.05[-3]; 4.05[-4] (b) 6.80[-4]; 2.62[-2] (b) 6.84[-6]; 4.27[ 0] (b) 8.17[-5]; 1.76[ 0]
(c) 1.02[-3]; 7.86[-4] (c) 6.62[-4]; 2.0[-2] (c) 1.28[-6]; 4.25[ 0] (c) 4.77[-5]; 1.72[ 0]

Mg VI (a) 2.37[-3]; 1.91[-3] (a) 1.55[-3]; 1.12[-1] (a) 6.38[-7]; 1.23[ 1] (a) 3.89[-5]; 5.02[ 0]
(b) 2.41[-3]; 1.86[-3] (b) 1.56[-3]; 1.16[-1] (b) 2.72[-5]; 1.24[ 1] (b) 2.20[-4]; 5.11[ 0]
(c) 2.35[-3]; 3.04[-3] (c) 1.52[-3]; 1.15[-1] (c) 8.82[-6]; 1.23[ 1] (c) 1.36[-4]; 4.99[ 0]

Al VII (a) 4.99[-3]; 7.57[-3] (a) 3.23[-3]; 4.40[-1] (a) 3.81[-6]; 3.16[ 1] (a) 1.48[-4]; 1.30[ 1]
(b) 5.06[-3]; 7.57[-3] (b) 3.25[-3]; 4.56[-1] (b) 8.96[-5]; 3.17[ 1] (b) 5.52[-4]; 1.32[ 1]

Si VII (a) 9.74[-3]; 2.73[-2] (a) 6.24[-3]; 1.56[ 0] (a) 4.40[-5]; 7.35[ 1] (a) 4.88[-4]; 3.06[ 1]
(b) 9.90[-3]; 2.78[-2] (b) 6.28[-3]; 1.62[ 0] (b) 2.62[-4]; 7.37[ 1] (b) 1.33[-3]; 3.11[ 1]

P IX (a) 1.80[-2]; 9.12[-2] (a) 1.13[-2]; 5.03[ 0] (a) 2.17[-4]; 1.58[ 2] (a) 1.44[-3]; 6.69[ 1]
(b) 1.83[-2]; 9.29[-2] (b) 1.14[-2]; 5.19[ 0] (b) 7.13[-4]; 1.58[ 2] (b) 3.14[-3]; 6.79[ 1]

S X (a) 3.17[-2]; 2.81[-1] (a) 1.94[-2]; 1.48[ 1] (a) 7.59[-4]; 3.18[ 2] (a) 3.92[-3]; 1.38[ 2]
(b) 3.24[-2]; 2.86[-1] (b) 1.95[-2]; 1.51[ 1] (b) 1.80[-3]; 3.17[ 2] (b) 7.20[-3]; 1.40[ 2]

Cl XI (a) 5.40[-2]; 8.07[-1] (a) 3.17[-2]; 3.97[ 1] (a) 2.17[-3]; 6.04[ 2] (a) 9.95[-3]; 2.70[ 2]
(b) 5.51[-2]; 8.18[-1] (b) 3.18[-2]; 4.04[ 1] (b) 4.19[-3]; 6.00[ 2] (b) 1.60[-2]; 2.72[ 2]

Ar XII (a) 8.92[-2]; 2.18[ 0] (a) 4.96[-2]; 9.82[ 1] (a) 5.37[-3]; 1.09[ 3] (a) 2.38[-2]; 5.08[ 2]
(b) 9.06[-2]; 2.20[ 0] (b) 4.94[-2]; 9.91[ 1] (b) 9.04[-3]; 1.08[ 3] (b) 3.47[-2]; 5.09[ 2]

K XIII (a) 1.44[-1]; 5.55[ 0] (a) 7.46[-2]; 2.25[ 2] (a) 1.19[-2]; 1.87[ 3] (a) 5.42[-2]; 9.20[ 2]
(b) 1.45[-1]; 5.58[ 0] (b) 7.37[-2]; 2.25[ 2] (b) 1.82[-2]; 1.84[ 3] (b) 7.32[-2]; 9.18[ 2]

Ca XIV (a) 2.28[-1]; 1.35[ 1] (a) 1.09[-1]; 4.80[ 2] (a) 2.41[-2]; 3.08[ 3] (a) 1.18[-1]; 1.62[ 3]
(b) 2.28[-1]; 1.35[ 1] (b) 1.06[-1]; 4.76[ 2] (b) 3.39[-2]; 3.02[ 3] (b) 1.51[-1]; 1.61[ 3]

Sc XV (a) 3.57[-1]; 3.13[ 1] (a) 1.54[-1]; 9.62[ 2] (a) 4.50[-2]; 4.89[ 3] (a) 2.48[-1]; 2.77[ 3]
(b) 3.51[-1]; 3.12[ 1] (b) 1.46[-1]; 9.42[ 2] (b) 5.89[-2]; 4.76[ 3] (b) 3.03[-1]; 2.73[ 3]

Ti XVI (a) 5.57[-1]; 6.99[ 1] (a) 2.13[-1]; 1.82[ 3] (a) 7.81[-2]; 7.48[ 3] (a) 5.04[-1]; 4.64[ 3]
(b) 5.31[-1]; 6.92[ 1] (b) 1.97[-1]; 1.76[ 3] (b) 9.43[-2]; 7.23[ 3] (b) 5.95[-1]; 4.56[ 3]

V XVII (a) 8.65[-1]; 1.51[ 2] (a) 2.91[-1]; 3.28[ 3] (a) 1.27[-1]; 1.11[ 4] (a) 9.96[-1]; 7.63[ 3]
(b) 7.98[-1]; 1.49[ 2] (b) 2.61[-1]; 3.14[ 3] (b) 1.45[-1]; 1.06[ 4] (b) 1.14[ 0]; 7.45[ 3]

Cr XVIII (a) 1.35[ 0]; 3.14[ 2] (a) 3.94[-1]; 5.69[ 3] (a) 1.93[-1]; 1.58[ 4] (a) 1.92[ 0]; 1.24[ 4]
(b) 1.19[ 0]; 3.14[ 2] (b) 3.29[-1]; 5.30[ 3] (b) 1.86[-1]; 1.48[ 4] (b) 2.16[ 0]; 1.20[ 4]

Mn XIX (a) 2.11[ 0]; 6.33[ 2] (a) 5.37[-1]; 9.53[ 3] (a) 2.75[-1]; 2.19[ 4] (a) 3.60[ 0]; 1.98[ 4]
(b) 1.77[ 0]; 6.41[ 2] (b) 4.14[-1]; 8.68[ 3] (b) 2.11[-1]; 1.99[ 4] (b) 3.99[ 0]; 1.90[ 4]

Fe XX (a) 3.34[ 0]; 1.24[ 3] (a) 7.39[-1]; 1.56[ 4] (a) 3.67[-1]; 2.92[ 4] (a) 6.60[ 0]; 3.12[ 4]
(b) 2.58[ 0]; 1.29[ 3] (b) 5.01[-1]; 1.36[ 4] (b) 1.48[-1]; 2.52[ 4] (b) 7.40[ 0]; 2.97[ 4]

transition matrix element is scaled by ZQ3

Q
r2 ∝ ZQ3

Q
Q−2 = Z.

Accordingly, the line strength is scaled by Z2, and the rate is
scaled by Z2Q5. For [2P o

3/2,1/2]′ → [4So
3/2]′ transitions, since

for the E2 transition �L = 2 is preferred, the interactions
from the major part, i.e., the charge coupling, are strongly
forbidden, and the main contribution should come from the
minor part, i.e., the magnetic momentum coupling. Thus
the interaction operator O is (r2�E) as shown in Table III

with λ = 2. The transition matrix element can be scaled
by ZQ3

Q
(r2�E) ∝ ZQ3

Q
Q−2Q = ZQ. Accordingly, the line

strength is scaled by Z2Q2, and the rate is scaled by Z2Q7.
Table V lists our calculated E2 and M1 transition rates

for [2Do
5/2,3/2]′ → [4So

3/2]′ and [2P o
3/2,1/2]′ → [4So

3/2]′ with other
theoretical results [5,13] if available. For [2Do

5/2,3/2]′ →
[4So

3/2]′ E2 transitions, at Z = 9 ∼ 22 the three theoretical
results agree within a few percent, while at Z = 7,8,23–26
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FIG. 4. (Color online) The scaling law of our calculated forbidden E2 transition rates and the corresponding line strengths S for (a) and
(e) the [2Do

5/2]′ → [4So
3/2]′ transition, (b) and (f) the [2Do

3/2]′ → [4So
3/2]′ transition, (c) and (g) the [2P o

3/2]′ → [4So
3/2]′ transition, and (d) and (h)

the [2P o
1/2]′ → [4So

3/2]′ transition.

they are only of the same magnitude. For [2P o
3/2,1/2]′ → [4So

3/2]′
E2 transitions, at Z > 14 our theoretical results and Zeippen’s
results [5] are of the same magnitude, while at Z � 14 the three
theoretical results differ in magnitude. Figures 4(g) and 4(h)
show that in the low-Z region the value of S is tiny (smaller
than 10−6); therefore the convergence of the calculations for
these transitions is difficult.

It is interesting to see that Figs. 4(g) and 4(h) show
some interference structures around Z = 12 and Z =
35 for the [2P o

3/2]′ → [4So
3/2]′ transition and around Z =

9 for the [2P o
1/2]′ → [4So

3/2]′ transition. These structures
should result from the cancellations among the terms
Ci

r�C
f

r�〈γ i
r P

iJ iMi |O|γ f
r P f J f Mf 〉. More specifically, the

expansion coefficients Cr� of the initial and final states vary
with Z, and the cancellations between the terms vary with
Z. At certain Z, the cancellation becomes maximum, and the
total transition matrix element is minimum. The structures
around low Z (9 or 12) reflect the maximum cancellations
between the terms consisting of CSF{LSj}, and the structure
around Z = 35 reflects the maximum cancellations between
the terms consisting of CSF{jj}, which deserve further study.

M1 transition. Figure 5 shows the magnetic dipole M1 tran-
sition rates and line strengths S for [2Do

5/2,3/2]′ → [4So
3/2]′ and

[2P o
3/2,1/2]′ → [4So

3/2]′ transitions varying with Z. In the high-Z
region, for the single-electron transition (by comparing their
chief CSF{jj}), [2Do

5/2,3/2]′ → [4So
3/2]′ and [2P o

1/2]′ → [4So
3/2]′

transitions, the scaling laws of the rate and S agree with those

listed in Table III with λ = 1. For the two-electron transition
of [2P o

3/2]′ → [4So
3/2]′, the scaling law of the rate is Z−1Q.

This can be explained by the second-order perturbation part

of Eq. (6), i.e., [
H ′

mnH
′
nf

(E(0)
f −E

(0)
m )(E(0)

f −E
(0)
n )

− H ′
mf H ′

ff

(E(0)
f −E

(0)
m )2

]〈ψi |O|ψ (0)
m 〉.

Here H ′
mn is the electron-electron interaction and is scaled

by Q, and (E(0)
f − E(0)

m ) is the energy difference based on the
zero-order wave function and is scaled by ZQ3. The transition
matrix element of the second-order perturbation part is scaled
by Q

ZQ3
Q

ZQ3 r
0 = Z−2Q−4. Accordingly, the line strength is

scaled by Z−4Q−8, and the rate is scaled by Z−1Q. The scaling
law means here the first-order perturbation part is unimportant
compared with the second-order perturbation part.

In the low-Z region of Fig. 5, from the LS coupling point,
the [2Do

5/2,3/2]′ → [4So
3/2]′ and [2P o

3/2,1/2]′ → [4So
3/2]′ transition

matrix elements from the zero-order wave functions are all
forbidden because of the different spin quantum numbers of
their corresponding chief CSF{LSj}. So the transition matrix
elements should mainly arise from the first- or second-order
perturbation parts. Here H ′

nf is the spin-orbit interaction and

is scaled by ZQ3, and (E(0)
f − E(0)

n ) is the energy difference
based on the zero-order wave function and is scaled by Q. For
[2Do

5/2,3/2]′ → [4So
3/2]′ transitions, since for the M1 transition

�L = 1 is preferred, the transition from the magnetic mo-
mentum coupling is strongly forbidden, and the contribution
should mainly come from the minor part, i.e., the charge
coupling. Thus the interaction operator O is (r2�E), as shown
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FIG. 5. (Color online) The scaling law of our calculated forbidden M1 transition rates and the corresponding line strengths S for (a) and
(e) the [2Do

5/2]′ → [4So
3/2]′ transition, (b) and (f) the [2Do

3/2]′ → [4So
3/2]′ transition, (c) and (g) the [2P o

3/2]′ → [4So
3/2]′ transition and (d) and (h)

the [2P o
1/2]′ → [4So

3/2]′ transition.

in Table III with λ = 1. According to our calculation results,
S is scaled by Z4Q6, which can be explained by the second-
order perturbation part of Eq. (6), i.e., [ZQ3

Q

ZQ3

Q
(r2�E)]2 ∝

[ZQ3

Q

ZQ3

Q
(Q−2Q)]2 = Z4Q6. Accordingly, the rate is scaled

by Z2Q9. For [2P o
3/2,1/2]′ → [4So

3/2]′ transitions, S is scaled by
Z2Q4, which can be explained by the first-order perturbation
part of Eq. (6). The transition matrix element is scaled by
ZQ3

Q
r0 = ZQ2. Accordingly, the line strength is scaled by

Z2Q4, and the rate is scaled by Z2Q7.
In Figs. 5(g) and 5(h), interference structures like those

in Figs. 4(g) and 4(h) for [2P o
3/2,1/2]′ → [4So

3/2]′ transitions do
not appear. This is due to the different interaction operators
O in the transition matrix element, i.e., r2 for E2 and r0 for
M1, which leads to the different behaviors of the cancellations
among the terms.

From Table V we can see that for [2Do
3/2]′ → [4So

3/2]′

and [2P o
3/2,1/2]′ → [4So

3/2]′ transitions the three theoretical
results agree within a few percent. For the [2Do

5/2]′ → [4So
3/2]′

transition, at Z > 10 our theoretical results and Zeippen’s
results [5] agree within a few percent but differ from Fischer
and Tachiev’s results [13] when available. At Z � 10 our
results are larger than Zeippen’s results but smaller than
Fischer and Tachiev’s results by several tens of percent.
The reason for the large difference between the different
theoretical results in the low-Z region is the tiny value of the
corresponding transition matrix element (smaller than 10−7),

as shown in Fig. 5(e), and the absolute convergence is difficult
to achieve.

Ratio. It is known that in the high-electron-density limit,
the ratio of the observed forbidden line intensities of
[2Do

5/2,3/2]′ → [4So
3/2]′ in PNs is proportional to the radiative

transition rates and the statistic weights of the ionic states
when the fine-structure splittings of [2Do

5/2,3/2]′ are much
smaller than the electron temperature of the PNs [5]. Figure 6
shows the ratio of {6 × A(E2+M1)([2Do

5/2]′ → [4So
3/2]′)}/{4 ×

A(E2+M1)([2Do
3/2]′ → [4So

3/2]′)} and {4 × A(E2+M1)([2P o
3/2]′ →

[4So
3/2]′)}/{2 × A(E2+M1)([2P o

1/2]′ → [4So
3/2]′)} varying with Z.

It is easy to understand the different scaling laws from low
Z to high Z qualitatively from Fig. 3. More specifically,
for [2Do

5/2,3/2]′ → [4So
3/2]′ transitions, in the high-Z region,

the M1 transition rates are larger than the E2 transition
rates by several orders; thus the ratio is mainly determined
by the ratio of AM1. Since AM1 of [2Do

5/2,3/2]′ states in the
high-Z region follows the same scaling law, i.e., ∝Z3Q9,
as shown in Table IV, the corresponding ratio is nearly a
constant.

In the low-Z region, for the [2Do
5/2]′ state, AM1 is

larger than AE2, while for the [2Do
3/2]′ state, AE2 is first

larger and then becomes smaller than AM1. From Figs. 4(a)
and 4(b), it can be seen that AE2([2Do

5/2]′ → [4So
3/2]′) is

nearly equal to AE2([2Do
3/2]′ → [4So

3/2]′), while in Fig. 3
AM1([2Do

5/2]′ → [4So
3/2]′) increases first slower and then faster

042514-9
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×1015

FIG. 6. (Color online) The line intensity ratio in the high-
electron-density limit for (a) the [2Do

5/2]′ → [4So
3/2]′ and [2Do

3/2]′ →
[4So

3/2]′ transitions and (b) the [2P o
3/2]′ → [4So

3/2]′ and [2P o
1/2]′ →

[4So
3/2]′ transitions.

than AM1([2Do
3/2]′ → [4So

3/2]′) with increasing Z; therefore the
ratio decreases first and then increases with increasing Z.

For [2P o
3/2,1/2]′ states, from Fig. 3 it can be seen that in

the low-Z region, AM1 is larger than AE2 by several orders;
thus the corresponding ratio is nearly a constant because
the scaling law in this region is the same as that shown in
Figs. 5(c) and 5(d). In the high-Z region, for the [2P o

3/2]′

state, AM1 is larger than AE2 by several orders, and AM1

decreases with increasing Z; therefore the ratio of [2P o
3/2,1/2]′

states decreases monotonously in the high-Z region with
increasing Z.

Conclusion. Finally, we make the following conclusion.
The energy-level structures and forbidden transition rates of
the lowest five states in the 2p3 configuration of a N-like
isoelectronic sequence have been calculated using a large-
scale fully relativistic MCDF method. The scaling laws of the
excitation energies for [2Do

5/2,3/2]′ and [2P o
3/2,1/2]′ states relative

to the ground state [4So
3/2]′ from high Z to low Z have been

ascertained and are determined by the competition between
the electron-electron interactions (scaled by Q) and the spin-
orbit interactions (scaled by ZQ3). The scaling laws for the
fine-structure energy splittings of [2Do

5/2,3/2]′ and [2P o
3/2,1/2]′

states in the high-Z region have been given.
The general scaling law for the multipole transition rates

derived from a single-particle model is presented in Table III.
The scaling laws of E2 and M1 transition rates for
[2Do

5/2,3/2]′ → [4So
3/2]′ and [2P o

3/2,1/2]′ → [4So
3/2]′ transitions

have been concluded from our calculation results. In general,
the scaling laws for the one-electron transitions in the high-Z
region are consistent with the scaling laws listed in Table III,
while for the two-electron transition in the high-Z region,
the contributions of the first- or second-order perturbation
parts of Eq. (6) are dominant and the scaling laws differ
from those in Table III. In the low-Z region, the scaling
law of the transition matrix has been determined by the
first-order perturbation part of Eq. (6) since the transition
matrix between the zero-order wave function in LS coupling
is forbidden because of the different spin quantum number.

The ratios of {6 × A(E2+M1)([2Do
5/2]′ → [4So

3/2]′)}/{4 ×
A(E2+M1)([2Do

3/2]′ → [4So
3/2]′)} and {4 × A(E2+M1)([2P o

3/2]′ →
[4So

3/2]′)}/{2 × A(E2+M1)([2P o
1/2]′ → [4So

3/2]′)} of the sequence
have been presented, and the scaling laws in the high-Z region
have been given. Our calculated atomic data and the scaling law
are expected to be useful for future applications of astrophysics
and plasma physics.
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APPENDIX: ESTIMATION OF TRANSITION RATE

The Hamiltonian of atoms in the presence of a radiation
field can be written as (in this appendix SI units are used if not
otherwise specified)

H = Ha + Hem + Ha,em. (A1)

Ha is the Hamiltonian of the isolated atom (or ion) with N

electrons and can be expressed as (here atomic units are used)

Ha =
N∑

n=1

(
− 1

2
∇2

n − Z

rn

+
N∑

m>n

1

rnm

+ α2Z

2

ln · sn

r3
n

)
, (A2)

where no relativistic effects except the spin-orbit interac-
tions are included. α is the fine-structure constant. Hem =∑

k,λ(a+
kλakλ + 1

2 )�ω is the Hamiltonian of the radiation field.
Ha,em is the interaction between the atom and the radiation
field. In order to understand the scaling law quantitatively,
it is convenient to express the interaction Hamiltonian in a
nonrelativistic form,

Ha,em = −
∑

a

(
e

mc
A · pa + e�

2mc
�μa · curlA − e2

2mc2
A2

)
,

(A3)

where �μa is the magnetic moment. A is the vector potential of
an electromagnetic wave and is the vector solution of the wave
equation: (∇2 + k2)A = 0. For convenience, A is expanded by
electric or magnetic multipole fields, which form a complete
set. The vector solutions of the wave equation are divided
into two parts, electric multipoles and magnetic multipoles, as
follows:

AM
cJ =

√
2√

J (J + 1)

1

�
curlLuM

J (kr),

(A4)

AM
mJ =

√
2√

J (J + 1)

k

�
LuM

J (kr).
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Here um
l = jl(kr)Ym

l (θ,φ) is the scalar solutions of the wave
function in vacuum (∇2 + k2)u = 0. jl(kr) is the spherical
Bessel function, and Ym

l (θ,φ) is the spherical harmonics
function. L is the orbital angular momentum operator. The
last term including A2 in Eq. (A3) is neglected in the
following discussion since this term is relative to the two-
photon process and is supposed to be unimportant in the
one-photon process. An estimate of the vector potential near
the origin (kr  l) is obtained by using the approximations
that jl(kr) ∼= (kr)l

(2l+1)!! with (kr)  l and curl ≈ 1/r . Assuming
L ≈ 1, the electric multipole and magnetic multipole fields are
estimated as

|Acλ| ∼= k(kr)λ−1, (A5)

|Hcλ| = curlAλ
c

∼= k2(kr)λ, (A6)

|Amλ| ∼= k(kr)λ, (A7)

|Hmλ| = curlAλ
m

∼= k2(kr)λ−1. (A8)

In Eqs. (A6) and (A8) we use the relation curlcurl = k2 from
the wave equation (curlcurl − k2)A = 0.

On the other hand, the electromagnetic field can be
quantized as a sum of photons of definite multipolarity. The
general field can be expanded as

A =
∑

τ

(qτ Aτ + q†
τ A∗

τ ), (A9)

where Aτ are the multipole fields and qτ are their amplitudes to
be quantized. τ represents all the quantum numbers k,J,M,π .
The quantized amplitudes are

qτ =
√

2π�

ωτ

caτ , (A10)

and aτ are annihilation operators. The interaction Hamiltonian
can be expanded as

A · pa =
√

2π�

∑
τ

1√
ωτ

[Aτ · paaτ + A∗
τ · paa

†
τ ],

μa �σ · H = μa

√
2π�c�σ ·

∑
τ

1√
ωτ

[curlAτ aτ + curlA∗
τ a

†
τ ].

(A11)

In the independent particle model, pa is the momentum
operator of a single particle and can be estimated as

〈ψf |pa|ψi〉 = m
d

dt
〈ψf |ra|ψi〉 = m

i�
〈ψf |rαH − Hra|ψi〉

= m

i�
(Ei − Ef )〈ψf |ra|ψi〉 ≈ imωr, (A12)

where |ψi〉 and |ψf 〉 represent the initial- and final-state wave
functions, respectively.

Then we obtain

e

m

√
2π�

ω
Acλ · p ≈ C

mc

�

√
k(kr)λ (A13)

for electric multipole charge coupling,

e�

2m

√
2π�

ω
μ�σ · Hcλ ≈ C

√
k

r
(kr)λ+1 (A14)

for electric multipole magnetic momentum coupling,

e�

2m

√
2π�

ω
μ�σ · Hcλ ≈ C

√
k

r
(kr)λ (A15)

for magnetic multipole magnetic momentum coupling, and

e

m

√
2π�

ω
Acλ · p ≈ C

mc

�

√
k(kr)λ+1 (A16)

for magnetic multipole charge coupling, where C = e
m

√
2π�3

c
.

According to Fermi’s golden rule, the transition proba-
bilities A of electric multipoles (Eλ

c and Eλ
m) and magnetic

multipoles (Hλ
c and Hλ

m) are proportional to the transition
matrix element 〈ψf |Hint|ψi〉, namely,

A
(
Eλ

c

) ∝ k2λ+1|〈ψf |rλ|ψi〉|2, (A17)

A
(
Eλ

m

) ∝ k2λ+1|〈ψf |rλ−1(kr)|ψi〉|2, (A18)

A
(
Hλ

c

) ∝ k2λ+1|〈ψf |rλ(kr)|ψi〉|2, (A19)

A
(
Hλ

m

) ∝ k2λ+1|〈ψf |rλ−1|ψi〉|2, (A20)

where k = ν/c is proportional to the transition frequencies
(i.e., the transition energy).
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