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Stark shift and parity nonconservation for near-degenerate states of xenon
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We identify a pair of near-degenerate states of opposite parity in atomic Xe, the 5p510s 2[3/2]o2 at E =
94 759.927 cm−1 and 5p56f 2[5/2]2 at E = 94 759.935 cm−1, for which parity- and time-odd effects are expected
to be enhanced by the small energy separation. We present theoretical calculations which indicate narrow widths
for both states and we report a calculated value for the weak matrix element, arising from configuration mixing,
of |W | = 2.1 Hz for 132Xe. In addition, we measured the Stark effect of the 5p56f 2[5/2]2 and 5p56f 2[3/2]2

(E = 94 737.121 cm−1) states. The Stark shift of the 6f states is observed to be negative, revealing the presence
of nearby 6g states at higher energies, which have not been observed before. The Stark-shift measurements
imply an upper limit on the weak matrix element of |W |<5 Hz for the near-degenerate states (10s 2[3/2]o2 and
6f 2[5/2]2), which is in agreement with the presented calculations.
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I. INTRODUCTION

High-Z atoms with near-degenerate opposite-parity states
are promising spectroscopic systems for experiments studying
parity (P ) and time-reversal invariance (T ) violating phe-
nomena, due to the enhancement of the P - and P,T -odd
effects by the small energy intervals between the atomic
levels [1]. In 1986, Dzuba, Flambaum, and Khriplovich [2]
identified the importance of various pairs of near-degenerate
states of opposite parity in rare earth atoms, such as samar-
ium (Sm), erbium (Er), and dysprosium (Dy), for possible
enhancement of such effects. In particular, atomic Dy has
been used in measurements of parity nonconservation (PNC)
[3] and also in search for the time variation of the fine-
structure constant [4], and to investigate the gravitational-
potential dependence on the fine-structure constant [5], with
more recent results additionally setting limits on viola-
tions of Lorentz symmetry and the Einstein equivalence
principle [6].

Here we identify a pair of near-degenerate opposite-parity
states, both with total angular momentum J = 2, in atomic
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xenon (Xe) as a candidate system for P - and T -violation
experiments, Fig. 1(a); see Ref. [7]:

5p510s 2[3/2]o2 E = 94 759.927 cm−1, (1)

5p56f 2[5/2]2 E = 94 759.935 cm−1. (2)

Xe is a noble gas with nuclear charge Z = 54 and therefore
the Z3 enhancement of P - and T -odd effects is significant for
the chosen states [8]. The wide range of stable Xe isotopes
(eight, ranging from 129Xe to 136Xe) gives the possibility to
perform PNC measurements in different isotopes, in which
the large error associated with atomic theory calculations can
be largely eliminated by taking ratios of measurements in
different isotopes [1,2]. Additionally, two of the stable Xe
isotopes have nonzero nuclear spin (129Xe with I = 1/2 and
131Xe with I = 3/2), and therefore PNC measurements in
different hyperfine components give access to the nuclear
anapole moment [9]. In close analogy to experiments in Dy,
possible searches for variations of the fine-structure constant
using this pair of near-degenerate states may become feasible
due to the wide choice of rf transitions, arising from the
availability of many isotopes.

The principal motivation for this work is the prospect
of measuring parity violating phenomena using the
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FIG. 1. (Color online) (a) Partial energy-level diagram of Xe (not
to scale) showing the pair of near-degenerate states (1) and (2). The
solid lines represent the ∼211 nm radiation used for the measurements
of the Stark effect of the 6f states using a (2+1) REMPI scheme,
see Sec. IV. The analysis of the measurements of the Stark effect
of the two 6f states reveals the presence of the 6g and 6h states,
which have not been observed before. (b) Schematic drawing of
the experimental setup used for the Stark-shift measurements. (i)
A collimated Xe beam is intersected at right angles by a linearly
polarized light beam from a ∼211 nm pulsed laser. The laser pulse
excites the atoms from the ground state to the excited state of interest,
and subsequently ionizes the atoms. The electric field along the z

axis is used to accelerate the ions down the time-of-flight (TOF) tube
towards a microchannel-plate (MCP) detector; this is also the electric
field in the Stark effect measurements. The polarization of the laser
beam is controlled with a λ/2 plate. For excitation to the |M| = 2
sublevels (with quantization axis along ẑ) of the 6f excited states, the
polarization of the laser beam is set perpendicular to the z axis. (ii)
Additional optics used only for the calibration of the electric field,
which is realized through the Stark-shift measurements of the n = 2
states in H using a Doppler-free REMPI scheme (see discussion in
Sec. III B).

near-degenerate opposite-parity states (1) and (2). Parity
violation in atomic systems arises primarily due to the weak
interaction between the electron and the nucleus, which results
in mixing of the parity eigenstates of the system. In particular,
the weak interaction mixes predominantly s and p states [8,9].
Therefore, mixing arising from PNC between the dominant
configurations (6f -10s) of the levels (1) and (2) is negligible.
However, if the 6f state has significant p character from
configuration mixing with nearby np states (dominated by the
nearest 10p), then the weak interaction will mix the opposite-

parity states (1) and (2). In this article we present theoretical
calculations of the composition of the states (1) and (2), from
which we can estimate the electric-dipole matrix element
between these states, as well as the matrix element arising from
the weak interaction, both required to assess the possibility
of performing PNC experiments using the Stark-interference
technique [3]. In addition, experimental measurements of the
Stark shift of the 6f state (2) are presented, which support the
accuracy of the presented theoretical calculations.

In particular, in Sec. II we present calculations of the width
of the states (1) and (2), which are important for assessing the
experimental sensitivity for future P - and T -odd experiments,
and of the matrix elements of the electric-dipole interaction
and of the weak interaction between these states. In addition,
we study the magnetic dipole transitions involving our states of
interest, as these are sensitive to the composition of states (1)
and (2). In Sec. III we present measurements of the Stark effect
of two 6f states (at 94 737.121 and at 94 759.935 cm−1) with
the aim to determine the admixture of the 5p5np configurations
to the 5p56f configuration. Finally, the analysis of the Stark
measurements, performed in Sec. IV, determines an upper
limit on the weak mixing between states (1) and (2), in
agreement with the presented theoretical calculations.

II. THEORY

A. Width of the states

The energy difference between the states (1) and (2) is
only 0.008 cm−1. Such a small value might be comparable to
the linewidth. The requirement that the widths of the states
involved are small is of importance for PNC measurements.
Therefore, we estimate the widths of both states. The natural
width is determined by the electric dipole transitions from the
states (1) or (2) into appropriate lower states (we use atomic
units |e| = � = m = 1):

�a =
∑

b

4

3
α3ω3

ab

A2
ba

2Ja + 1
, (3)

where a stands for (1) or (2), while b represents all possible
lower states connected to (1) or (2) via the electric dipole
operator, ωab is the transition frequency, Ja is the total
angular momentum quantum number of state a, and Aba is
the transition amplitude from state a to b.

For estimations we consider the 10s-6p and 6f -5d tran-
sitions in the single-electron approximation. Transitions to
higher states (7p,8p,6d, etc.) can be neglected because of
the smaller frequencies of the transitions. For example, the
suppression of the 10s-7p transition probability compared to
the 10s-6p transition probability is approximately a factor
of ∼20, i.e., {[E(10s) − E(6p)]/[E(10s) − E(7p)]}3 ∼ 20.
This cannot be compensated by the larger transition amplitude
since the corresponding ratio, as calculations show, is much
smaller, [A(10s-7p)/A(10s-6p)]2 ∼ 3.

Taking the electric dipole amplitudes from the random-
phase approximation (RPA) calculations (see, for example,
Ref. [10]): A10s,6p = 0.5 ea0, A6f,5d = 3 ea0, and assuming
ω10s,6p ≈ 17 000 cm−1 = 0.08 a.u., ω6f,5d ≈ 15 000 cm−1 =
0.07 a.u leads to �10s = 1.3 × 10−11 a.u. = 3 × 10−6 cm−1,
and �6f = 3 × 10−10 a.u. = 6 × 10−5 cm−1.
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TABLE I. Electric dipole transition amplitudes (reduced matrix
elements, Aab in atomic units) from the degenerate states (1) and (2)
to lower states and the corresponding linewidths �a .

5p510s,J = 2 5p56f,J = 2

From (a)
5p56p 5p55d

to (b) Jb Eb (cm−1) Aab Jb Eb (cm−1) Aab

1 77 269 0.44(9) 1 79 987 1.1(2)
2 78 119 0.32(6) 3 80 970 0.35(7)
3 78 403 0.72(14) 2 80 323 0.65(13)
1 78 956 0.14(3) 1 83 890 2.0(4)
2 79 212 0.519(10) 2 81 925 1.3(3)

3 82 430 0.24(5)
�a ∼1 × 10−5 ∼3 × 10−5

To get a more precise estimate, we turn to the configuration
interaction (CI) method. We calculate the transition amplitudes
from the 5p510s 2[3/2]oJ=2 state to five lower states of the
5p56p configuration and from the 5p56f 2[5/2]J=2 state to
six states of the 5p55d configuration. The calculated E1
transition amplitudes are presented in Table I. The main source
of uncertainties is the incompleteness of the basis. Given
that the main contributions are included and that the results
are stable against variation of the basis, we estimate that the
uncertainty for the E1 transition amplitudes should not exceed
20%. The uncertainties for the linewidths are larger because
the amplitudes are squared in the transition probabilities and
because higher lying states, to which decay can occur, are
neglected in the calculations. We estimate the uncertainties for
the linewidth calculations to be ∼50%.

The results for the linewidths of states (1) and (2) are listed
in Table I. The corresponding lifetimes are τ10s = 500(250)
ns, τ6f = 170(85) ns. The theoretical result for the lifetime
of the 6f state is consistent with the experimental value of
153(12) nsec presented in Ref. [11].

B. PNC and Stark mixing

One possibility in using states (1) and (2) for PNC studies in
xenon is to perform an experiment similar to that in dysprosium
[3], in which the interference between Stark mixing and PNC
mixing of the two degenerate states of opposite parity was
studied. The mixing is determined by the matrix elements
of the weak interaction and the electric-dipole interaction
between states (1) and (2),

W = 〈1|HW |2〉 and D = −〈1|er|2〉. (4)

The Hamiltonian HW of the weak interaction is given by

HW = − GF

2
√

2
QWγ5ρ(r). (5)

The GF in (5) is the Fermi constant of the weak interaction
(GF ≈ 2.2225 × 10−14 a.u.), QW is the nuclear weak charge,
γ5 is a Dirac matrix, and ρ(r) is the nuclear density normalized
to 1 (

∫
ρdV = 1).

Within the standard model the weak nuclear charge QW is
given by [12]

QW ≈ −0.9877N + 0.0716Z. (6)

Here N is the number of neutrons and Z is the number of
protons. For example, for 132Xe, QW = −73.17.

The matrix elements W and D in Eq. (4) have nonzero
values due to configuration mixing in either odd- and even-
parity states. Indeed, the parity violating matrix elements
of the weak interaction are nonzero only for states of the
same total angular momentum J , opposite parity, and whose
configurations are different only by one electron. For the
electric dipole operator the selection rule for the total angular
momentum is |	J | � 1. For such configurations, the matrix
element between many-electron states is reduced to the single-
electron matrix element between two different single-electron
states.

The nominal configurations of states (1) and (2) differ by
the 10s and 6f orbitals. The matrix elements of the weak
(W ) and the electric dipole (D) interactions between these
states are zero. One has to include mixing of appropriate
configurations to either of the states (1) or (2) to obtain
nonzero matrix elements. The dominant contribution arises
when mixing with the 5p5np1/2 configurations is included in
the wave function of the 5p56f state (2). The corresponding
diagram is shown in Fig. 2. There are seven similar diagrams
that can be obtained from Fig. 2 by moving the operator of the
weak or the electric dipole interaction in turn to every electron
line and by swapping the 6f and 5p orbitals on the right.

To calculate the matrix element corresponding to the
diagram, we need to know the many-electron wave function of
each of the initial and final states (1) and (2). It is convenient to
use the hole-particle representation for the wave functions. In
this representation, the wave function of the odd-parity state
(1) is simple. It contains one 10s electron and one 5p3/2 hole.
Since the total angular momentum is two, there is only one
way to obtain J = 2 and Jz = 2—by combining the 10s1/2,1/2

electron state with the 5p3/2,3/2 hole state. The corresponding
wave function is just the product of two single-particle wave
functions.

The 5p6f, J = 2 state is more complicated and standard
configuration interaction (CI) techniques and angular momen-
tum algebra are used to construct it. The expansion of this state
over states composed of the single-electron state 6f and the
single-hole state 5p is presented in Table II.

10s 6f

5p 5p

np

FIG. 2. The dominant diagram for the weak matrix element
between the near-degenerate states (1) and (2). Dashed line is the
Coulomb interaction, and the cross stands for the weak interaction.
Other diagrams can be obtained by adding an exchange diagram
(swapping states 6f and 5p) and by moving the operator of the
weak interaction in turn to every other electron line. Similar diagrams
describe the electric dipole transition amplitude. In the latter case, the
cross would stand for the electric dipole operator.
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TABLE II. Expansion of the state 5p6f J = 2,Jz = 2 over
states with different total angular momentum j and its projection
jz (|5p6f 2[5/2]22〉 = ∑

i ci |6fjimi
5pj ′

i
m′

i
〉).

6f 5p

i ci ji mi j ′
i m′

i

1 0.046866 7/2 1/2 3/2 3/2
2 − 0.104795 7/2 3/2 3/2 1/2
3 0.181510 7/2 5/2 3/2 − 1/2
4 − 0.277262 7/2 7/2 3/2 − 3/2
5 0.000855 5/2 3/2 1/2 1/2
6 − 0.001912 5/2 5/2 1/2 − 1/2
7 0.353957 5/2 1/2 3/2 3/2
8 − 0.578009 5/2 3/2 3/2 1/2
9 0.646233 5/2 5/2 3/2 − 1/2

The mathematical expression for the diagram presented in
Fig. 2 is the following:

W1 =
∑
i,n

ci

〈10s|H̃W |np〉〈np,5p| e2

r12
|6fji ,mi

5pj ′
i ,m

′
i
〉

ε10s − εnp

. (7)

Here ci are the expansion coefficients from Table II, H̃W =
HW + δVW , HW is the Hamiltonian of the weak interaction (5),
and δVW is the correction to the self-consistent Hartree-Fock
potential due to the weak interaction (RPA-type correction
[10]). The expressions for the other seven diagrams are similar
to (7).

To calculate the weak matrix element W (W = ∑8
i=1 Wi)

we use the relativistic Hartree-Fock (RHF) method and the
B-spline technique [13]. The calculations are performed in
the V N−1 approximation with one electron removed from the
uppermost 5p core shell. The states of the external electron
are calculated in the frozen V N−1 potential using the B-spline
technique. Summation over np in (7) goes over the complete
set of single-electron states constructed with the use of
B-splines.

The result for 132Xe is

|W | = 0.34 × 10−15(−QW/N ) a.u. = 2.1 Hz. (8)

Note that the dominating term W1 (7) gives 105% of the matrix
element while other seven diagrams give only −5%.

Similar calculations for the reduced electric-dipole matrix
element D lead to

A(E1) = 〈10s5pJ = 2||E1||6f 5pJ = 2〉 = 1.55 ea0 (9)

or

A(E1)z = 0.57 ea0 → 0.024 cm−1/(kV/cm) (10)

for the electric dipole transition amplitude between states (1)
and (2).

C. Magnetic-dipole transition amplitudes

It is instructive to study the magnetic dipole transitions
(M1) involving our states of interest, (1) and (2). The M1
amplitudes are sensitive to the composition of the states of
interest, similar to the E1 transition amplitudes and the weak

matrix element W , and therefore provide valuable information
about the composition of the states. Knowledge of these matrix
elements is also needed to assess the systematic effects in
PNC experiments (see, for example, Ref. [14]). Moreover, here
we have better control over the accuracy of the calculations,
since the calculation of the M1 amplitudes is similar to the
calculation of the g factors, and g factors of many states of
xenon are known from experiment.

In this section we study the M1 transitions between the
odd-parity state (1) and states of the 5p5 5d configurations, and
the even-parity state (2) and states of the 5p56p configuration.
We limit ourselves to states of total angular momentum J = 2.
The former transitions can be described as the 10s-5d single-
electron transitions while the later as the 6f -6p single-electron
transitions. The corresponding single-electron matrix elements
are relatively small,

〈10s1/2||M1||5d3/2〉 = 0.0107 μ0, (11)

〈6f5/2||M1||6p3/2〉 = 0.0067 μ0, (12)

where μ0 is the Bohr magneton. These values were obtained
in the RPA calculations. They are dominated by the core-
polarization effect (also known as the RPA correction).

At first glance, the transitions between many-electron states
should be reduced to the matrix elements (11) and (12) with
some modification due to configuration mixing. In fact, the
nature of the many-electron transitions is completely different
and the matrix elements (11) and (12) play little role in it.
For example, in the case of the 10s-5d, the single-electron
transition amplitudes when configuration mixing is included
can be reduced to

〈 ˜10s||M1||5̃d〉 = α〈10s||M1||5d〉 + β〈10s||M1||10s〉
+ γ 〈5d||M1||5d〉. (13)

For pure configurations α = 1 and β = γ = 0. When config-
uration mixing is included α ∼ 1; β, γ 	 1. However, the
second and third terms in Eq. (13) dominate over the first
one in spite of the small values of β and γ , because these
M1 matrix elements have values of ∼μ0, as these belong to
transitions between states with the same principal and angular
quantum numbers n,l (i.e., diagonal in n,l) while also satis-
fying 	j = 0, ± 1. This leads us to the contributions which
have diagonal M1 single-electron matrix elements or matrix
elements between the fine-structure partners. Therefore, an
estimate for the 5p510s-5p55d transitions can be written as

M1 ≈ g̃(10s,5p,5d,5p)

ε10s − ε5d

μ0, (14)

where g̃(a,b,c,d) = g(a,b,c,d) − g(a,b,d,c) is the sum of the
direct and the exchange Coulomb integrals. Substituting these
numbers leads to M1 ∼ μ0.

For a more accurate estimate we turn to the CI calculations
and we start from the g factors to get some idea about the
accuracy of the calculations. The values of the g factors can
be expressed via diagonal M1 matrix elements as

ga = 1

Ja

(
Ja 1 Ja

−Ja 0 Ja

)
〈a||M1||a〉, (15)

where Ja is the total angular momentum of the state a.
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TABLE III. Experimental and calculated g factors of the states
of the 5p55d , 5p510s, 5p56p, and 5p56f configurations with total
angular momentum J = 2.

Energy g factors

N Configuration (cm−1) Experiment Calculations

1 5p55d 80 323 1.3750 1.35
2 5p55d 81 925 – 0.95
3 5p55d 91 153 – 0.79
4 5p55d 91 447 1.274 1.25
5 5p510s 94 760 1.512 1.50
6 5p56p 78 120 1.11103 1.10
7 5p56p 79 212 1.3836 1.39
8 5p56p 89 162 1.190 1.17
9 5p56f 94 737 1.09 1.11
10 5p56f 94 760 0.87 0.84

The results for the g factors are presented in Table III
together with available experimental data. The deviation of
the theory from the experiment does not exceed 4%. Given
that the accuracy for the diagonal matrix elements is often
higher than that for the off-diagonal ones, we can say that
this finding is consistent with our earlier estimate of the
20% uncertainty for the electric dipole matrix elements. To
be on the safe side we adopt the same 20% uncertainty
for the M1 transition amplitudes. The results are presented
in Table IV. Note that some amplitudes for the transitions
between states of the 5p510s and 5p55d configurations are
larger than the single-electron matrix element (11). One can
say that configuration mixing can lead to enhancement of the
M1 transition amplitudes.

D. Comparison with dysprosium

It is interesting to compare the weak matrix element
between the degenerate states of Xe [(1) and (2)], with the weak
matrix elements of the degenerate states A and B for Dy [3,15].
The experimental value for Dy is |WAB| = |2.3 ± 2.9 ± 0.7|
Hz [3], while the theoretical value is WAB = 4(4) Hz [15]. Note
that highly excited np1/2 states give significant contribution to
the value (8) for the weak matrix element for Xe, making it
smaller. Such states were not included into calculation of the
weak matrix element for Dy. At the present level of accuracy

TABLE IV. Calculated magnetic-dipole transition amplitudes
(reduced matrix elements given in units of Bohr magneton μ0)
between the states numerated in Table III (labeled here as N and
N ′).

N -N ′ M1 N -N ′ M1

10s-5d transitions 6f -6p transitions
5-1 0.20(4) 9-6 0.0064(13)
5-2 0.052(10) 9-7 0.023(5)
5-3 0.023(5) 9-8 0.0093(19)
5-4 0.26(5) 10-6 0.0030(6)

6f -6f transition 10-7 0.0011(2)
9-10 0.19(4) 10-8 0.0089(18)

the predicted values of the PNC matrix elements for these two
systems are similar.

III. STARK EFFECT OF THE 6 f STATES

To study the states of prospective PNC measurements, the
Stark shift of the energies of two 6f states with total angular
momentum J = 2 in a uniform dc electric field were measured.
One state is the 5p56f 2[5/2]2 with energy E = 94 759.935
cm−1 (2) and the other state is the 5p56f 2[3/2]2 state with
energy E = 94 737.121 cm−1 [Fig. 1(a)].

From the energy shifts and splittings of the lines, one can
deduce the scalar and tensor polarizabilities, and therefore
identify respective contributions from nearby opposite-parity
states [16–18].

A. Experimental apparatus and methods

For the measurement of the Stark shift of the 6f states
a 2+1 resonance-enhanced multiphoton ionization (REMPI)
scheme using light at about 211 nm was implemented [19].
A schematic diagram of the experimental setup is presented
in Fig. 1, and the details of the apparatus can be found in
Refs. [20–22].

An atomic beam of Xe atoms was supersonically expanded
through a homemade piezoelectrically actuated nozzle valve
(∼1 mm orifice diameter, backing pressure 1 atm) [22]. The
atomic beam was skimmed and collimated, and ∼10 cm from
the nozzle was intersected at right angles by a linearly polarized
pulsed-laser beam. In the interaction region, the atomic beam
density was estimated to be 1014 atoms/cm3, and the residual
gas pressure in the vacuum chamber was ∼10−6 mbar.

The 211 nm light was generated with a tunable dye laser
(Lambda Physik LPD300) that was pumped with a XeCl
excimer laser LPX. The laser operated at a repetition rate
of 10 Hz and had a pulsewidth of ∼30 ns, while the laser
linewidth was approximately 0.2 cm−1. To produce the desired
fundamental wavelength (λ ∼ 422 nm), stilbene 3 dye was
used. The typical output pulse energy was ∼7 mJ. A BBO-II
crystal was used to frequency double the output of the dye
laser, producing the desired 211 nm radiation. Typical pulse
energies of the light at 211 nm were ∼0.5 mJ.

The particular states of interest were populated via two-
photon absorption (λ ∼ 211 nm) starting from the ground
state 5p6 (1S0). The laser and atomic beam interaction region
lies in the focus of the ion-imaging system consisting of a
single-electrode repeller grid (60 mm outer diameter and 2 mm
aperture) and grounded extractor with a 20 mm aperture [see
Fig. 1(b)] [21]. The 2 mm hole on the repeller was also covered
with a flat grid (1000 lines/in.) to ensure homogeneity of
the electric field. The distance between the repeller and the
extractor was set at 2.5 mm. High voltage, up to 9 kV, is
applied to the repeller grid using a high-voltage feedthrough.
Calibration of the supplied voltage was performed using a
high-voltage probe (Tektronix P6015A).

Following the two-photon excitation to a resonant state,
the absorption of an additional 211 nm photon ionizes the
excited atom. The produced ions, located in the center
of the repeller-extractor arrangement, are accelerated in a
time-of-flight (TOF) apparatus toward a microchannel-plate
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TABLE V. Selection rules for the J = 0 → J = 2 two-photon
monochromatic excitation for the geometry shown in Fig. 1 (electric
field along ẑ axis, and laser beam propagating along ŷ axis). The
quantization axis is chosen parallel to the electric-field axis (z axis).
Controlling the polarization of the laser beam, different Zeeman
sublevels of the excited state with angular momentum J = 2 can
be identified.

Polarization
of laser beam Zeeman sublevels

x̂ 	M = 0 	M = ±2
ẑ 	M = 0

1√
2
(x̂ + ẑ) 	M = 0 	M = ±1 	M = ±2

(MCP) detector. In the presence of a dc static electric field
(the one used for the acceleration in the TOF apparatus),
the atomic levels are shifted due to the Stark effect, and
therefore the frequency for the two-photon absorption changes.
Maximizing the signal on the MCP detector by adjusting
the wavelength of the laser, allows one to directly mea-
sure the resonant transition wavelength for a specific value
of the electric field, and consequently measure the Stark effect
of the state of interest. The MCP signal was displayed on
a digitizing oscilloscope (LeCroy WaveRunner 104MXi-A)
which permitted signal averaging. Approximately 40 pulses
were averaged per each data point. For each relevant transition,
we performed three wavelength scans as a function of the
electric field. At the end of each scan, the grating position of
the dye laser for zero electric field was recorded. Determination
of the wavelength of the transition in the absence of electric
field was possible by adjusting the delay between the laser
pulse and the rapid switching-on of the electric field after the
excitation or ionization has taken place. The resolution on the
position of the grating was 0.001 nm.

Finally, the orientation of the polarization of the laser beam
with respect to the electric field was controlled with a λ/2
waveplate (Fig. 1), allowing us to identify the observed shifted
lines with particular Zeeman sublevels of the state under
investigation, by exploiting the selection rules for transitions
driven by two photons of the same color [23] for the specific
geometry of our experiment (Table V).

B. Electric-field calibration: Stark effect of the n = 2
states in hydrogen

To verify the performance of the apparatus for the inves-
tigation of the Stark effect in the excited states of Xe we
measured the Stark effect on the two-photon 1s-2s transition of
the hydrogen atom (at 243 nm). The Stark splitting and mixing
of the 2s1/2 and 2p{1/2,3/2} states of atomic H can be calculated
exactly and therefore provide an accurate determination of the
electric field strength in the interaction region [24–26].

Method. The presence of diffusion-pump oil in the chamber
is the main source of H atoms in our experiment. A (2+1)
REMPI scheme at 243 nm was used to excite and ionize H
atoms produced by the photodissociation of pump-oil hydro-
carbons. The photodissociation produces a top-hat Doppler
frequency profile approximately 4 cm−1 wide. For low electric
fields, the large Doppler widths on the observed line mask the

expected Stark shifts of the n = 2 states (of the order of a
few wave numbers). For that reason, a Doppler-free (2+1)
REMPI scheme was adopted to produce and ionize H atoms at
a single laser wavelength regardless of the atoms’ laboratory-
frame velocity (Doppler shift) using circularly polarized light
[27,28]. Doppler-free excitation produces narrow absorption
features, increasing the electric-field detection sensitivity
through the Stark effect [26]. By varying the intensity of the
laser we have verified that light-induced (ac) Stark shifts are
negligible.

For the production of 243 nm radiation, Coumarin 120 dye
was used, yielding energies of ∼1 mJ per pulse at 243 nm
(after the frequency-doubling stage). For the realization of
a Doppler-free REMPI scheme, additional optics were used
[see Fig. 1(b)]. The linear polarized beam was converted to a
circularly polarized beam using a λ/4 waveplate, and focused
in the center of the repeller and extractor geometry using a
f = 15 cm lens. Upon exiting the chamber, the beam passed
through another lens (f = 20 cm), creating a collimated beam,
which was then reflected back to the chamber with the use of
a plane mirror [dashed box in Fig. 1(b)]. Between the lens
and the retroreflecting mirror, an additional λ/4 waveplate
was used to control the polarization of the reflected light.
Spatial overlap in the focus was ensured by directing the
reflected beam back through the initial beam path, and by
adjusting the position of the retroreflecting mirror to produce a
beam matched with the input one. Creating counterpropagating
beams by using a mirror reflection, introduces a delay between
the two beams (in our case ∼2 ns) but temporal overlap was
ensured by the fact that the laser pulse width is ∼30 ns,
maintaining, thus, a high ionization efficiency [28]. Calibration
of the polarization of the counterpropagating beams was
performed by exploiting the selection rules for two-photon
transitions. The 243 nm resonant signal disappears when the
counterpropagating beams have opposite helicities.

Results and analysis. In Fig. 3 we present the results of the
calibration experiment. The solid lines (Fig. 3) represent the
theoretical calculations for the Stark shift of the n = 2 states
in H as a function of the electric field.

In the absence of electric field, only the two-photon
transition to the 2s1/2 state is allowed. With increasing electric
field, the 2p1/2 component of the mixed state appears and is
red-shifted, while the 2p3/2 component of the mixed state is
blue-shifted. For sufficiently high electric fields (�4 kV/cm)
the fine structure is negligible and j is not a good quantum
number. In two-photon processes, for collinear and of equal-
frequency photons, the selection rules state that the photons
cannot participate in any process that would require them to
be in a state of total angular momentum one [23]. Therefore
as a function of the electric field, the probability of exciting
into states characterized by angular momentum of one should
tend to zero. That is apparent in Fig. 1(b) of Ref. [26],
where the normalized two-photon absorption line intensities
are presented. Note that for fields higher than 5 kV/cm the
2s1/2 intensity drops to less than ∼5% of its initial value.
This fact explains the inability to observe transitions to the
2s1/2 in our experiment, where for low electric fields the
signal-to-noise ratio was approximately SNR ∼ 5. For this
work we chose to take data at electric fields higher than
4 kV/cm for better resolution. Moreover, the interaction of
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FIG. 3. (Color online) Theory and experimental data for the Stark
effect of the two-photon 1s-2s transition of hydrogen. The calculated
shifts for the mixed 2s1/2 (orange, dashed), 2p1/2 (gray, solid), and
2p3/2 (blue, solid) states are presented as a function of the electric field
strength. The zero value in the energy axis which corresponds to the
unperturbed energy of the 2p1/2 state, and consequently the energy
splittings between the 2p1/2 state and the 2s1/2 and 2p3/2 states,
represent the Lamb shift and the fine-structure splitting, respectively
[7] (see inset). The unperturbed 2p3/2,mj = ±3/2 (blue, dashed)
state is also presented. The hyperfine structure is neglected under our
experimental conditions; see text for discussion.

the atom with the electric field does not mix states of different
mj when the quantization axis is chosen parallel to the electric
field [29], and therefore the 2p3/2,mj=±3/2 sublevels remain
unperturbed by the presence of the electric field (as seen in
Fig. 3). In addition, note that for the polarizations chosen in
our experiment, the transition to the 2p3/2,mj=±3/2 could not
be observed. Furthermore, the hyperfine structure of hydrogen
is neglected, as the hyperfine splittings of the n = 2 levels
of hydrogen are much smaller than our experimental energy
resolution [30], while Stark shifts of the hyperfine structure
for the electric-field strengths used, are negligible [31].

The dye laser’s grating positions corresponding to signal
peaks were recorded for each value of the electric field. Each
data point shown in Fig. 3 represents the average from three
consecutive scans. The error bar for each point shown in Fig. 3
includes the correlated systematics which correspond to the
uncertainty in the reading of the grating position.

The experimental data are in good agreement with the
theoretical predictions, as seen in Fig. 3, verifying the
performance of the apparatus for the Stark-shift measurements
of the 6f states of Xe presented in the next section.

IV. RESULTS AND DISCUSSION

A. Stark effect of 6 f states

In Fig. 4 we present the Stark-shift measurements of the 6f

states. There are two important features of these shifts which
should be noted. First, in the case of the 6f 2[5/2]2 state (2),
the magnitude of the shift (15–20 cm−1) is much larger than
the energy interval between states (1) and (2). Therefore, the
Stark shift should be generally treated nonperturbatively via
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FIG. 4. (Color online) Experimental data of the Stark shift of
states (a) 6f 2[3/2] J = 2 (94 737.121 cm−1); M = 0 (solid line),
|M| = 1 (dotted line), |M| = 2 (dashed line) Zeeman sublevels and
(b) 6f 2[5/2] J = 2 (94 759.935 cm−1), M = 0 (solid line), |M| = 2
(dashed line) Zeeman sublevels, along with the theoretical prediction
for the Stark shift of the |M| = 1 Zeeman sublevels (dotted line)
using the polarizability and hyperpolarizability obtained from fitting
Eq. (17) to the observed energy shifts of the M = 0 and |M| = 2
Zeeman sublevels. In both cases, the different Zeeman sublevels
were identified by exploiting the degenerate two-photon selection
rules (Table V), made possible via the control of the polarization
state of the laser beam.

matrix diagonalization. Second, the shifts for both states are
negative, i.e., the energy intervals between the ground state
and the excited 6f states decrease with increasing electric
field. This means that the shifts are dominated by mixing with
odd-parity states above the 6f states. The largest contribution
should come from the 6g states. Their position is not known
experimentally but it is natural to expect that the energies of
the 6g states are close to the energies of the 6f states. Indeed,
both configurations correspond to almost pure Coulomb states
screened from the atomic core by a centrifugal barrier. Their
energies (E ≈ −Ry/n2, where Ry is the Rydberg constant and
n is the principal quantum number) in the Coulomb limit do not
depend on angular momentum, as confirmed by Hartree-Fock
calculations.

The energy interval between the 6f and 6g states is not
known, and for that reason it is treated as a fitting parameter
in our analysis of the experimental data. Using the Stark-shift
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TABLE VI. Stark shift matrix for the 6f 2[5/2]J=2 state with
E = 94 759.935 cm−1. d1 and d2 are the electric dipole transition
amplitudes to the 10s and 6g states (see text); kf and kg are the
second-order energy corrections due to transitions to the states not
included in the matrix; δ is the 6f -6g energy interval; and E is the
static electric field strength. Transition amplitudes d1 and d2 are taken
from calculations; and kf , kg , and δ are treated as fitting parameters.

States 6f 10s 6g

6f kf E2 d1E d2E
10s d1E 0 0
6g d2E 0 δ + kgE2

measurements for the 6f states, a range of values for the
energy interval between the 6f and 6g states can be obtained.
In particular we use the Stark-shift matrices presented in
Tables VI and VII, and, for example, focus our analysis on
the Stark-shift data for the |M| = 2 Zeeman sublevels for both
6f states (Fig. 4).

The electric-dipole matrix element d1 appearing in Table VI
is given by Eq. (10). The electric-dipole matrix elements d2

and d, appearing in Tables VI and VII, include all possible
transitions from the 6f 2[5/2]2 and the 6f 2[3/2]2 states to
the 6g states, respectively [32]. Theoretical estimates for
these electric-dipole transition amplitudes d2 and d suggest
that d2 ≈ d ≈ 20(5) ea0 → 0.86(22) cm−1/(kV/cm). There-
fore, the small value of the electric-dipole transition amplitude
between the 6f and 10s states, d1 [Eq. (10)], should have little
effect on the analysis of the measurements. This is verified by
setting d1 = 0, where we see that the Stark-shift analysis of the
measurements on the 6f 2[5/2]2 [Fig. 4(a)] is not significantly
affected. Moreover, we neglect the contribution of the 10s state
in the Stark shift of the 6f 2[3/2]2 state (see Table VII). This
state is not so close to the 10s state, and thus, the corresponding
mixing is further suppressed by orders of magnitude.

We proceed with the analysis of the Stark-shift measure-
ments for the |M| = 2 Zeeman subleveles of both 6f states
by imposing two extra conditions. The parameters kf and
kg , appearing in the Stark-shift analysis for both 6f states
(Tables VI and VII) are second-order energy corrections,
due to transitions to states not included in the matrices. In
particular, the kg parameter appearing in both matrices, is
the same as it corresponds to the same set of the 6g states.
The kf and kg parameters model the quadratic behavior
of the Stark-shift measurements, while the other terms describe

TABLE VII. Stark-shift matrix for the 6f 2[3/2]J=2 state with
E = 94 737.121 cm−1. d is the electric dipole transition amplitude to
the 6g states (see text); kf and kg are second-order energy corrections
due to transitions to the states not included in the matrix; δ is the 6f -6g

energy interval; and E is the static electric field strength. Transition
amplitude d is taken from calculations; and kf , kg , and δ are treated
as fitting parameters.

States 6f 6g

6f kf E2 dE
6g dE δ + kgE2

the deviation from the quadratic behavior. The parameter δ,
which corresponds to the energy interval between the 6g state
and the 6f 2[5/2]2 state (	δ = 23 cm−1 is the experimental
value for the energy interval between the two 6f states), is
included in both Stark-shift-matrix diagonalizations. For Stark
shifts smaller than δ, one expects a quadratic Stark effect, while
for larger values, a linear behavior. Therefore, the parameter δ

is constrained by the deviation from the quadratic behavior, and
thus, its value is directly linked to the value of kf . Furthermore,
one sees from the analysis that for large values of d2 and
d, one gets kf > 0 as expected, while for small values, one
gets kf < 0. Imposing these constraints on the analysis of the
Stark-shift data for both 6f states, along with the theoretical
estimations for the d2 ≈ d ≈ 20(5) ea0, for which kf > 0, we
find an energy interval δ = 30(10) cm−1.

For the physically expected range of values for kf and δ,
we see from the theoretical analysis that kg is negative. This is
probably due to a contribution from the 6h states, similar to the
negative Stark shift for the 6f states arising due to the contri-
butions of the 6g states. Therefore, the measured Stark shift of
the two 6f states reveals the presence of the 6g and 6h states.

Finally, the data on the Stark shift for state (2) can be used
to put a limit on the weak mixing of the degenerate states
(1) and (2). This is because the weak matrix element between
these states and the amplitude of the electric dipole transition
between them are affected by configuration mixing in a similar
way. Indeed, if both matrix elements are dominated by the
10s-np transitions, then the value of both matrix elements is
determined by the admixture of the 5p5np configurations to
the 5p56f configuration. This is estimated by the value of
the d1 parameter in the Stark shift matrix (Table VI). If the
calculated value of d1 (≈0.5 ea0) is used, very good fitting of
the experimental Stark-shift data can be achieved. However,
since this matrix element is not zero due to configuration
mixing only, the uncertainty in its value is large. The same
is true for the weak matrix element W [Eq. (8)]. As a
way to estimate this uncertainty we check how much one
can change the value of d1 without affecting the fitting of
the Stark-shift data. It turns out that the analysis becomes
unstable for d1 > 1 ea0. The instability manifests itself in the
need to use large unrealistic values for the fitting parameters,
and deteriorating of the quality of fitting. Taking the value
d1 = 1 ea0 as the upper limit for the electric dipole transition
amplitude, we note that it is about 14 times smaller than the
10s-10p1/2 electric dipole amplitude. Assuming the same ratio
for the weak matrix elements and using

〈10s|HW |10p1/2〉 = 0.12 × 10−13(−QW/N )i
e2

a0
, (16)

obtained in the RPA calculations, we get for the weak matrix
element between the degenerate states (1) and (2): |W | <

0.8 × 10−15(−QW/N ) ie2/a0 ≡ 5 Hz in agreement with the
calculated value [Eq. (8)].

B. Polarizabilities and hyperpolarizabilities of the 6 f states

In the case of barium (Ba) [16] and samarium (Sm)
[17], Stark-shift measurements of various states were used to
estimate the value of the reduced matrix elements of the dipole
operator to near opposite-parity “partner” states. This proved to
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TABLE VIII. Observed polarizabilities for each Zeeman sublevel
of the 6f [5/2]2 states, in units of MHz/(kV/cm)2.

State α(M = 0) α(|M| = 1) α(|M| = 2)

6f [3/2]2 728(9) 671(8) 762(11)
6f [5/2]2 1370(11) – 1344(12)

be possible, in most cases, because the observed shifts and sub-
level splittings for each state under investigation were the result
of contribution by one or a few dominating near opposite-parity
partner states in each case (which dominate due to the small-
ness of the energy-difference denominator). In the case of Xe
it appears that this is not possible, and a more refined level of
theoretical calculations is required to determine all the reduced
matrix elements between the 6f states and the 6g states.

In this section we present an analysis of the Stark shifts
for all the observed Zeeman sublevels of the 6f states,

presented in Fig. 4, in terms of the polarizabilities and
hyperpolarizabilities, following closely the work described in
Ref. [16] (and references therein).

The polarizability αηJM and hyperpolarizability γηJM of
the state |ηJM〉 is determined from the dependence of the
observed energy shifts on the electric field by fitting the data
with the following equation:

	EηJM = −1

2
αηJME2 − 1

4!
γηJME4. (17)

The polarizability αηJM can be expressed in terms of its scalar
and tensor parts as

αηJM = α0,ηJM + α2,ηJM

3M2 − J (J + 1)

J (2J − 1)
, (18)

and the hyperpolarizability γηJM can be expressed in terms of
its scalar and tensor parts as

γηJM = γ0,ηJM + γ2,ηJM

3M2 − J (J + 1)

J (2J − 1)

+ γ4,ηJM

35M4 + [25 − 30J (J + 1)]M2 + J (J − 1)(J + 1)(J + 2)

J (2J − 1)(2J − 3)(2J − 2)
. (19)

In Tables VIII and IX we present the polarizabilities and
hyperpolarizabilities of the 6f states obtained in this work.
Note that the polarizability of the ground state of Xe is
neglected, as the energy shifts of the 5p6 ground state for the
maximum electric fields used in our studies are of the order
of a few ∼MHz [34] and therefore are negligible compared to
the observed shifts.

Using the values for the α0 and α2 of the 6f 2[5/2]
J = 2 state (Table VIII), we predict the energy shift for the
|M| = 1 Zeeman sublevels that we were not able to identify by
exploiting the selection rules of the two-photon transition (see
Table V). In addition, because a large deviation from quadratic
behavior is observed in the energy shift of the 6f 2[5/2]2, we
use the hyperpolarizabilities γ obtained from the energy shifts
of the |M| = 0,2 sublevels (Table IX) to estimate γ (|M| = 1).
In Fig. 4(b) the prediction for the energy shift of the |M| = 1
sublevel is presented. The predicted overlap between the
|M| = 1 and the |M| = 2 Zeeman sublevels explains the
inability to identify the Stark shift of the |M| = 1 sublevels
considering the experimental resolution of our apparatus (note
that the uncertainty in the reading of the dye laser’s grating
position was ∼0.22 cm−1).

The Stark shifts of the observed Zeeman sublevels of the
6f [3/2]2 state cannot be explained using a similar procedure
as the one followed for analyzing the Stark-shift data of the

TABLE IX. Observed hyperpolarizabilities for each Zeeman
sublevel of the 6f states, in units of kHz/(kV/cm)4.

State γ (M = 0) γ (|M| = 1) γ (|M| = 2)

6f [3/2]2 −787(107) −689(95) 125(131)
6f [5/2]2 −3776(140) – −3095(163)

6f [3/2]2 state. The tensor energy shifts are expected to be lin-
ear in M2, where the observed data show a different behavior.
Therefore, different coupled partner states for each |M| sub-
levels are required to explain the observed spectrum. We an-
alyze separately each observed sublevel of the state 6f [3/2]2

using Eq. (17) to obtain their polarizabilities and hyperpolar-
izabilities. The results are presented in Tables VIII and IX.

Finally, note that the polarizabilities presented in
Tables VIII and IX are among the largest measured for atomic
systems in states with principal quantum number n < 10 [16].

V. CONCLUSIONS

We have studied the properties of a pair of nearly degenerate
opposite-parity states in atomic Xe, namely the 5p510s 2[3/2]o2
(1) and 5p56f 2[5/2]2 (2) states, which are of interest for
P - and P,T -odd experiments. Theoretical calculations of the
width of the states, and the value for the weak matrix element
between these states are presented. Furthermore, we studied
the Stark shift of the even-parity 6f state and put a limit on
the weak mixing of the (1) and (2) near-degenerate states,
of |W | < 5 Hz. The analysis of the experimental Stark-shift
measurements also revealed the presence of the 6g and 6h

states in atomic Xe, which have been unobserved so far.
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