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Measurement of the Stark shift of the 6s 2S1/2 → 7 p 2PJ transitions in atomic cesium
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We report measurements of the Stark shift of the cesium 6s 2S1/2 → 7p 2P3/2 and 6s 2S1/2 → 7p 2P1/2

transitions at λ = 456 and 459 nm, respectively, in an atomic beam. From these, we determine the static
scalar polarizability for both 7P states and the tensor polarizability for the 7P3/2 state. The fractional
uncertainty of the scalar polarizabilities is ∼0.18%, while that of the tensor term is 0.66%. These measurements
allow a precise determination of the reduced radial matrix elements 〈7P1/2||r||6D3/2〉 = 17.92 (3) a0 and
〈7P3/2||r||6D5/2〉 = 24.28 (6) a0, providing a sensitive test and critical confirmation of theoretical models of
the Cs atom, which has played a central role in parity nonconservation measurements.
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I. INTRODUCTION

The high precision attainable in measurements of the
Stark shift of atomic transition frequencies makes them
sensitive tests of theoretically determined radial matrix
elements. Atomic cesium, which has played a central
role in parity nonconservation measurements over the past
40 years [1–6], is of particular interest in this regard, where
accurate determinations of electric dipole matrix elements,
experimental [7–15] and theoretical [16–18], are critical for
precise determination of the weak charge. In this report,
we discuss our recent measurements of the scalar static
polarizabilities α0 of the 7p 2P1/2 and 7p 2P3/2 states of atomic
cesium and the tensor static polarizability α2 of the 7p 2P3/2

state. We use our measurements to derive the reduced radial
matrix elements 〈7P1/2||r||6D3/2〉 and 〈7P3/2||r||6D5/2〉, with
fractional uncertainties of 0.17 and 0.25%, respectively.

The tensor polarizability for the 7p 2P3/2 state in cesium has
been measured previously using the level-crossing technique
by Khadjavi, Lurio, and Happer [19] and by Khvostenko
and Chaika [20], with a measurement uncertainty of a few
percent in each case. A subsequent measurement of this
tensor polarizability, as well as the scalar polarizability α0 for
both 7p 2PJ lines, was reported by Domelunksen [21], with
a comparable uncertainty. In the present work, we are able
to improve the precision of each of these polarizabilities. To
achieve this, we use narrow-band, frequency-stabilized diode
lasers to excite the 6s 2S1/2 → 7p 2PJ transitions in a nearly
Doppler-free atomic beam geometry, allowing us to spectrally
resolve the various hyperfine components of the transitions
(shown schematically in Fig. 1). We report values of α0 with
an uncertainty of ∼0.18% and of α2 with an uncertainty of
0.66%. Our results are in good agreement with early theoretical
values based upon Coulomb potentials [23], as well as the
more recent results of Iskrenova-Tchoukova, Safronova, and
Safronova [17], who use a relativistic all-order method to
calculate transition moments and a sum-over-states method
to determine the polarizabilities.

Upon application of a dc electric field of magnitude E0 to
an atomic system, the energy of a bound state of that atom is
shifted through the quadratic Stark effect by the amount

�E = − 1
2αE2

0 , (1)

where α is the polarizability of the atomic level. For a level of
electronic angular momentum J , the polarizability α can be
expressed in terms of its scalar (α0) and tensor (α2) components
as

α = α0 + α2
3m2

J − J (J + 1)

J (2J − 1)
, (2)

where mJ is the projection of the angular momentum on
the z axis. The scalar term represents an overall shift of all
components of the level together, while α2 describes a splitting
of the state into its various magnetic components. For J = 0
or 1

2 , the α2 term in Eq. (2) vanishes, and the level is shifted
in energy but remains unsplit. For levels that exhibit hyperfine
structure and have angular momentum J � 1, the Stark effect
produces a much richer spectrum. Schmieder [24] showed that
the polarizability α of the (F , mF ) hyperfine component is of
the form

α = α0 + α2 QF,F̃ ;|mF |, (3)

where the matrix QF,F̃ ;|mF | describes the mixing of states
of unequal F (F and F̃ in this expression), but equal mF ,
by the static field. (We use the usual notation here, with F

representing the total atomic angular momentum, including
nuclear spin I , and mF representing the projection of F on
the z axis.) The scalar part of the polarizability shifts all
hyperfine and magnetic sublevels equally, while the tensor
part causes the spectrum to diverge into a series of individual
lines. As an illustration, we show an uncalibrated, partial
Stark spectrum of the 6s 2S1/2 → 7p 2P3/2 transition at E0 =
12 kV/cm in Fig. 2(a). We label each peak with F ′ and
m′

F of the 7p 2P3/2 state. In contrast, each hyperfine line of
the 6s 2S1/2 → 7p 2P1/2, while shifted by the Stark effect,
remains a single line. In the following, we will discuss our
experimental observations of the Stark spectrum of the two
transitions 6s 2S1/2 → 7p 2PJ , J = 1

2 and 3
2 , in atomic cesium,

and from these our determination of the scalar and tensor
polarizabilities.

II. DESCRIPTION OF APPARATUS

The general principle of the measurement is similar to that
of several other recent works [25–28]. We use the output of a
single, narrow-band tunable laser source, which we split into
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FIG. 1. Energy-level diagram of atomic cesium, showing the
levels relevant to these measurements. Hyperfine splittings of the
7P states are taken from Ref. [22].

two separate beams, labeled the reference and Stark beams
in Fig. 3. Using an electro-optic modulator (EOM) and an
acousto-optic modulator (AOM) to offset the frequencies of
these two beams, we concurrently bring the reference beam
into resonance with the cesium transition in a field-free vapor
cell (the reference cell) and the Stark beam into resonance with
the transition in cesium atoms to which a uniform electric field
has been applied. The difference between the frequency offsets
of these two beams, which depend only on the rf frequencies
driving the modulators, equals the Stark shift of the resonance.
This eliminates the requirement for calibration of the laser
frequency scan, which can be problematic at the precision
required in these measurements. The Doppler broadening of
the resonances is largely suppressed in our measurements,
allowing us to resolve the hyperfine structure of the transitions
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FIG. 2. (Color online) (a) An uncalibrated partial Stark spectrum
of the 6s 2S1/2,F = 4 → 7p 2P3/2 transition at E0 = 6 kV/cm show-
ing the splitting of the lines. The notation above each peak indicates
(F ′, |m′

F |) of the 7p 2P3/2 state. The arrows indicate the peaks used
in our measurements, and the frequency difference between the red
and blue arrows is approximately 155 MHz. (b) The derivative signal
of the same spectrum. There is a small mismatch between the error
signal zero crossing and the center of the signal peaks due to the
long integration time constant on our lock-in amplifier. This does not
affect our results because we fix the EOM frequency when making a
measurement.
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FIG. 3. (Color online) Diagram of the experimental configura-
tion. The external cavity diode laser (ECDL) generates light at 455.7
or 459.4 nm, resonant with the 6s 2S1/2 → 7p 2P3/2 or 6s 2S1/2 →
7p 2P1/2 transition, respectively. The frequency of this beam is shifted
in the acousto-optic modulator (AOM), and sidebands imposed in the
electro-optic modulator (EOM), before crossing the atomic beam
inside the vacuum chamber at a perpendicular crossing angle. We
monitor the sideband structure of the Stark beam with the Fabry-Perot
interferometer.

and also allowing us to use relatively low dc electric-field
strengths in our measurements.

The laser for these measurements, which we operate at
wavelengths of 455.7 (for the 6s 2S1/2 → 7p 2P3/2 transition)
or 459.4 nm (for the 6s 2S1/2 → 7p 2P1/2 transition), is a
home-made external cavity diode laser (ECDL) using an an-
tireflection coated laser diode, which generates approximately
10 mW of optical power. We diffract the output beam in an
AOM and use the first-order diffracted beam, whose frequency
is fl + fAO (where fl is the frequency of the laser output
and fAO = 110.0 MHz is the AOM drive frequency), for
the experiment (i.e., this is the Stark beam). The 110-MHz
drive signal is produced by a synthesized signal generator
and amplified by an rf amplifier. We direct the undiffracted
beam, which we use as our reference beam, into a field-free
cesium vapor cell and frequency lock the laser to one hyperfine
component of the Doppler-free saturated absorption spectrum
(the 6s 2S1/2, F = 4 → 7p 2P1/2, F = 4 line at λ = 459 nm or
the 6s 2S1/2, F = 4 → 7p 2P3/2, F = 5 line at λ = 456 nm) of
this spectrum. To obtain an error signal for locking to the peak
of the hyperfine line, we dither the laser injection current at 30
kHz. In either case, the laser frequency fl is resonant with and
stabilized to the unshifted atomic resonance, fa . The linewidth
of the laser spectrum is <1 MHz. Because the absorption
strengths of these transitions are relatively weak, we have
to heat the cesium vapor cell to a temperature in the range
80–110 ◦C to obtain sufficient Cs density within the cell.

We impose optical sidebands on the spectrum of the Stark
beam by modulating its phase in a traveling-wave EOM, driven
by a separate signal generator and amplifier at a frequency
fEO, where we can adjust fEO to any frequency in the range
from 110 to 1000 MHz. We use the lower-frequency sideband,
whose frequency is fl + fAO − fEO, to excite the Stark-shifted
absorption resonance in the atomic beam. We control the
frequency difference between the reference beam and the Stark
beam in order to make our measurements (see the following
sections).
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The cesium atom beam is formed inside an aluminum
vacuum chamber pumped with a turbomolecular pump to a
pressure of 5 × 10−6 torr. We use an effusive cesium oven with
a nozzle consisting of an array of stainless steel hypodermic
needle tubes to form the atom beam. More details are available
in our earlier publications [29,30]. This oven and nozzle
generate a beam of dimension 12 × 8 mm near the nozzle.
We insert an atomic beam aperture (labeled skimmer in Fig. 3)
before the interaction region to further reduce the width of
the atomic beam to ∼1/2 the spacing of the field plates.
This reduces the accumulation of cesium on the electric-field
plates. The spectral width of the 6s → 7p absorption lines in
our beam geometry is ∼6 MHz full width at half maximum,
largely due to Doppler broadening in the slightly diverging
atomic beam. The natural linewidths of these transitions,
corresponding to the 133-ns lifetime of 7P3/2 and the 155-ns
lifetime of the 7P1/2 state [31–33], are 1.2 and 1.0 MHz,
respectively.

The uniformity of the static electric field and the precision
with which this field can be determined depend critically on the
parallel conducting field plates used to generate this field. We
construct these field plates from a pair of 76.2 × 25.4-mm (3 ×
1-in.) microscope glass slides, coated on the inside surfaces
with a thin conducting layer of indium tin oxide. These field
plates are spaced by 4.928(4) mm [0.194 00(15) in.] and are
mounted inside an aluminum framework with external ceramic
posts using a vacuum compatible epoxy. (The number enclosed
within parentheses following these parameters indicates our
estimate of the uncertainty.) We evaluated the nonuniformity
of the electric field within the interaction region due to fringing
effects using a commercial software package and found that
this variation is less than a part in 105.

During assembly, we spaced the field plates with a set of
carefully selected ceramic spacers to assure a high degree
of parallelism, then removed the spacers after the epoxy had
dried. (We observed drifts in some of our early Stark-shift
measurements, which we attributed to an accumulation of
cesium on the internal spacers used for those measurements.
These drifts were absent after we removed the internal
spacers.) We estimate the 0.000 15-in. uncertainty in the
spacing of the glass slides based on the relative ease with
which we can slip calibrated ceramic beads, whose lengths
we measured to ±0.000 05 in., at various locations near the
central region of the field plates, similar to the technique
described in Refs. [26,27]. We also measured the parallelism
of the plates by reflecting a HeNe laser beam from the two
surfaces and observing the spacing of the fringes formed by
the interference of the two reflected beams. We estimate that
the angle between the two plates was less than 0.15 mrad. This
high degree of parallelism between the field plates is consistent
with our estimate of the variation of the plate spacing over the
width of the plates.

We use a pair of stable high-voltage sources to bias the
field plates, one plate positively biased and the other negative.
Between sets of data, we switch the polarity of the field plates.
We measure the voltage applied to each field plate using an
Ohmcraft 1000:1 high-voltage resistive divider, which we have
carefully checked and calibrated for nonlinearity and stability.
The fractional uncertainty in the voltage measurement of each
field plate is ∼2 × 10−5.

Consistent with the treatment by Schmieder [24], we define
the z axis of the atomic system as the direction of the
applied field E0. While the Stark beam for these measurements
propagates in a direction k̂ nearly parallel to this z axis, and
its polarization state is linear, the experiment is relatively
insensitive to either of these conditions, since the ground-state
components are degenerate, and the various peaks in the Stark
spectrum correspond to different hyperfine components of
the excited state alone. Changes in polarization or imperfect
alignment of k̂ with the z axis only change the relative height
of the peaks in the Stark spectrum, but not their frequency.
By contrast, it is important that the laser beam propagates
in a direction perpendicular to the atomic velocity to assure
narrow absorption linewidths and to minimize the Doppler
shift of the lines. Using an alignment laser, we mount the
parallel field plates inside the vacuum system centered on
and parallel to the atomic beam. In addition, we observe
the reflection of the Stark beam from the field plates and
adjust this beam to normal incidence on the field plates. After
these alignment steps, only a minor adjustment of the Stark
beam direction k̂ is necessary to minimize the Doppler shift
of the resonance in the atomic beam, which we determine
by zeroing the applied field and comparing the absorption
resonance in the atomic beam to that of the reference
cell.

In order to detect the absorption resonances in the atomic
beam, we use the detection system that we developed earlier
[29,30] for sensitive measurement of highly forbidden optical
transitions. We based this system on a technique reported
earlier in Ref. [2]. The population of the cesium atoms as
they effuse from the oven is equally distributed among each of
the F = 3 and 4 hyperfine components of the ground state.
Before the atoms interact with the blue laser, we transfer
all of the atoms into the F = 4 level by optically pumping
the population with the output of an 852-nm ECDL tuned to
the 6s 2S1/2, F = 3 → 6p 2P3/2, F ′ = 4 hyperfine transition
of the D2 resonance line. After interacting with the blue laser,
the population in the initially empty F = 3 ground state is
a measure of the excitation rate by the Stark beam to the
7P state, since these atoms decay spontaneously back to the
ground state. We detect this population using the output of
a second ECDL tuned to the D2 line at 852 nm (in this case
resonant with the 6s 2S1/2, F = 3 → 6p 2P3/2, F ′ = 2 cycling
transition) and a large area photodiode to measure the scattered
optical power in this region.

We use a lock-in amplifier for phase-sensitive detection of
the photodiode current in order to improve the sensitivity of
the measurement. We dither the frequency of the EO sideband
at 145 Hz (with a 1-MHz amplitude), which modulates the rate
of absorption by the atoms. The derivative signal produced by
the lock-in amplifier, illustrated in Fig. 2(b), is a dispersion
shaped resonance of width ∼6 MHz. The zero crossing is well
suited for determination of the line center.

During the course of our measurements, we found that
the amplitude of the optical sideband of the Stark beam, as
monitored with a scanning Fabry-Perot interferometer, varied
across the 100–1000-MHz spectrum. To ensure that the optical
power in the sideband used for the experiment is constant,
we selected frequencies fEO at which the sideband power is
relatively uniform.
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We must keep the laser intensity below the saturation
intensity Isat in order to minimize power broadening and
light shifts. The laser intensity for these measurements is
4 mW/cm2, of which only ∼1/3 is in the lower sideband
that interacts with the atoms. Using the reduced matrix dipole
matrix elements for these transitions [15], we estimate that the
saturation intensity Isat of the 6s 2S1/2 → 7p 2P3/2 transition is
about 15 mW/cm2, while that of the 6s 2S1/2 → 7p 2P1/2 line
is about 50 mW/cm2. Therefore, the sideband intensity is well
below Isat in both cases.

A. Scalar polarizability of 7 p 2P1/2

For our determination of the polarizability α0 of the 7p 2P1/2

state, we first set the EO modulation frequency fEO to one of
seven predetermined values in the range between 110 and
1000 MHz. (The minimum of this range is the AO drive
frequency, and corresponds to a zero Stark shift, while the
maximum frequency is the maximum frequency of our signal
generator.) At each value of fEO, we adjust the voltage applied
to the plates to shift the transition into resonance with the lower
sideband of the Stark beam. In Fig. 4, we show one set of these
data, plotted as fEO vs E2

0 . The solid line indicates the result
of a linear least-squares fit with two adjustable parameters, the
intercept and the slope.

The intercept of this fitted line is 109.8 (2) MHz, consistent
with the 110.0-MHz frequency offset imposed by the AOM.
The slope of this line is 3.6417 (12) MHz/(kV/cm)2 and is
equal to half the difference between the polarizabilities of
the 7P1/2 state and the 6S1/2 state, 1

2 {α0(7P1/2) − α0(6S1/2)}.
The uncertainty of 0.0012 MHz/(kV/cm)2 is statistical and is
determined from the scatter of the data points from the linear
fit to the data. We show the difference between the data points
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FIG. 4. (a) A plot of fEO vs E2
0 for the 6s 2S1/2 → 7p 2P1/2

transition. Experimental data are shown by the square points, while
the solid line shows the result of a linear least-squares fit. The residual
error of each data point is shown in (b).
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FIG. 5. Summary of the four measurements of 1
2 {α0(7P1/2) −

α0(6S1/2)}. Error bars shown are statistical only. Square data points
were obtained with the electric field in the same direction as the Stark
beam. For the triangular data points, the measurements were made
with the electric-field orientation reversed. The fifth point (diamond
shaped) and horizontal line denote the weighted average.

and the linear fit, in Fig. 4(b). The rms residual for this set of
data is 0.22 MHz.

We measured the Stark shift of the 7P1/2 state four times,
reversing the direction of the electric field between sets of
data, and observed no variation correlated to electric-field
orientation. We show the slope 1

2 {α0(7P1/2) − α0(6S1/2)}
resulting from each of these measurements in Fig. 5. The
error bars shown in the figure indicate the statistical un-
certainty for each data point. The weighted average of
the four measurements yields 1

2 {α0(7P1/2) − α0(6S1/2)} =
3.6405 (6) MHz/(kV/cm)2, as indicated by the diamond-
shaped data point and horizontal line in Fig. 5. The re-
duced χ2 for these measurements is 4.14, indicating that
the measurement uncertainty is larger than the statistical
uncertainty. We have not scaled the statistical error despite
the large χ2 factor. As we will discuss in Sec. III, the overall
measurement uncertainty is dominated by the uncertainty in
the field plate spacing, and scaling the statistical error has little
impact on our final result. Using the ground-state polarizability
α0(6S1/2) = 0.099 78 (15) MHz/(kV/cm)2 from Ref. [12], we
find α0 = 7.3808 (12) MHz/(kV/cm)2, where the number in
parentheses denotes the statistical error only. In atomic units,
this is equivalent to 29 662 (5) a3

0 .

B. Scalar and tensor polarizability of 7 p 2P3/2

We base our determinations of α0 and α2 for the 7p 2P3/2

line on two lines in the Stark-shifted spectrum, namely, the (F ′,
|m′

F |) = (5,5) line and the (4,2) line. We chose these particular
mF peaks because they are well resolved from other peaks in
the spectrum, as shown in Fig. 2, and because their frequency
difference due to the Stark shift is large, allowing for a more
precise evaluation of α2. From Eq. (3), the polarizability of
the F ′ = 5, mF = ±5 components is α0 + α2. Our process
for determination of the sum α0 + α2 for the 7p 2P3/2 state
then is similar to that of α0 for the 7p 2P1/2, described in the
last section. With the reference laser frequency fl tuned and
locked to the 6s 2S1/2, F = 4 → 7p 2P3/2, F ′ = 5 resonance
in the reference cell, we adjust the frequency fEO of the signal
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FIG. 6. (a) An example of one data set of fEO vs E2
0

for 6s 2S1/2, F = 4, mF = ±4 → 7p 2P3/2, F ′ = 5, m′
F = ±5. The

straight line is the result of a linear least-squares fit to the data points.
(b) The residual between the data points and the straight line.

applied to the EOM to one of seven values in the range from
700 to 1000 MHz. (Below 700 MHz, the various peaks within
the Stark spectrum partially overlap, introducing errors in the
measurements of the line center.) Then we vary the voltage
applied to the field plates to bring the (5,5) peak into resonance.
We also take one measurement at zero electric field, varying
fEO to find the line center.

We show an example of one data set in Fig. 6. The
result of a linear least-squares fit, represented by the straight
line in this figure, yields an intercept of 110.7 (3) MHz
and a slope of 1

2 {α0(7P3/2) + α2(7P3/2) − α0(6S1/2)} =
4.0386 (18) MHz/(kV/cm)2. We show the deviation of each
of the data points from the fitted line in Fig. 6(b). The
rms residual is 0.3 MHz. We repeat this measurement with
the electric-field orientation reversed and obtain a result
which is in good agreement with our first measurement.
Using the two measurements, we determine a weighted
average slope of 1

2 {α0(7P3/2) + α2(7P3/2) − α0(6S1/2)} =
4.0389 (13) MHz/(kV/cm)2. Using α0(6S1/2) from Ref. [12],
we obtain α0 + α2 = 8.1776 (26) MHz/(kV/cm)2 for the
7p 2P3/2 state. This uncertainty accounts for statistical effects
only.

As we discussed earlier, the frequency difference between
the hyperfine components of the Stark spectrum is quantified
through the tensor polarizability α2, for which we base our
determination on a measurement of the frequency difference
between the (5,5) peak and the (4,2) peak. At zero field, the
frequency difference between these peaks is the hyperfine
splitting f4−5 = 83.025(30) MHz of the 7p 2P3/2 state [22].
We measure this frequency difference by fixing the electric
field E0 and adjusting the frequency fEO to bring the Stark
laser sideband into resonance with each sublevel. For each
of three voltage levels, we repeat the measurement with the
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FIG. 7. (Color online) Frequency fEO for the (5,5) (blue), (5,4)
(gold), and (4,2) (red) peaks vs E2

0 for determination of the tensor
polarizability α2. The solid lines are the calculated Stark shifts, less
the α0 terms, with α2 adjusted to minimize the deviation with the data.
The notation beside each line indicates (F ′, |m′

F |) of the 7p 2P3/2 state.

field direction reversed. In order to determine the value of
α2, we fit the diagonalized matrix Q to the data points.
In this case, we fixed the value of α0 + α2 to the value
8.1776 (26) MHz/(kV/cm)2, as discussed above, and used
Eqs. (40a) and (41) from Ref. [24] to generate curves
for varying values of α2. The least rms deviation between
the calculated and measured frequency difference between
the (F ′, |m′

F |) = (5,5) and (4,2) Stark-shifted frequencies
yields α2 = −1.0981 (65) MHz/(kV/cm)2 = −4413 (26) a3

0 .
In Fig. 7 we show the best-fit curves for the Stark-shifted
hyperfine peaks vs E2

0 , with the scalar component of the Stark
shift suppressed. The circles denote our experimental data
points. We also show measurements of the F ′ = 5, m′

F = 4
sublevels in this figure. We did not use these values in the
determination of α2, since the smaller frequency difference
between this peak and the (5, 5) peak gave these values a larger
uncertainty. Combining our results for α0 + α2 and α2 yields a
value of α0 = 9.2757 (70) MHz/(kV/cm)2, or 37 277 (28) a3

0 .

III. MEASUREMENT ERRORS

The uncertainties in the polarizabilities that we presented
in the previous section include only statistical effects derived
from the scatter in the data points from the fitted lines. In
addition, there are other experimental factors, as summarized
in Table I, that we must consider. In this section, we

TABLE I. Sources of error, estimates of their uncertainties, and
the resulting percentage uncertainty in α resulting from each source.

Source Uncertainty % of α

Field plate spacing 4 μm 0.16
Voltage divider ratio 0.005% 0.01
Voltage measurements 0.005% 0.01
Error signal line center 0.2 MHz 0.02
AOM drive frequency 10 kHz 0.01
EOM drive frequency 10 kHz 0.01
Beam alignment into chamber 0.05 mrad 0.01
Total systematic uncertainty 0.16
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discuss these contributions and provide estimates of their
magnitudes.

The largest uncertainty in our measurements is the sys-
tematic effect due to determination of the static electric-field
strength. These uncertainties derive from the uncertainty
in the field plate spacing (including the uncertainty in the
measurement of this spacing d, as well as any nonuniformity
in d), the uncertainty in the measurement of the voltage applied
to the plates, and edge effects that reach into the center of the
field plates. We have discussed the first of these in Sec. II,
where we estimate an uncertainty of the plate spacing of
0.08%. Since the Stark shift depends on E2

0 , the corresponding
uncertainty in the polarizabilities is twice as large, or 0.16%.
We also described the voltage dividers that we used to
measure the voltage applied to the field plates in Sec. II. This
fractional uncertainty of 5 × 10−5 results in an uncertainty
in the polarizabilities of 1 × 10−4. We also list in Table I
the measurement error of the volt meter as specified by the
manufacturer.

We estimate that the precision with which we can measure
the line center of each of the Stark-shifted line shapes is
±0.2 MHz. This is primarily limited by signal asymmetry
due to residual amplitude modulation of the Stark beam at
145 Hz. For instance, if the asymmetry of a dispersion-shaped
resonance is 15% of the maximum error signal, as was
typical of our measurements, the zero crossing is shifted by
∼0.2 MHz, assuming a 6-MHz linewidth of the absorption
peak. Another limiting factor is dc offsets in the error signal,
due to electronics and the overlap from adjacent peaks in the
spectrum. We modeled the pulling of the line center due to
adjacent peaks and found its effect on the polarizabilities
to be less than 2 × 10−5. We estimate that these limiting
factors lead to a fractional uncertainty in the polarizabilities of
2 × 10−4.

We also considered frequency shifts due to changes in
the propagation direction of the laser beam. Such a change
could introduce a Doppler shift in the line center of the
resonance. Heating effects in the EOM could deflect the beam,
for example. We have projected the Stark beam onto a screen
10 m beyond the EOM and were unable to observe any such
deflection. We place an upper limit of 0.05 mrad on any such
shift. Estimating the Doppler shift to be about 0.7 MHz/mrad,
this shift corresponds to an uncertainty of less than 0.05 MHz.
This limit is consistent with our observed rms residuals of the
measured peak positions in Figs. 4 and 6 of 0.2 MHz.

In order to determine α2(7P3/2) from our measurement of
the frequency difference between the (5,5) and (4,2) peaks
of the Stark spectrum, we used the hyperfine constants a =
16.605(6) MHz and b = −0.15(3) MHz from Ref. [22]. We
consider here the effect of the uncertainty of these hyperfine
constants on the uncertainties of the polarizabilities of the
7P3/2 state. By varying the values of the constants by one
standard deviation and running the fitting function again,
we can estimate their effect on our values of α0(7P3/2) and
α2(7P3/2). This effect is estimated to be 0.21% for α2(7P3/2)
and <0.02% for α0(7P3/2).

For our measurements of the scalar polarizabilities
α0(7P1/2) and α0(7P3/2), only the 0.08% variability in the
field plate spacing is significant. These effects contribute a
0.16% uncertainty. For the tensor polarizability α2(7P3/2),

there is an additional 0.21% error due to the uncertainty in the
hyperfine constants. We add these uncertainties in quadrature
with the statistical uncertainty stated earlier to obtain the
total uncertainty. For the scalar polarizabilities α0(7P1/2) and
α0(7P3/2), this results in an uncertainty in the final result of
0.17 and 0.18%, respectively. For the tensor polarizability
α2(7P3/2), the statistical uncertainty is the primary contributor
to the 0.66% uncertainty in our result. In the next section,
we present our final results for each and compare with
prior experimental and theoretical determinations of these
quantities.

IV. DISCUSSION

We present a summary of results for α0(7P1/2), α0(7P3/2),
and α2(7P3/2) in Table II, including the present results, as well
as several past experimental and theoretical determinations.
Each of our results is in good agreement with, but of higher
precision than, past measurements reported in Refs. [19] and
[21]. The measurement result for α2 for the 7P3/2 in Ref. [20]
differs by ∼10% from the others, including the present results.
The theoretical calculations of van Wijngaarden and Li [23]
and of Iskrenova-Tchoukova et al. [17] are in good agreement
with our results for all three polarizabilities as well. The former
does not report uncertainties. Our results differ from those
of Ref. [17] by typically less than 1%, while their stated
uncertainties are about 2%.

We can use our measurements of these scalar and ten-
sor polarizabilities to determine the radial matrix elements
〈7P1/2||r||6D3/2〉 and 〈7P3/2||r||6D5/2〉. As presented in
Ref. [17], the polarizability of the 7p 2P1/2 state is calculated
from the sum over all dipole-coupled ns and nd states of the
square of the radial matrix elements divided by the energy
spacing. From Table III of Ref. [17], the primary contribution
to this summation comes from the 6d 2D3/2 state, whose energy
differs from that of the 7p 2P1/2 by only 823.471 cm−1 [34,35].
All other terms combined make up only 1150 (80) a3

0 (∼3.5%
of the total). We use the theory values for each of these smaller
contributions, which we subtract from our experimental value
of 29 660 (50) a3

0 , to determine the contribution to α0(7P1/2)

TABLE II. Comparison of the polarizabilities determined in this
work to those of prior experimental and theoretical works. All values
are in units of 103 a3

0 .

7p 2P1/2
7p 2P3/2

Group α0 α0 α2

Experiment
Khadjavi et al. [19] −4.33 (17)
Khvostenko

and Chaika [20] −3.9 (1)
Domelunksen [21] 29.5 (6) 37.8 (8) −4.42 (12)
This work 29.66 (5) 37.28 (7) −4.413 (29)

Theory
Van Wijngaarden

and Li [23] 29.4 36.9 −4.28
Iskrenova-Tchoukova,

et al. [17] 29.89 (70) 37.52 (75) −4.41 (17)
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due to the 6d 2D3/2 state alone. From this, we deduce a radial
matrix element for this transition of 17.92 (3) a0, with a relative
uncertainty of 0.17%. This result compares very well with
17.99 a0 from Table III of Ref. [17] and with 17.988 (48) a0

presented in Ref. [28].
In a similar manner, we use our measurement of

α0(7P3/2) = 37 280 (70) a3
0 to determine the radial matrix

element 〈7P3/2||r||6D5/2〉. In this case, the contribution to α0

from this primary term is 85% of the total. We use the theory
values for all the smaller contributions, as listed in Table IV
of Ref. [17], which combine to 5846 (132) a3

0 . Subtracting this
from our measured value for α0(7P3/2) gives 31 430 (150) a3

0 as
the contribution to α0 by the 6D3/2 state alone. With an energy
difference of 685.29 cm−1 [34,35], the radial matrix element
〈7P3/2||r||6D5/2〉 is 24.27 (6) a0, in good agreement with the
value of 24.35 a0 from Table IV of Ref. [17]. This relative
uncertainty is 0.25%. Finally, we use our measured value of α2

to calculate 〈7P3/2||r||6D5/2〉 by a second independent means
and find 24.36 (18) a0. The relative contribution of the other
states to α2 is relatively large and of opposite sign to that of
the total. This result therefore depends heavily on theoretical
values for the smaller terms. Still, the result is in agreement
with the value determined through α0(7P3/2), but of course of

larger uncertainty. The weighted average of these two values
is 24.28 (6) a0.

V. CONCLUSION

We have described our experimental determinations of
the Stark shift of the 6s 2S3/2 → 7p 2PJ transitions for
J = 1

2 and 3
2 in atomic cesium. Through use of a nar-

rowband, frequency-stabilized diode laser and Doppler-free
techniques, the precision of our measurements is higher
than that of previous measurements. We derive the static
scalar polarizabilities of the 7p 2P1/2 and 7p 2P3/2 states,
as well as the tensor polarizability of the 7p 2P3/2 state.
These polarizabilities allow a precise determination of the ra-
dial matrix elements 〈7P1/2||r||6D3/2〉 and 〈7P3/2||r||6D5/2〉.
The precision of these matrix elements, and their excellent
agreement with theoretical results of Refs. [17] and [28],
provide strong confirmation of the atomic model used in those
calculations.
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