
PHYSICAL REVIEW A 89, 042511 (2014)

Relativistic coupled-cluster calculations on hyperfine structures and electromagnetic transition
amplitudes of In III

Sourav Roy, Narendra Nath Dutta, and Sonjoy Majumder
Department of Physics, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India

(Received 28 January 2014; published 22 April 2014)

Hyperfine constants and anomalies of ground as well as a few low-lying excited states of 113,115,117In III

are studied with highly correlated relativistic coupled-cluster theory. The ground-state hyperfine splitting
of 115In III is estimated to be 106.8 GHz. A shift of almost 1.9 GHz of the above frequency has been
calculated due to the modified nuclear dipole moment. This splitting result shows its applicability as
communication band and frequency standards at 10−11 s. A correlation study of hyperfine constants indicates
a few distinct features of many-body effects in the wave functions in and near the nuclear region of
this ion. Astrophysically important forbidden transition amplitudes are estimated. The calculated oscillator
strengths of a few allowed transitions are compared with recent experimental and theoretical results wherever
available.
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I. INTRODUCTION

Recent trapping of doubly ionized Yb [1] can enhance the
possibility of the trapping of doubly ionized In using the
same experimental mechanism. Trapped 113Cd II is known
as an ideal candidate for the frequency standard and quantum
computing [2,3]. Being in the same Ag isoelectronic sequence,
113,115,117In III is also interesting due to its expected large
hyperfine splitting like 113Cd+, as it is next to the latter ion in
this sequence, has a nuclear g factor close to that of 113Cd, and
has a large nuclear spin (I = 4.5 for all these In isotopes, but
I = 1.5 for 113Cd). The discrepancies between experimental
[4–6] and theoretical [7,8] estimations of magnetic dipole
hyperfine constants of 115In I indicate the possibility of a
small variation of the nuclear moment obtained from Raghavan
[9]. This is, however, very important for nuclear theory and
physics where precise nuclear parameters are important, such
as parity nonconservation (PNC) estimations [10–12]. The
study of nuclear magnetization distribution on the indium
isotopes has been an interesting topic in terms of its puzzling
giant hyperfine anomaly [13–15]. The magnetic property
can be estimated from their hyperfine anomalies (the Bohr-
Weisskopf effect only [16,17]). These are calculated using
accurate estimations of the hyperfine splitting of states. Study
of this anomaly over different levels of atomic ionizations
provides the ionization effect on the nucleus. The results
obtained should provide a useful calibration for nuclear theory
as well as reduce limitations of precise measurement of
fundamental constants, such as parity and/or time violation
constants, due to the uncertainty of neutron distribution
[12,18].

Strong resonance lines from In III are required in order
to provide the most important data for abundance anal-
ysis in various astronomical systems as well as labora-
tory plasmas [19–22]. Explanation of the observed large
discrepancies between experimental [19,23] and theoretical
[20] line broadening results in the optical spectrum [23]
of In III requires precise estimations of allowed transi-
tions. Whereas, the forbidden transitions are the effective
decay mechanism in low-density hot plasmas where the

possibility of collisional deexcitation is low [24]. Over the
years there have been many experimental and theoretical
endeavors to estimate the strengths of some ultraviolet or
visible lines of this ion [25–32]. However, due to the
large discrepancies among the results, correlation-exhaustive
relativistic ab initio calculations are required. Also, we
augment the database with lifetime of few other low-lying
states.

Here we employ a highly correlated relativistic coupled-
cluster (RCC) method based on the Dirac-Coulomb-Gaunt
Hamiltonian to generate the ground and different excited states
[33] of In III. With respect to other well known theories, the
coupled-cluster theory has the potential to investigate electron
correlation in an exhaustive way [3,34]. The various kinds of
many-body effects such as core correlation, core polarization,
and pair correlation are studied in the framework of the present
RCC theory using the calculations of the hyperfine constants.

II. THEORY

In order to obtain a correlated wave function |�v〉 cor-
responding to a single-valence atomic state having a va-
lence electron in the vth orbital, we solve the correspond-
ing energy eigenvalue equation where the Dirac-Coulomb-
Gaunt Hamiltonian is considered [33]. In the coupled-cluster
theory, one can write this correlated wave function as
[3,34–36]

|�v〉 = eT {1 + Sv}|�v〉, (2.1)

where |�v〉 is the Dirac-Fock reference-state wave function
that is generated in the V N−1 potential following Koopman’s
theorem [37], T is the closed-shell cluster operator that takes
all the single and double excitations from the core orbitals
[34], and Sv is the open-shell cluster operator that behaves like
T but excites at least one electron from the valence v [34].
In the present approach, nonlinear coupled-cluster theory is
used with the inclusion of partial triple excitations to solve the
closed- and open-shell cluster amplitudes. This formalism is
discussed in detail in Ref. [38].
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The general matrix element of an operator Ô can be conveniently expressed with normalization as

Of i = 〈�f |Ô|�i〉√〈�f |�f 〉〈�i |�i〉
= 〈�f |{1 + S

†
f }eT †

ÔeT {1 + Si}|�i〉√
〈�f |{1 + S

†
f }eT †

eT {1 + Sf }|�f 〉〈�i |{1 + S
†
i }eT †

eT {1 + Si}|�i〉

= 〈�f |{1 + S
†
f }O{1 + Si}|�i〉

N
= 〈�f |(O + S

†
f O + OSi + S

†
f OSi)|�i〉

N
. (2.2)

Here N is the normalization correction, and Ō = e†T ÔeT

is a nontruncated series. However, the series is truncated in
considering effective one-body and two-body operators in the
present calculations. These effective operators arise from the
contractions and noncontractions among the operators Ô, T †,
and T . These effective operators are then contracted with the
S and S† operators to evaluate the final matrix elements as
represented by Eq. (2.2). Effective three-body operators can
also arise, but are tedious to handle. Higher-body effective
operators cannot be contracted with the S and S† operators to
calculate the matrix element. A coupled-cluster scheme that
uses property calculations without truncation is given in detail
by Mani and Angom [39] and theoretically can be a little more
accurate with respect to the truncation we consider here.

The contractions of the effective one-body terms with the
S and S† operators provide the most important contributions
to the matrix elements [3]. The term O represents the sum
of the Dirac-Fock (DF) and the core-correlation contribution.
The lowest-order pair-correlation and core-polarization effects
arise from the terms OS1+S

†
1O and OS2+S

†
2O, respectively.

In addition to the core-correlation, core-polarization, and
pair-correlation terms, significantly contributing terms such
as S

†
1OS1, S

†
1OS2+S

†
2OS1, and S

†
2OS2 are considered. Also,

a large number of effective two-body terms, which are further
contracted with the S and S† operators, can contribute here
[3]. Terms such as S

†
2vOT1 and S

†
2vOT2 are responsible for

providing little correlations, but are accounted for in the
present approach [3].

The mathematical expressions of the transition probabilities
in s−1 corresponding to E1, E2, and M1 transitions for a
channel of emission from k to i are represented by [40]

AE1
ki = 2.0261 × 1018

λ3(2jk + 1)
SE1

ki , (2.3)

AE2
ki = 1.1199 × 1018

λ5(2jk + 1)
SE2

ki , (2.4)

and

AM1
ki = 2.697 × 1013

λ3(2jk + 1)
SM1

ki , (2.5)

where λ (in angstroms) is the wavelength of the transition. Here
SO

ki = (Oki)2 is the transition strength in a.u. The lifetime τk

of a state k is calculated by considering all the channels of
emission to the states i:

τk =
∑

i

1

Aki

. (2.6)

The single-particle reduced matrix elements of the electric
dipole E1, electric quadrupole E2, and magnetic dipole M1

transition operators and the operators associated with the
magnetic dipole constant A and electric quadrupole hyperfine
constant B are given in Ref. [41]. The hyperfine anomaly due
to the Bohr-Weisskopf effect for any particular state is defined
by [14,15]

�% = A1g2 − A2g1

A2g1
× 100, (2.7)

where A1 and A2 are the hyperfine constants and g1 and g2

are the corresponding g factors of the nuclei of the isotopes of
concern.

III. RESULTS AND DISCUSSION

The DF orbitals are constructed here from the basis-set
expansion technique [41,42]. The radial part of the basis is
considered to have a Gaussian-type form. These Gaussian-type
orbitals (GTOs) have two optimized parameters α0 and β.
For In III, these optimized parameters are expected to be
0.0073 and 2.65, respectively. To derive these estimations,
we use the numerical values of bound orbital energies and the
radial expectations of r and 1/r of these orbitals as obtained
from the GRASP92 code [43]. In order to generate the DF
orbitals, 32, 32, 30, 30, and 27 GTO bases are considered
for the s, p, d, f , and g symmetries, respectively. The
coupled-cluster calculations are performed with 12, 11, 10,
9, and 8 active orbitals for the above-mentioned symmetries.
These of active orbitals include all the bound orbitals and the
first few unbound orbitals. The number of symmetries and
the number of active orbitals considered under each symmetry
are consistent with the convergence criteria of core-correlation
energy [3]. In the present work, the percentage of correlation
contribution (the RCC result minus the DF result) to any
property is defined with respect to the DF result.

In Table I we represent ionization potentials (IPs) of
the ground state and few low-lying excited states in cm−1.
Our RCC results are compared with the experimental val-
ues obtained from the National Institute of Standards and
Technology (NIST) [44]. The maximum difference between
these values occurs in the case of the 4f 2F5/2 state, which is
about 0.44%.

In Table II we present the E1 transition amplitudes in
length gauge form at the DF and RCC levels. The correlation
contributions are presented in the same table. The wavelengths
of these transitions, which are calculated from the IPs of
the NIST, are listed in the second column of this table. The
correlation effect decreases the transition amplitude in all cases
except the transition 5s 2S1/2 → 6p 2P1/2. We find that the
correlation contribution is much larger than the DF values
for the 5s 2S1/2 → 6p 2P1/2,3/2 transitions, unlike the other
cases [31]. These results have been observed also in velocity
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TABLE I. Ionization potentials of ground and low-lying excited
states in cm−1.

State RCC NIST

5s 2S1/2 226445.34 226191.3
5p 2P1/2 168645.05 169010.2
5p 2P3/2 164208.93 164668.1
6s 2S1/2 99353.88 99317.1
5d 2D3/2 97713.82 97738.5
5d 2D5/2 97288.94 97448.8
6p 2P1/2 81409.35 81607.7
6p 2P3/2 80011.96 80268.7
4f 2F5/2 63937.80 64222.5
4f 2F7/2 63960.98 64214.5
7s 2S1/2 56699.72 56761.5
5g 2G7/2 39497.11 39669.3
5g 2G9/2 39497.11 39669.3

gauge calculations. The two-resonance transitions 5s 2S1/2 →
5p 2P1/2,3/2 are about −17.2% to −17.5% correlated and it has
been estimated that most of their correlations come from the

core-polarization effect. The core polarization is also found
to be the dominating mechanism in the transitions 5p 2P3/2

→ 5d 2D3/2,5/2 and 5p 2P1/2 → 5d 2D3/2, where the total
correlation contributions are about −11.8% to −12.2%. The
oscillator strengths of E1 transitions calculated from the cor-
responding transition amplitudes and quoted wavelengths are
also presented in Table II. These transitions are astrophysically
important [20] and fall in the visible and ultraviolet regions of
the electromagnetic spectrum.

Table II also shows the discrepancies among various
theoretical and experimental results. Our highly correlated
ab initio calculations show excellent agreement with the
model potential [45] and relativistic many-body perturbation
theory (RMBPT) calculations [28]. Here the experimental
results are evaluated using the corresponding lifetime
measurements [27,46] and the NIST wavelengths [44].
Considerable differences are noted between the experimentally
measured values and all the theoretical results for the
5p 2P1/2 → 5d 2D3/2 and 5p 2P3/2 → 6s 2S1/2 transitions.
Therefore, more precise experiments may be desirable for
these cases. Our calculated RCC results are consistent with
Cowan’s prediction of the oscillator strength ratio in the

TABLE II. Calculated E1 transition amplitudes (in a.u.) and oscillator strengths. The corresponding wavelengths λ are presented in
angstroms. Here Corr. denotes the correlation contributions. The oscillator strengths calculated by other theories (Theor.) and experimental
measurements (Expt.) are also reported for comparison with our relativistic coupled-cluster results.

Transition amplitudes Oscillator strengths

Transitions λ DF Corr. RCC RCC Theor. Expt.

5s 2S1/2 → 5p 2P1/2 1748.83 2.0868 −0.3656 1.7212 0.2600 0.2519,a 0.260b 0.27,c 0.2796d

0.260,e 0.1963f

0.2486a

→ 5p 2P3/2 1625.40 2.9512 −0.5070 2.4442 0.5647 0.5478,a 0.567b 0.60,c 0.5279d

0.278,e 0.4248f

0.5400a

→ 6p 2P1/2 691.64 0.0324 0.1130 0.1454 0.0047 0.0003f

→ 6p 2P3/2 685.30 0.0403 −0.1653 −0.1250 0.0035 0.0007f

5p 2P1/2 → 6s 2S1/2 1434.86 1.2795 −0.0473 1.2322 0.1598 0.161b

→ 5d 2D3/2 1403.08 3.3519 −0.4100 2.9419 0.9323 0.9113,a 0.900b 0.7870d

→ 7s 2S1/2 890.88 0.3917 −0.0031 0.3886 0.0257
5p 2P3/2 → 6s 2S1/2 1530.20 1.9776 −0.0774 1.9002 0.1778 0.179b 0.2506d

→ 5d 2D3/2 1494.11 1.5574 −0.1837 1.3737 0.0954 0.0932,a 0.092b

→ 5d 2D5/2 1487.67 4.6559 −0.5481 4.1078 0.8575 0.8387,a 0.831b 0.8585d

→ 7s 2S1/2 926.73 0.5786 −0.0095 0.5691 0.0265
6s 2S1/2 → 6p 2P1/2 5646.72 4.3068 −0.2107 4.0961 0.4573 0.3708f

→ 6p 2P3/2 5249.79 6.0411 −0.2907 5.7504 0.9714 0.7884f

5d 2D3/2 → 6p 2P1/2 6199.32 4.1135 −0.1120 4.0015 0.1983
→ 6p 2P3/2 5724.16 1.7862 −0.0453 1.7409 0.0407
→ 4f 2F5/2 2983.65 7.0372 −0.4556 6.5816 1.1110 1.0915a 1.1771d

5d 2D5/2 → 6p 2P3/2 5820.69 5.4252 −0.1366 5.2885 0.2446
→ 4f 2F5/2 3009.66 1.8915 −0.1213 1.7702 0.0529 0.0520a

→ 4f 2F7/2 3008.94 8.4595 −0.5422 7.9173 1.0711 1.0394a 1.0522d

6p 2P1/2 → 7s 2S1/2 4024.76 2.7944 −0.0806 2.7138 0.2764
6p 2P3/2 → 7s 2S1/2 4254.02 4.2633 −0.1228 4.1405 0.3035

aThird-order relativistic many-body perturbation theory [28,52].
bCore-polarized augmented Dirac-Fock method [45].
cBeam foil technique [27].
dBeam foil technique [46].
eConfiguration-interaction calculation [29].
fRelativistic quantum-defect orbital method [31].
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TABLE III. Calculated E2 and M1 transition amplitudes in a.u. The corresponding wavelengths λ are presented in angstroms. Here Corr.
denotes the correlation contributions.

E2 M1

Transitions λ DF Corr. RCC DF Corr. RCC

5s 2S1/2 → 5d 2D3/2 778.50 6.8096 −0.6241 6.1855
→ 5d 2D5/2 776.74 8.3060 −0.7744 7.5316

5p 2P1/2 → 5p 2P3/2 23030.33 8.7362 −0.7523 7.9839 1.1532 0.0001 1.1533
→ 6p 2P3/2 1126.87 5.1577 −0.4127 4.7450 0.0317 0.0011 0.0328
→ 4f 2F5/2 954.31 11.5617 −1.0246 10.5371

5p 2P3/2 → 6p 2P1/2 1203.94 6.1114 −0.4543 5.6571 0.0336 0.0008 0.0344
→ 6p 2P3/2 1184.84 5.7550 −0.4327 5.3223 0.0003 0.0006 0.0009
→ 4f 2F5/2 995.56 6.5714 −0.5601 6.0113
→ 4f 2F7/2 995.48 16.1049 −1.3733 14.7316

6s 2S1/2 → 5d 2D3/2 63347.27 20.8068 −1.1669 19.6399
→ 5d 2D5/2 53524.59 25.7109 −1.4279 24.2830

5d 2D3/2 → 5d 2D5/2 345184.67 12.5903 −0.8226 11.7677 1.5491 0.0001 1.5492
→ 7s 2S1/2 2440.39 6.9372 −0.3581 6.5791

5d 2D5/2 → 7s 2S1/2 2457.77 8.7467 −0.4355 8.3112
6p 2P1/2 → 6p 2P3/2 74682.60 37.2585 −2.0824 35.1762 1.1531 0.0000 1.1531

→ 4f 2F5/2 5752.02 40.9209 −2.2989 38.6220
6p 2P3/2 → 4f 2F5/2 6232.01 22.1480 −1.2351 20.9129

→ 4f 2F7/2 6228.90 54.1958 −3.0186 51.1772
4f 2F5/2 → 4f 2F7/2 12500000 17.8540 −1.0507 16.8033 1.8516 0.0001 1.8517

5D-5P multiplet [47]. The experimental value agrees well
with the RCC value for the transition 5p 2P3/2 → 5d 2D5/2.
Therefore, the experimental result of the 5p 2P1/2 → 5d 2D3/2

transition does not follow Cowan’s prediction. A recent
experiment [23] claims accurate estimations of absorption
coefficients of 298.28-, 300.808-, and 524.877-nm transition
lines, where our calculated amplitudes can be used.

Though electromagnetically forbidden transitions do not
contribute significantly to the lifetimes of the excited states

FIG. 1. Comparison between E2 and M1 transition probabilities
(s−1) on a log10 scale. The transitions between levels are presented
along the x axis and the transition probabilities are presented along
the y axis. The levels are identified as follows: 1, 5s 2S1/2; 2, 5p 2P1/2;
3, 5p 2P3/2; 4, 6s 2S1/2; 5, 5d 2D3/2; 6, 5d 2D5/2; 7, 6p 2P1/2; 8, 6p 2P3/2;
and 9, 7s 2S1/2.

here, they are important in different areas of physics [41,48].
The magnetic dipole (M1) transition rate between the fine-
structure states of 4f 2F has been calculated using the
multiconfiguration Dirac-Fock (MCDF) method [32]. Our
calculated fine-structure splitting (−23 cm−1) of this term
is much closer to the central experimental value (8 cm−1)
[44] compared to the MCDF calculation (−71 cm−1). The
latter calculation estimated a comparatively large correlation
contribution as the DF value is −24 cm−1. There is a
discrepancy between the MCDF and our calculations of tran-
sition amplitude between these fine-structure states, where the

TABLE IV. Calculated lifetimes using the relativistic coupled-
cluster theory of some low-lying states in 10−9 s along with their
comparisons with the other theoretical (Theor.) and experimental
(Expt.) results.

State RCC RMBPTa Theor.b Expt.

5p 2P1/2 1.78 1.84 1.26 1.45 ± 0.10,c 1.72± 0.07d

5p 2P3/2 1.42 1.45 1.50 ± 0.15d

6s 2S1/2 0.65
5d 2D3/2 0.53 0.67 0.56 0.75± 0.06d

5d 2D5/2 0.58 0.61 0.98 ± 0.10,c 0.58± 0.05d

6p 2P1/2 4.40
6p 2P3/2 4.54
4f 2F5/2 1.70 1.82 1.70± 0.07d

4f 2F7/2 1.72 1.74 1.72± 0.07d

7s 2S1/2 1.03
5g 2G7/2 2.65
5g 2G9/2 2.66 2.71 2.84± 0.30d

aReference [28].
bRelativistic Hartree-Fock theory [30].
cBeam foil technique [27].
dBeam foil technique [46].
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TABLE V. Calculated hyperfine constant A along with the different correlation contributing terms in MHz. Here Norm. denotes the
normalization correction.

State d d dS1 dS2 S
†
1dS1 S

†
1dS2 S

†
2dS2 Norm. RCC

5s 2S1/2 17672.45 17635.18 2392.83 1382.51 81.21 72.73 345.29 −395.71 21358.30
5p 2P1/2 3317.77 3315.07 576.20 218.52 25.13 17.50 48.24 −66.76 4107.07
5p 2P3/2 514.01 518.29 89.92 68.51 3.92 5.10 22.45 −10.91 693.70
6s 2S1/2 4792.83 4779.14 318.36 340.26 5.32 2.40 106.62 −47.66 5467.19
5d 2D3/2 97.59 100.98 19.73 22.30 0.99 1.40 5.26 −1.16 149.53
5d 2D5/2 41.01 42.38 8.24 11.11 0.41 0.66 0.33 −0.49 62.63
6p 2P1/2 1090.79 1089.88 97.20 76.63 2.22 2.27 12.99 −11.97 1262.70
6p 2P3/2 173.61 174.80 16.01 23.18 0.38 0.53 11.54 −2.11 223.49
4f 2F5/2 2.60 2.65 0.48 −2.52 0.03 −0.24 1.73 −0.01 2.14
4f 2F7/2 1.45 1.49 0.27 −3.32 0.02 −0.41 0.03 0.01 −1.91
7s 2S1/2 2234.71 2227.97 −0.49 153.23 0.01 −4.34 53.48 −16.63 2396.80

former is evaluated from their calculated transition probability
and wavelength. The discrepancy probably can be avoided
with the proper choice of initial and final states and use of the
NIST wavelength [44].

The E2 and M1 transition amplitudes along with their
corresponding NIST wavelengths (λ values), are presented in
Table III. The correlation contributions to all the E2 transitions
reduce the corresponding DF values and vary from −4.9% to
−9.3%. The 5s 2S1/2 → 5d 2D3/2,5/2 transitions are maximally
correlated by −9.2% to −9.3% with respect to all others E2
transitions presented here. It has been observed (see Fig. 1) that
M1 transition probabilities are stronger than E2 probabilities
for transitions among fine-structure states.

In Table IV we compare our calculated lifetimes for some
low-lying states with other theoretically calculated and ex-
perimentally measured values. The experimental wavelengths
from the NIST are used in our calculations. The beam foil
experiment of Andersen et al. [27] and the relativistic Hartree-
Fock calculation [30] of Cheng and Kim underestimate the
lifetime of the 5p 2P1/2 state. Our estimated lifetimes are in
good agreement with the measured values of Ansbacher et al.
[46] and calculated results obtained using the RMBPT method
[28], except in the case of the 5d 2D3/2 state. The lifetime of the

FIG. 2. Percentage of the core-polarization and pair-correlation
contributions to the constant A.

5d 2D3/2 state measured by the beam foil experiment [46] and
calculated by the RMBPT method are 0.75 ± 0.06 and 0.67 ns,
respectively. These lifetimes are based only on the transition
5d 2D3/2 → 5p 2P1/2. In contrast, considering both channels
of emission 5d 2D3/2 → 5p 2P1/2 and 5d 2D3/2 → 5p 2P3/2,
our RCC calculations yield this lifetime as 0.53 × 10−9 s.
Nevertheless, considering the individual channel, we find
the lifetimes of 5d 2D3/2 → 5p 2P1/2 and 5d 2D3/2 → 5p 2P3/2

transitions to be 0.63 and 3.49 ns, respectively. Similar
arguments hold also in a comparison of the lifetimes of
the 4f 2F5/2 state, where our calculations considered all the
channels of emissions compared to other results that account
for emission through only the dominating channel. However,
for the 5d 2D5/2 state there is only one dominating channel
5d 2D5/2 → 5p 2P3/2; therefore, we find good agreement with
experiment [46] here. Anderson et al. also overestimate the
lifetime of this state. The corrections due to the E2 and/or M1
transitions in the calculations of all the lifetime values are at
or beyond the fourth decimal place in the unit of nanoseconds.
This may be important for ultrafast spectroscopy [49].

The accurate estimation of the large hyperfine splitting
of the ground state of 115In III is one of the most important
objectives of this work. The magnetic dipole and the electric

FIG. 3. Percentage of correlation to the hyperfine constants A

and B.
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TABLE VI. Calculated hyperfine constant B along with the different correlation contributing terms in MHz. Here Norm. denotes the
normalization correction.

State d d dS1 dS2 S
†
1dS1 S

†
1dS2 S

†
2dS2 Norm. RCC

5p 2P3/2 648.57 651.06 113.13 138.88 4.94 6.17 10.05 −14.25 905.47
5d 2D3/2 41.02 42.56 8.32 45.33 0.42 1.76 −0.06 −0.76 97.57
5d 2D5/2 55.79 57.76 11.22 63.38 0.56 2.43 −0.30 −1.04 134.00
6p 2P3/2 219.07 219.75 20.19 41.75 0.47 0.37 3.51 −2.66 282.32
4f 2F5/2 1.76 1.86 0.34 28.28 0.03 1.30 −0.30 −0.15 31.36
4f 2F7/2 2.06 2.17 0.40 33.15 0.03 1.53 −0.31 −0.18 36.79
5g 2G7/2 0.31 0.31 0.00 7.08 0.00 0.04 −0.05 0.00 7.39
5g 2G9/2 0.33 0.33 0.00 7.73 0.00 0.05 −0.05 0.00 8.06

quadrupole moments of the stable 115In isotope are considered
to be 5.5408(2) nuclear magnetons and 0.810 b, respectively,
from Ref. [9], with nuclear spin parity 9/2+. In Table V
the hyperfine constant A of the ground and a few excited
states is presented at the DF and RCC levels along with
the contributions of different correlation terms. The term d

is the Dirac-Fock contribution, d is the contribution from
the Dirac-Fock and core-correlation contribution, and dS1

and dS2 represent the pair-correlation and core-polarization
contributions, respectively, including the conjugate terms. The
other terms S

†
1dS1, S

†
1dS2, and S

†
2dS2 also considered the

conjugate terms. Here Norm. represents the normalization
correction. Such a term-by-term analysis was presented earlier
in the constant-A calculations of 113Cd+, where the correlation
exhaustiveness of the present method was well established
[3]. The largest correlation contributions come from the
pair-correlation terms for the 5s 2S1/2, 5p 2P1/2,3/2, and 6p 2P1/2

states, whereas the core polarization contributes the most to
the 6s 2S1/2, 7s 2S1/2, 5d 2D3/2,5/2, 6p 2P3/2, and 4f 2F5/2,7/2

states. These are graphically presented in Fig. 2. It is also clear
from Fig. 2 that the pair-correlation contributions to the outer
orbitals are decreasing along the same relativistic symmetry,
which is expected [50]. The percentage of pair-correlation
contribution being almost identical for the fine-structure states
of any term has also been observed [42]. The 4f 2F5/2 and

FIG. 4. Percentage of the core-polarization and pair-correlation
contributions to the constant B.

4f 2F7/2 states show a large percentage of negative core-
polarization contributions. These large negative contributions
dominantly arise from the exchange part of these correlation
terms. The constant A of the low-lying bound state ns 2S1/2 falls
in the GHz range and its high value is expected to be due to the
large overlap of its wave functions in the nuclear vicinity. The
total correlation contribution to the constantA of the ground
state is around 20.9 %. The estimated hyperfine constant A of
all these states is presented within an approximate theoretical
uncertainty of around ±2%.

Our calculated hyperfine constant B for the low-lying states
is presented in Table VI along with the different correlation-
contributing many-body terms. In this table the labeling of the
different terms is the same as in Table V. The percentages of
the total correlation contributions to the constants A and B

are plotted in Fig. 3 to get an idea of their relative responses.
The correlation to the 4f 2F states shows an opposite trend
between these two constants. This may be a consequence of the
difference in the behavior of the wave functions in two different
radial regions of nuclear proximity. Here one can see that the
core polarization contributes strongly to all the cases with re-
spect to the other correlation terms. This is clear from Table VI
and Fig. 4. Even the RCC values of the 5d 2D3/2,5/2 states
become more than twice their corresponding DF values due to
large core-polarization effects. The correlation contributions
to the hyperfine constant B of the 4f 2F5/2,7/2 and 5g 2G7/2,9/2

TABLE VII. Hyperfine splitting of the ground and a few low-
lying excited states in MHz. The percentage contributions from the
constant B to these splitting are presented in the last column.

State F1 ↔ F2 Splitting B

5s 2S1/2 5 ↔ 4 106791.51 0
5p 2P1/2 5 ↔ 4 20535.37 0
5p 2P3/2 6 ↔ 5 4765.84 12.67

5 ↔ 4 3279.86 −5.75
6s 2S1/2 5 ↔ 4 27335.95 0
5d 2D3/2 6 ↔ 5 962.22 6.76

5 ↔ 4 727.31 −2.79
5d 2D5/2 7 ↔ 6 500.92 12.48

6 ↔ 5 385.81 2.61
6p 2P1/2 5 ↔ 4 6313.48 0
6p 2P3/2 6 ↔ 5 1529.17 12.31

5 ↔ 4 1058.64 −5.56
7s 2S1/2 5 ↔ 4 11984.02 0
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TABLE VIII. Hyperfine anomaly of In III.

State A (113) A (115) A (117) 113�115 (%) 115�117 (%)

5s 2S1/2 21313.0636 21358.3017 21271.3821 0.007491126 0.009042670
6s 2S1/2 5455.6089 5467.1903 5444.9430 0.007461625 0.009008028
7s 2S1/2 2391.7256 2396.8034 2387.0509 0.007438228 0.008981253
5p 2P1/2 4098.0919 4107.0750 4090.7031 0.000558990 0.000676622
5p 2P3/2 692.1824 693.6997 690.9345 0.000553917 0.000670590
6p 2P1/2 1259.9349 1262.6970 1257.6639 0.000534891 0.000641958
6p 2P3/2 223.0038 223.4925 222.6013 0.000642552 0.000779395

states change abnormally from the DF to the RCC levels. These
abnormal changes are also guided by the core-polarization
effects. One can also find in Fig. 4 that the percentage of
contribution of the core polarization is almost the same for the
fine-structure states of a term.

The hyperfine splitting of the ground as well as a few low-
lying excited states is presented in Table VII. The percentage
of contributions from the constant B to the splitting values is
presented in the last column of this table. The comparison of
theoretically estimated [7] and experimentally measured [4]
hyperfine constants of different states shows that the nuclear
magnetic moment may be 5.4422μB for 115In I. This value
varies from the standard value, obtained from Raghavan, of
5.5408μB [9]. This changes the ground-state splitting by
0.0634 cm−1, which is substantial in terms of the accuracy
we are looking for.

Study of the nuclear magnetization distribution of any
atomic system provides information about nuclear wave func-
tions, which is very important for the PNC calculations [18].
It is difficult to measure the nuclear magnetization distribution
experimentally [18,51]; rather it can be estimated from an
accurate value of the hyperfine splitting using the Bohr-
Weisskoff formalism [14]. Though the mean contribution of
this effect appears only for S1/2 and P1/2 states, other states,
such as P3/2, are effected due to the e−-e− interaction. Using
Eq. (2.3), we have calculated the hyperfine anomaly of In III

isotopes between 113 and 115 (113�115%) and 115 and 117
(115�117%). We present these results in Table VIII. Like neutral

indium, we observe a considerable effect of the finite nucleus
on these parameters for In III [15]. However, we do not see
significant changes in the parameter between P1/2 and P3/2

states as was observed in the neutral system [14,15].

IV. CONCLUSION

The electromagnetic transition amplitudes, lifetimes, and
hyperfine constants are calculated using a highly correlated
theoretical approach with a proper account of relativity.
Our calculated transition line parameters can be applied for
abundance estimations in different astronomical systems and
laboratory plasmas. The ground-state hyperfine splitting of
this ion predicts its use as a microwave frequency standard
at 10−11 s. A detailed analysis of the different correlation-
contributing terms associated with the coupled-cluster theory
show their impact on the calculations of the hyperfine
constants. The hyperfine constant B of the fine structures of
the 4f 2F and 5g 2G terms is found to be abnormally correlated
due to the very strong influence of the core polarization.
The calculated hyperfine splitting can be used for accurate
line-profile analysis of astrophysically important transition
lines. We have also observed distinct features in the hyperfine
anomaly parameters compared to neutral indium.
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