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Strongly enhanced atomic parity violation due to close levels of opposite parity
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We present calculations of nuclear-spin-dependent and nuclear-spin-independent parity-violating amplitudes
in Ba, Ra, Ac+, Th, and Pa. Parity nonconservation in these systems is greatly enhanced due to the presence of
very close electronic energy levels of opposite parity, large nuclear charge, and strong nuclear enhancement of
parity-violating effects. The presented amplitudes constitute several of the largest atomic parity-violating signals
predicted so far. Experiments using these systems may be performed to determine values for the nuclear anapole
moment, a P -odd T -even nuclear moment given rise to by parity-violating nuclear forces. Such measurements
may prove to be valuable tools in the study of parity violation in the hadron sector. The considered spin-
independent transitions could also be used to measure the ratio of weak charges for different isotopes of the same
atom, the results of which would serve as a test of the standard model and also of neutron distributions. Barium,
with seven stable isotopes, is particularly promising in this regard.
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I. INTRODUCTION

It is widely believed that the standard model is a low-
energy manifestation of a more complete unified theory.
Measurements of violations of fundamental symmetries in
atoms, such as atomic parity nonconservation (PNC), provide
a very effective channel for testing the standard model of
elementary particles and for searching for new physics beyond
it (see, e.g. [1,2]). Such studies complement measurements
performed at high energy (e.g., at CERN) for just a fraction of
the cost.

Highly precise measurements [3,4] and calculations
[5–11] of the nuclear-spin-independent parity nonconservation
amplitude in cesium have led to a determination of the nuclear
weak charge that serves as the most precise atomic test of
the electroweak theory to date. The result of this analysis
is in reasonable agreement with the standard model [11,12].
However, it does indicate that further investigations in this field
may lead to important new results. Furthermore, recent mea-
surements made by the Qweak Collaboration at the Jefferson
Lab have led to the first determination of the weak charge of
the proton [13]. Combining this with the weak charge obtained
via atomic parity violation in cesium leads to a value for the
weak charge of the neutron.

It is unlikely that significant improvement in the measure-
ments or calculations for cesium would be possible in the
near future. The trend in using atomic physics as a probe
for the low-energy sector of the standard model is moving
towards other possibilities [2]. For example, several proposals
have been put forward to search for PNC in different atoms
where either the theoretical or experimental accuracy may
reasonably be expected to be better (e.g. [14–20]). A promising
alternative is to perform measurements of PNC in a number of
different isotopes of the same atom [21]. This so-called “chain
of isotopes” method requires no accurate atomic calculations.
The ratio of the PNC signals for two isotopes does not depend
on the electron structure. Here the accuracy is limited only by
the knowledge of the neutron distribution; see, e.g. [22,23].

In this work we also turn to another interesting area. As
well as the nuclear-spin-independent parity-violating effect,
the dominating effect in atoms that is caused by the interaction

of the electrons with the weak charge of the nucleus, there are
also spin-dependent effects, which arise from the interaction
of the electrons with the so-called anapole moment of the
nucleus [24,25]. A measurement of the anapole moment, a P -
odd T -even nuclear moment that arises due to parity-violating
nuclear forces, would provide valuable information for the
study of parity violation in the hadron sector [26]. As in
the spin-independent case, the experiments require theoretical
calculations for their interpretation. However, in the search for
anapole moments the very high accuracy that is needed for the
extraction of the weak charge is not required. This frees up the
possibility of exploiting favorable conditions found in more
complicated atoms, such as those considered in this work, as
well as in transitions where the very high accuracy is hard to
achieve, such as the s-d5/2 transitions considered in Ref. [27].

The 133Cs measurement by the Weiman group [3] provides
the only observation of a nuclear anapole moment. The
quest for new measurements is also partly motivated by the
requirement to perform an independent test of the existing
cesium result in other systems. This is a very important
result and must be checked even if the accuracy is not
improved. Moreover, the systems studied here have a very
large enhancement in the PNC signal, which could make
these systems even more favorable for observing the anapole
moment.

Additionally, some isotopes of each of these atoms are
believed to exhibit a very large nuclear enhancement of parity-
and time-invariance violating effects [28] (see also [29–32]).
Protactinium is a particularly interesting case in this regard,
with a possibility of very close nuclear levels of opposite parity,
which may lead to a huge enhancement in the PNC effects.
This is discussed in more detail in Sec. VIII. Some isotopes of
francium, radium, and actinium also have close nuclear levels
of opposite parity [29].

In this work we provide calculations of both nuclear-spin-
dependent and nuclear-spin-independent parity nonconserving
effects that are enhanced by the presence of very close
electronic levels of opposite parity. The anapole moment
induced PNC transition in neutral radium has been considered
previously [33,34]. The PNC amplitude between the even
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ground and 3D2 states was found to be more than 103 times
larger than the corresponding 6s − 7s amplitude in cesium. We
revisit these calculations in Sec. IV, improving the accuracy
and verifying that the PNC signal is indeed greatly enhanced.
In Secs. V through VIII we then proceed to calculate PNC, due
both to the anapole moment and the nuclear weak charge, in
neutral barium, singly ionized actinium (an analog of radium),
neutral thorium, and protactinium.

We believe the atoms and ions considered here are very
promising candidates for experimental studies of parity-
violating nuclear effects. They may also be used to measure
the ratio of weak charges in isotopic chain measurements.

II. THEORY

The Hamiltonian describing the parity-violating electron-
nucleus interaction can be expressed as the sum of the nuclear-
spin-independent (SI) and nuclear-spin-dependent (SD) parts
(using atomic units, � = |e| = me = 1, and c = 1/α ≈ 137):

ĥPNC = ĥSI + ĥSD

= GF√
2

(
−QW

2
γ5 + α · I

I
�

)
ρ(r), (1)

where GF ≈ 2.2225 × 10−14 a.u. is the Fermi weak constant,
QW is the nuclear weak charge, α = γ0γ and γ5 = iγ0γ1γ2γ3

are Dirac matrices, I is the nuclear spin, and ρ(r) is the
normalized nuclear density,

∫
ρ d3r = 1.

The strength of the SD-PNC interaction is proportional
to �, a dimensionless coupling constant [35]. The SD-PNC
interaction can be expressed as the sum of its three main
contributions [1]:

� = K

I + 1
κa − K − 1/2

I + 1
κZ + κQ, (2)

where K = (I + 1/2)(−1)I+1/2−l with l the orbital angu-
lar momentum of the unpaired nucleon. The dominating
contribution in heavy atoms comes from κa, the nuclear
anapole moment [24]. κZ quantifies the contribution from
the spin-dependent electron-nucleus weak interaction (Z0

exchange) [36], and κQ is from the combination of the SI-PNC
contribution (QW ) with the magnetic hyperfine interaction [25]
(see also [37,38]). For more information see, e.g., the review
in [1] and the book in [26].

To lowest order, the nuclear weak charge is given in the
standard model as

QW = −N + Z(1 − 4 sin2 θW). (3)

Here N and Z are the number of neutrons and protons in
the nucleus, respectively, and sin2 θW ≈ 0.23 is the Weinberg
electroweak mixing angle [39].

The interaction of the valence electrons with both the
anapole moment and the weak charge of the nucleus leads to
mixing between electronic states of opposite parity. This has
the effect of allowing nonzero E1 transition amplitudes be-
tween states of equal parity. Unlike the spin-independent PNC
interaction, however, interaction with the anapole moment can
mix electronic states with a change in total electron angular
momentum �J = 1 (as well as �J = 0), and is dependent

on nuclear spin, which means contributions from different
hyperfine components are different.

The amplitude of a parity invariance violating E1 transition
between two states of the same parity can be expressed via the
sum over all opposite parity states n:

Ea→b
PNC =

∑
n

[〈b|d̂E1|n〉〈n|ĥPNC|a〉
εa − εn

+ 〈b|ĥPNC|n〉〈n|d̂E1|a〉
εb − εn

]
,

(4)

where a, b, and n are the many-electron wave functions of
the system in question, d̂E1 is the electric dipole transition
operator, ĥPNC is the operator of the parity-violating interaction
that gives rise to the transition, and the sum runs over all states
of opposite parity. Here, |a〉 ≡ |JaFaMa〉 with F = I + J the
total atomic angular momentum. Formulas linking Eq. (4) to
the reduced matrix elements of the relevant operators are given
in the Appendix.

There are several factors which contribute to the enhance-
ment (or suppression) of the parity-violating signal in atomic
transitions. The first, pointed out by the Bouchiats [40], is
that the PNC amplitude should scale a little faster than Z3

(Z the atomic number). For this reason it is natural to expect
larger amplitudes in heavy systems. Also, as is clear from
Eq. (4), the existence of close energy levels of opposite parity
has the potential to produce a very large enhancement. It is
with these motivations in mind that we pursue large PNC
signals in the heavy elements chosen for this work. The
transitions studied here have opposite parity levels with energy
intervals of ∼10 cm−1. For comparison, the energy gap for the
largest contributing term to the 6s–7s PNC transition in Cs is
∼104 cm−1.

Perhaps the most important and hardest to predict, the
final factor is the size of the weak-interaction matrix element
between the opposite parity states. The most significant
contribution to this comes from s-p1/2 mixing [26]. Finding
large atomic systems with close pairs of opposite parity levels
is comparatively simple; however, determining the extent of
single-electron s-p1/2 mixing generally requires complicated
calculations. In the heavy atoms studied here this tends
to suppress the final amplitude—e.g., there is a 103 factor
enhancement from the proximity of opposite parity states,
but this does not necessarily transform directly to a 103

enhancement in the amplitude. As well as this, of course, is
the fact that the SI interaction cannot mix states of different
total angular momentum, and the SD interaction can only mix
states with �J = 0,1 (and J 	= 0 → 0).

Actually, the s-p3/2 and p3/2-d3/2 weak mixing is not
insignificant. This is mainly due to core polarization, without
which these contributions would be practically zero. This has
the benefit of counteracting the suppression due to limited s-
p1/2 mixing; however, it makes the calculations very sensitive
to the usually smaller corrections such as correlations and core
polarization. This makes determining the accuracy particularly
difficult, especially in cases for which the amplitudes are small.
If there is only a small amount of s-p1/2 mixing, then the
amplitude becomes very sensitive to core polarization, and
is thus not particularly accurate, even if E1 amplitudes and
energies are reproduced well. In all cases, the PNC matrix
elements are sensitive to configuration mixing.
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III. CALCULATIONS

Starting with the relativistic Hartree-Fock (RHF) method
with a V N−M potential [41], where N is the total number
of electrons and M is the number of valence electrons, we
make use of the combined configuration interaction (CI) and
many-body perturbation theory (MBPT) method developed
in Ref. [42]. For more detail on this method, see also
Refs. [43–45].

Interactions with external fields and core polarization are
taken into account using the time-dependent Hartree-Fock
(TDHF) method; see, e.g. [46,47]. Note that we do not take
into account the effect of core polarization due to simultaneous
action of the weak and E1 fields. This is because we focus
on the spin-dependent amplitudes for which the accuracy of
the analysis is less important. This “double-core-polarization”
effect was the study of our recent work in Ref. [48].

The effective CI + MBPT Hamiltonian for the system of M

valence electrons has the form

Ĥ eff =
∑

i

ĥ1(ri) +
∑
i<j

ĥ2(ri,rj ), (5)

where ĥ1 is the single-electron part of the RHF Hamiltonian,

ĥ1 = cα · p̂ + c2(β − 1) − V nuc + UHF + �̂1, (6)

and ĥ2 is the two-electron part,

ĥ2(ri,rj ) = 1

|ri − r j | + �̂2(ri,rj ), (7)

and the sum runs over the M valence electrons. In the
above equations, α and β are the Dirac matrices, V nuc is
the nuclear potential (we use a Fermi-type nuclear charge
distribution to calculate V nuc), and UHF is the RHF potential
created by the N − M electrons of the closed-shell core.
The additional term, �̂, is the correlation potential, without
which these equations would correspond to the conventional CI
method. The correlation potential is used to take into account
core-valence correlations (see Refs. [42,45] for details).
The single-electron correlation potential �̂1 represents the
interaction of a single valence electron with the atomic core
and �̂2, a two-electron operator, represents the screening of the
valence-valence Coulomb interaction by the core electrons.

We calculate the correlation potential �̂1, which includes
a summation of dominating diagrams including screening of
the Coulomb interaction and the electron-hole interaction, to
all orders of perturbation theory using relativistic Green’s
functions and the Feynman diagram technique [5,49]. To
construct the complete set of single-electron orbitals we use
the B-spline technique [50].

As a test of the overall accuracy of the calculations, we
also calculate the correlation potential to only second order in
perturbation theory, �̂(2)

1 . The difference between calculations
using �̂1 and �̂

(2)
1 give a good indication of the uncertainty

due to missed higher-order correlation corrections.
In the evaluation of the matrix elements, the operators d̂E1

and ĥPNC are modified to include the effect of the polarization
of the core electrons due to interaction with the external E1
and weak fields:

d̂E1 → d̂E1 + δVE1, ĥPNC → ĥPNC + δVPNC. (8)

Here δVE1 (δVPNC) is the modification to the RHF potential
due to the effect of the external field d̂E1 (ĥPNC). In the
TDHF method, the single-electron orbitals are perturbed in
the form ψ = ψ0 + δψ , where ψ0 is an eigenstate of the RHF
Hamiltonian and δψ is the correction due to the external field.
The corrections to the potential are then found by solving the
set of self-consistent TDHF equations for the core states:

(Ĥ0 − εc)δψc = −(f̂ + δVf )ψ0c, (9)

where the index c denotes core states and f̂ is the operator of
external field (be that d̂E1 or ĥPNC). We also use this method
to compute the sum Eq. (4).

Calculation of the PNC amplitude requires a summation
of the complete set of states. We use the Dalgarno-Lewis
method [51] to perform the summation. In this method the
amplitude is reduced to

Ea→b
PNC = 〈δψb|d̂E1 + δVE1|ψa〉 + 〈ψb|d̂E1 + δVE1|δψa〉, (10)

where δψn is the correction to the wave function found by
solving Eq. (9) with f̂ = ĥPNC for the relevant valence states.

A. Calculating PNC with the resonant term

Radium, barium, and singly ionized actinium have two
valence electrons above a closed-shell core. For these relatively
simple systems the above method works quite well. We
generate the wave functions and energies using a full CI
calculation allowing double valence excitations, with core-
valence correlations taken into account as described above.
For thorium and protactinium, with more than two valence
electrons, we use slight variations of the above method
(discussed in later sections) and do not try to compute the entire
sum. Due to the presence of the very close opposite parity
levels, the transitions in question have a single dominating
term, contributing upward of 95% to the total amplitude. For
this reason it is a good first approximation to calculate this term
alone. To do this we calculate the relevant matrix elements of
the E1 and weak interactions including core polarization, and
use the experimental energy difference to compute the term.

For Ba, Ra, and Ac+ we perform the entire summation to
determine the whole amplitude. A problem that occurs though
is that the existence of the close levels makes this method
numerically unstable. Even if the energy levels are computed
to very high accuracy, the relevant energy interval may be very
wrong. For example, the experimental energy gap between
the even 3D2 and the odd 3P1 levels in radium is 5.41 cm−1.
Our calculations for the energies of these states vary from
experiment by just 5% and 1%, respectively, however, we
calculate this interval to be 828 cm−1. This would lead to an
error of several orders of magnitude. There are two methods
we can use to remedy this.

The first and simplest method is to rescale the single-
electron correlation potential, i.e., �̂1 → λ�̂1 in Eq. (6).
Different parameters are used for each partial wave (s, p,
etc.) and are chosen to reproduce the relevant experimental
energy interval exactly. For radium, the ionization energy
of the ground state was also fitted to match exactly with
experiment. It is worth noting that these scaling parameters
are close to unity, indicating the already reasonable accuracy.
For Ra the parameters chosen were λs = 0.994, λp = 1.046,
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TABLE I. Comparison of calculated energy levels with experi-
ment (Ref. [52]) for Ba, Ra, and Ac+. Units are cm−1.

Calc.

Atom State � λ� Expt.

Ba 6s2 1S0 0 0 0
5d6s 3D1 8180 8684 9034

3D2 8368 8865 9216
3D3 8765 9243 9597

5d6s 1D2 10772 11309 11395
6s6p 3P0 12387 12677 12266

3P1 12748 13031 12637
3P2 13617 13877 13515

6s6p 1P1 17737 18080 18060
5d2 3F2 19669 20605 20934

3F3 20007 20928 21250
3F4 20409 21314 21624

5d6p 3F2 21242 22015 22065
3F3 22121 22866 22947
3F4 22955 23675 23757

5d2 1D2 22216 23062 23062
5d6p 1D2 22320 23074 23074
5d2 3P0 22086 22949 23209

3P1 22340 23199 23480
3P2 22895 23727 23919

Ra 7s2 1S0 0 0 0
7s7p 3P0 13285 13102 13078

3P1 14170 13999 13999
3P2 16835 16694 16689

6d7s 3D1 13079 13756 13716
3D2 13342 13994 13994
3D3 14067 14642 14707

6d7s 1D2 16742 17318 17081
7s7p 1P1 20487 20432 20716
7s8s 3S1 26691 26658 26754

Ac+ 7s2 1S0 0 0 0
6d7s 3D1 3917 4355 4740

3D2 4406 4836 5267
3D3 6579 6911 7427

6d7s 1D2 8403 8886 9088
6d2 3F2 12023 12849 13236

3F3 13762 14557 14949
3F4 15644 16281 16757

6d2 3P0 16250 17039 17737
3P1 17530 18290 19015
3P2 21615 22199 22199

6d2 1D2 18053 18773 19203
6d2 1G4 20692 20804 20848
7s7p 3P0 21453 21048 20956

3P1 22550 22181 22181
3P2 28612 28328 26447

and λd = 0.893. For Ac+ they were λs = 0.957, λp = 1.016,
and λd = 0.917, and for Ba they were λs = 1.010, λp =
0.897, and λd = 0.933.

The other approach is not to perform any rescaling of �,
but to use orthogonality conditions in the summation to extract
the dominating term, and rescale it by a factor �Ecalc/�Eexpt.
To do this, we force the intermediate states in Eq. (4) to

be orthogonal to the state causing the dominating term and
perform the summation. By comparing the results from this
with the results of the summation without the orthogonality
enforced we can separate this “main” term from the sum and
proceed to rescale it. If good agreement exists between these
two methods as well as with calculating the matrix elements
directly it is indicative of good numerical accuracy, and this is
what we find.

In Table I we present our calculated energy levels for Ba,
Ra, and Ac+ along with experimental values for comparison.
We present calculations using both the unscaled correlation
potential (column �) as well as the calculations including
the rescaled potential (column λ�). Here we have chosen the
scaling parameters to reproduce the energies of the relevant
close opposite parity levels, as opposed to with achieving good
overall accuracy in mind. The unscaled energies for barium and
radium are already very good, and in most cases this scaling
improves the accuracy.

For Ac+ the agreement with unscaled energies is not as
good; however, it should be noted that the intervals between
levels are reproduced to a much better accuracy than the levels
themselves, indicating most of the error is probably associated
with determining the ground-state energy. In this case the
rescaling improves the accuracy for all levels.

B. Testing the method and accuracy

Ytterbium, like Ba, Ra, and Ac+, has two valence electrons
above a closed-shell core. The parity-violating 6s2 1S0 →
6s5d 3D1 transition has contributions from both the spin-
independent and spin-dependent parts of the PNC Hamilto-
nian, and is enhanced by the proximity of the odd 6s6p 1P o

1
level to the upper 3D1 level in the transition. The energy
interval between these levels is just 579 cm−1. Though not
as small as the other intervals studied in this work, it still
means this transition in Yb has a large dominating term,
contributing more than 80% to the total amplitude. Several
calculations exist in the literature for parity nonconservation
in neutral ytterbium [44,53–57]. Therefore, studying PNC in
this transition for Yb will serve as a useful test for the method.

In Table II we present calculations of both the spin-
independent and spin-dependent parts of the PNC amplitude
for this transition in ytterbium, and compare these values
with those calculated in several other works. We present
calculations using both methods described above, that is using
a scaled correlation potential (λ�) that is chosen to reproduce
exactly the energy interval of the dominating term, and also
using the orthogonality conditions to extract the dominating
contribution and then rescaling it for the experimental interval.

In Table III, we present the magnetic hyperfine structure
constants, A, for the low-lying states of barium along with ex-
perimental values for comparison. We include states dependent
on the s and p single-electron wave functions, as these states
dominate in the PNC interaction. The PNC matrix elements
depend on the value of the wave function at short distances,
as do the hyperfine structure constants. We thus demonstrate
good accuracy of the important s and p wave functions near
the nucleus.

The CI + MBPT method has been implemented many
times for accurate calculations of energy levels, transition
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TABLE II. Calculations of the SI (including QW ) and SD parts
of the 1S0(F = 1/2) → 3D1(F = 1/2) PNC amplitude (z component,
Fz = 0) for 171Yb (I = 1/2) and comparison with other works. The
signs have been omitted. Units: 10−11iea0.

This work Others

λ�a Orthog.b Value Ref.

SI-PNC 62.5 59.0 60 [53]
61.8 [54]
41.6 [55]
61.5 [44]

SD-PNC 1.01� 0.965� 1.12� [56]
0.997� [57]
0.990� [44]

aScaling correlation potential to reproduce the energy interval.
bUsing orthogonality conditions to subtract and rescale the dominat-
ing term by factor �Ecalc/�Eexpt.

amplitudes, PNC amplitudes, and atomic EDMs of heavy and
superheavy atoms; see, e.g. [44,46,47,60–65].

To form an estimate of the uncertainty, we perform the
calculations for radium, barium, and singly ionized actinium
using both the all-order and second-order correlation poten-
tials, as described above. The difference between these meth-
ods leads to about a 10% difference in the PNC amplitudes.
Taking this into account, we expect the accuracy of the PNC
calculations to be around 20% for radium, barium, and singly
ionized actinium. For thorium and protactinium, with a more
complicated electron structure and less experimental data, it is
harder to tell. Until a more detailed analysis can be performed
these calculations should be considered order-of-magnitude
estimates. The accuracy of these CI + MBPT calculations can
be improved as more experimental data becomes available.
It may also be possible to improve the accuracy further by
using sophisticated approaches, such as those presented, for
example, in Refs. [66–70].

IV. RADIUM

Here, we study two relevant transitions for measuring
PNC in radium: the 7s2 1S0 → 6d7s 3D2 transition and the
7s2 1S0 → 6d7s 3D1 transition. Both transitions are in the
optical range (λ ∼ 700 nm) and are enhanced by the proximity
of the odd 7s7p 3P1 level to the upper levels in the transitions.

There are several isotopes of radium that have nonzero
nuclear spin. The nuclear spin of radium is caused by a
valence neutron, which makes these transitions especially
interesting for the study of the neutron-nucleus parity violating

TABLE III. Comparison of calculated magnetic hyperfine struc-
ture constants A for low-lying states of 137Ba (MHz).

6s5d 3D1 6s5d 3D2 6s6p 3P o
1

This work −528 373 1216
Experiment −521a 416a 1151b

aReference [58].
bReference [59].

TABLE IV. Reduced matrix elements 〈a||Ĥ ||b〉 for the ampli-
tudes between the lowest few states of Ra. No value means forbidden
by selection rules (a.u.).

Even state Odd state Hab

a b −era γ5ρ
b αρc

7s2 1S0 7s7p 3P0 − 22.8
3P1 1.22 46.4
1P1 − 5.49 − 12.3

7s6d 3D1 7s7p 3P0 2.99 3.36
3P1 − 2.57 4.13 − 5.45
3P2 − 0.688 − 1.77
1P1 − 0.440 − 9.15 4.74

7s6d 3D2 7s7p 3P1 4.38 − 2.21
3P2 2.60 − 4.31 0.656
1P1 0.797 6.44

7s6d 3D3 7s7p 3P2 − 6.35 8.11

7s6d 1D2 7s7p 3P1 − 0.353 − 4.68
3P2 − 0.519 − 5.24 − 5.24
1P1 − 3.23 − 13.5

aFor E1 transition.
bFor SI-PNC contribution.
cFor anapole moment contribution.

potential [24]. The only measurement of an anapole moment
so far is for 133Cs, which has only a valence proton [3].

In Table IV, we present calculations of reduced matrix
elements of operators of interest for the E1, SI-PNC, and
SD-PNC interactions. Our calculations of the E1 matrix
elements, as well as the energy levels (in Table I), agree well
with previous calculations in, e.g., Refs. [46,47].

One can use the relevant values of the E1 and anapole
moment matrix elements to determine the amplitude of the
dominating term of the PNC transition. Note that in Table IV
we present only the electron parts of the operators, without
any additional factors. For example, the formula linking the
matrix elements of γ5ρ to the SI-PNC interaction is

〈b||ĥSI||a〉 = GF

2
√

2
(−QW )〈b||γ5ρ||a〉.

We present reduced matrix elements due to their lack of
dependence on the projection of angular momentum; the
SD-PNC matrix elements also depend on nuclear spin. The
reduced matrix elements obey the symmetry condition

〈a||ĥ||b〉 = (−1)Jb−Ja 〈b||ĥ||a〉∗,

where the asterisk stands for complex conjugation and results
in a change of sign for the PNC matrix elements but not for the
E1 matrix elements. Also note that the actual matrix elements
contain factors depending on the different angular momentum
values, for example, the SI-PNC matrix element contains the
Wigner 3j symbol that has a term 1/

√
2J + 1, which makes

these reduced matrix elements appear larger for large values
of J . Full formulas are given in the Appendix.
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TABLE V. Comparison of the different methods of determining
the dominating term of the PNC amplitudes for 225Ra.

SD-PNC Units: 10−10� iea0

Orthog.a

λ�b �c Directd

1S0 F=0.5 → 3D2 F=1.5 5.708 5.873 5.706
1S0 F=0.5 → 3D1 F=1.5 0.1551 0.1557 0.1551

SI-PNC Units: 10−10(−QW/N )iea0

Orthog.

λ� � Direct
1S0 → 3D1 13.67 14.00 13.75

aSubtracting the dominating term using orthogonality conditions.
bScaling the correlation potential to reproduce energy interval.
cRescaling dominating term by �Ecalc/�Eexpt.
dCalculate dominating term directly using Eq. (11).

The dominating contribution to the 1S0 − 3D2 transition is
given by

E
Fa→Fb

PNC � kSD

〈3
D2

∣∣|αρ|∣∣3P o
1

〉〈
3P o

1

∣∣| − er|∣∣1
S0

〉
E

(3
D2

) − E
(

3P o
1

) , (11)

where kSD is the coefficient (for the z component):

kSD = GF√
2
�
√

(I + 1)(2I + 1)(2Fb + 1)(2Fa + 1)/I

× (−1)Fb−Fz

(
Fb 1 Fa

−Fz 0 Fz

)

× (−1)Fb−Fa

{
Jn Jb 1
I I Fb

}{
Jn Ja 1
Fa Fb I

}
(12)

[see Eqs. (A1) and (A4) in the Appendix]. Here Fz =
min(Fa,Fb), and the index n refers to the intermediate state.

Due to the large dominating term in the transitions in
radium this gives a good first approximation, and was the
method used in the earlier works [33,34]. We however proceed
to calculate the entire sum, using the rescaled correlation
potential method to deal with the numerical sensitivity due
to the close opposite parity levels, as discussed above. Table V
compares the different methods of determining the dominating
contribution to the amplitude as described above. There is very
good agreement between these approaches, indicating good
numerical accuracy in the calculations.

The 1S0 − 3D2 transition is of particular interest for the
potential measurement of the anapole moment. It is enhanced
by very close levels of opposite parity, the interval between
the upper 3D2 state and the odd-parity 3P1 state is just
5.41 cm−1, and there is no SI contribution. This leads to a
huge enhancement in the parity-violating signal caused by the
interaction of the valence electrons with the anapole moment
of the nucleus.

Calculations of the PNC amplitudes between the different
hyperfine components for this transition are presented in
Table VI. We have performed the calculation of the entire sum,
as opposed to just the leading term as was done in [34]. This
amplitude is very large indeed, several orders of magnitude
larger than the SD amplitudes in cesium.

TABLE VI. SD-PNC amplitudes (z components) for the 1S0 →
3D2 transition in radium, with Fz = min(Fa,Fb). There is no SI
contribution to this transition. Units: 10−10iea0�.

I Fa Fb This work Ref. [34]

1.5 1.5 0.5 − 1.39 − 0.57
1.5 − 3.35 − 1.37
2.5 3.13 1.28

0.5 0.5 1.5 5.92 2.42

Our value is about twice as large as the value calculated
in Ref. [34]. We believe this is mainly due to the effect
of the basis used for the wave functions on the matrix
elements of the SD-PNC interaction. A minimal number of
single-electron basis states calculated in a V N potential were
used in Ref. [34]. The use of the V N approximation in Ref. [34]
allowed us to have reasonable accuracy for the wave functions
without saturating the basis. In the present work we use a
complete set of single-electron states calculated in the V N−2

potential. In this case, the single-electron orbitals are initially
quite different from those in the neutral atom. However,
high accuracy of the results is achieved when the basis is
saturated by allowing all single and double excitations from
the initial reference configuration. The best correspondence
between two methods is achieved when only single excitations
are allowed in the V N−2 potential. Single excitations correct
the orbitals calculated in the V N−2 potential making them
close to those calculated in the V N potential. In Table VII
we present calculations of the αρ reduced matrix element,
which is proportional to the anapole moment contribution,
using several different basis configurations and demonstrate
that by using wave functions similar to those used in [34] we
can account for the difference between the value determined
in this work and that of Ref. [34]. Note that this change in the
wave functions makes only a much smaller difference to the
energy levels (∼5%) and E1 matrix elements (∼10%).

The measurement of the anapole moment of 133Cs was
achieved by comparing measurements of the PNC amplitude,
which contained contributions from both the SD and SI parts,
between different hyperfine components [3]. This transition
in radium however offers the possibility to measure the effect
of the anapole moment directly, which may be more efficient
due both to the much larger amplitude and to the fact that the
spin-independent interaction does not contribute in this case at
all due to the large change in total electron angular momentum
�J = 2.

TABLE VII. Effect of the basis on the matrix element
〈3P1||αρ||3D2〉 in radium and comparison with Ref. [34].

Method Aa Bb Cc Fulld Ref. [34]
〈a||αρ||b〉 0.90 1.18 1.48 2.21 1.10

aAllowing only single excitations from the main reference configura-
tion: 7s2 for 3D2 and 7s7p for 3P1.
bAllowing only single excitations from two reference states: 7s2 and
6d7s for 3D2, and 7s7p and 6d7p for 3P1.
cAllowing double excitations, but with a reduced basis.
dAllowing double excitations with the full basis (final value).
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TABLE VIII. PNC amplitudes (z components) for the 1S0 → 3D1

transition in radium. Units: 10−10iea0.

QW I Fa Fb EPNC

223Ra −127.0 1.5 1.5 0.5 −6.71 × [1 − 0.0402�]
1.5 −9.00 × [1 − 0.0161�]
2.5 7.35 × [1 + 0.0241�]

225Ra −129.0 0.5 0.5 0.5 −6.81 × [1 − 0.0475�]
1.5 9.64 × [1 + 0.0237�]

As well as the 1S0 − 3D2 transition, which has no SI
contribution, we have also performed calculations for the
1S0 − 3D1 transition, for which both SI and SD contributions
are nonzero. This transition is also enhanced due to close
levels of opposite parity, though not to the same extent. The
interval between the even 3D1 state and the odd 3P1 states is
283.53 cm−1.

These amplitudes are presented in Table VIII. We express
the amplitudes in the form

EPNC = P (1 + R), (13)

where P is the SI-PNC amplitude (including QW ), and R is
the ratio of the SD to SI parts. Here we calculate both parts
concurrently, using the same method and wave functions. This
approach has the advantage that the relative sign difference
between the SI and SD parts is fixed, ensuring no ambiguity
in the sign of � [44]. There is also typically a significant
improvement in accuracy for the ratio over that for each of
the amplitudes individually, due to the fact that the atomic
calculations for both components are very similar and much
of the theoretical uncertainty cancels in the ratio [16].

The z component (Jz = 0) of the F -independent electron
part of the spin-independent PNC amplitude for the 1S0 − 3D1

transition in 223Ra is

EPNC(223Ra) = 12.4 × 10−10(−QW/N)iea0, (14)

an order of magnitude larger than the 7s − 8s transitions in Fr
and Ra+, and about twice as large as the 7s − 6d3/2 transitions
in Fr and Ra+ (see, e.g. [18]) and the 1S0 − 3D1 transition in
Yb (see, e.g. [44]).

V. BARIUM

Barium, like radium, has two valence electrons above a
closed-shell core, and we proceed with the calculations in the
same way. Calculations of the reduced matrix elements of
interest to PNC studies are presented in Table IX (energies
for Ba are presented in Table I). The energies and E1 transi-
tion amplitudes agree reasonably with previous calculations,
e.g. [47].

There are two transitions of interest in barium that are
enhanced by the presence of close levels of opposite parity. The
first is between the metastable 5d6s 3D1 and the upper 5d2 1D2

even states. Both SI and SD-PNC parts of this amplitude are
enhanced by the proximity of the odd 5d6p 1Do

2 state to the
upper state of the transition, with an interval of 12.34 cm−1.

Calculations of the SI and SD contributions to the 3D1 − 1D2

PNC amplitude for barium are presented in Table X. We

TABLE IX. Reduced matrix elements 〈a||Ĥ ||b〉 for the ampli-
tudes between the relevant states of Ba. No value means forbidden
by selection rules (a.u.).

Even state Odd state Hab

a b −er γ5ρ αρ

6s2 1S0 6s6p 3P0 2.02
3P1 − 0.510 − 4.12
1P1 5.50 1.62

5d6s 3D1 6s6p 3P0 − 2.34 − 0.376
3P1 2.03 − 0.245 0.675
3P2 0.532 0.335
1P1 0.081 1.07 − 0.309

5d6p 3F2 4.23 3.89
1D2 − 2.72 − 0.147

5d6s 3D2 6s6p 3P1 − 3.48 0.171
3P2 − 2.03 0.291 − 0.494
1P1 − 0.461 − 0.518

5d6p 3F2 2.88 2.61 3.80
1D2 0.372 0.675 − 0.811
3F3 − 5.97 − 1.76

5d2 1D2 6s6p 3P1 1.26 0.815
3P2 − 1.62 1.29 1.55
1P1 − 2.58 1.08

5d6p 3F2 − 0.899 − 0.020 − 0.427
1D2 − 2.49 − 0.085 − 0.356
3F3 0.061 − 0.165

present these amplitudes in the form EPNC = P (1 + R), as de-
scribed above. The z component (Jz = 1) of the F -independent
SI-PNC amplitude for this transition is

EPNC(135Ba) = −3.55 × 10−10(−QW/N )iea0, (15)

and, despite some suppression due to the small value of the
SI-PNC matrix element, it is still large.

The other transition is from the metastable 5d6s 3D2 state to
the same upper 5d2 1D2 even state. As with the first transition,
both the SI and SD parts of this amplitude are enhanced by
the proximity of the odd 5d6p 1Do

2 state to the upper state of
the transition, with the same 12.34 cm−1 interval. However,
in this case there is a second dominating term that contributes
to the SD-PNC amplitude only. This contribution comes from

TABLE X. PNC amplitudes (z components) for the 3D1 → 1D2

transition in barium. Units: 10−10iea0.

QW I Fa Fb EPNC

135Ba −74.0 1.5 0.5 0.5 2.48 × [1 + 0.144�]
1.5 −2.48 × [1 + 0.0945�]

1.5 0.5 1.11 × [1 + 0.1476�]
1.5 2.66 × [1 + 0.0977�]
2.5 −2.49 × [1 + 0.0145�]

2.5 1.5 0.543 × [1 + 0.1031�]
2.5 2.18 × [1 + 0.0199�]
3.5 −2.51 × [1 − 0.0966�]
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TABLE XI. PNC amplitudes (z components) for the 3D2 → 1D2

transition in barium. Units: 10−10iea0.

QW I Fa Fb EPNC

135Ba −74.0 1.5 0.5 0.5 −0.233 × [1 + 0.161�]
1.5 −0.233 × [1 + 0.190�]

1.5 0.5 −0.233 × [1 + 0.144�]
1.5 −0.279 × [1 + 0.0753�]
2.5 −0.174 × [1 + 0.146�]

2.5 1.5 −0.174 × [1 + 0.0686�]
2.5 −0.366 × [1 − 0.0179�]
3.5 −0.115 × [1 + 0.0724�]

3.5 2.5 −0.115 × [1 − 0.0360�]
3.5 −0.466 × [1 − 0.131�]

the odd 5d6p 3F3 state, and is enhanced by an energy interval
of 114.6 cm−1.

The fact that there are two dominating terms to this transi-
tion makes this case potentially more difficult numerically—
the experimental energy intervals for both leading terms cannot
be simultaneously reproduced with the same set of scaling
parameters for the correlation potential. We proceed in this
case using a mixture of the two above described methods;
we use the same correlation potential scaling parameters as
for the 3D1 − 1D2 transition (reproducing the 12.34 cm−1

interval exactly), and then enforce orthogonality conditions
to separate off the remaining dominating term and rescale it
for the 114.6 cm−1 experimental interval. As a test of the
numerical accuracy we in fact separate off both dominating
terms using the orthogonality conditions and compare them to
the values calculated directly using the matrix elements from
Table IX and the experimental intervals. We find excellent
agreement between these values, within 0.3% for the SI part
and better than 0.1% for the SD part, and conclude that the
numerical accuracy is good. Calculations of the 3D2 − 1D2

PNC amplitude for 135Ba are presented in Table XI, and
the z component (Jz = 2) of the SI-PNC amplitude for the
3D2 − 1D2 transition for barium is

EPNC(135Ba) = −0.497 × 10−10(−QW/N)iea0, (16)

which is relatively small compared to the other transitions
studied in this work.

While there are possible PNC transitions from the ground
state, they are not enhanced. The 3D1 state is practically stable
with no allowed E1 or E2 transitions to the ground state,
the only lower state. We calculate the lifetime of this state to
be 4 × 106 s. For the 3D2 state, which has only a significant
contribution from an E2 transition to the ground state, we
calculate a lifetime of 70 s, which agrees very well with the
value of 69 s calculated in Ref. [46].

The transitions from the ground state, namely the 1S0 − 3D1,
the 1S0 − 1D2, and the 1S0 − 3D2 transitions, may themselves
in fact be promising options for searching for PNC. These
transitions are essentially analogues of the corresponding
transitions in ytterbium, for which measurements have already
been performed, and are continuing [71].

Though the here considered amplitudes are smaller than
those in radium, and despite the fact that the enhanced
amplitudes are not from the ground state, there are advantages
to working with barium. The 135Ba and 137Ba nuclei, each with
nuclear spin I = 3/2, are stable. There are obvious benefits
to this over working with radioactive elements. Also, despite
the smaller amplitudes and likely smaller nuclear enhancement
(i.e., smaller �) than in radium, the ratio of the SD to SI parts is
very large for transitions between some hyperfine components.
This is due to small values for the SI-PNC matrix element of
the dominating terms (see Table IX), which suppresses the SI
part of the amplitudes.

As well as searching for the anapole moment by measuring
PNC between different hyperfine components, each of the
spin-independent transitions in barium could be used for
measurements of PNC in a chain of isotopes. There is currently
much interest in this type of measurement, in particular for
ytterbium [44,53–57], where measurements have already been
performed [71]. The atomic PNC amplitude in Yb constitutes
the largest yet observed in any system. The SI-PNC transitions
in neutral barium are of particular interest in this area. Like yt-
terbium, barium has many stable isotopes, with both even- and
odd-nucleon numbers, that are significantly spread out. The
3D1 − 1D2 SI-PNC amplitude in barium is about half the size
of the 1S0 − 3D1 transition of ytterbium, though the SD contri-
bution for barium is several times larger than that for ytterbium.

VI. ACTINIUM II

Singly ionized actinium has a ground-state configuration
very similar to that of radium, and thus the calculations can
be approached in the same way. Here, the transition of interest
is the 7s2 1S0 → 6d2 3P2 transition, for which there is no SI
contribution. This transition is enhanced by the proximity of
the odd 7s7p 3P1 level to the even 6d2 3P2 level, with an energy
interval of 18.93 cm−1.

In Table XII we present calculations of the relevant reduced
matrix elements for Ac+, and in Table XIII we present z

TABLE XII. Reduced matrix elements 〈b||Ĥ ||a〉 of the ampli-
tudes between the lowest few states of Ac+. No value means forbidden
by selection rules (a.u.).

Odd state Even state Hba

a b −er γ5ρ αρ

7s7p 3P0 7s2 1S0 45
6d7s 3D1 − 1.8 5.6
6d2 3P0 5.2

3P1 − 0.50 0.029

7s7p 3P1 7s2 1S0 1.7 − 85
6d7s 3D1 1.7 16 − 15

3D2 2.2 14
1D2 − 0.10 3.1

6d2 3F2 0.56 − 3.3
3P0 0.66 12
3P1 − 0.42 1.6 − 1.5
3P2 0.40 − 4.2
1D2 0.82 − 4.7
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TABLE XIII. SD-PNC amplitudes (z components) for the 1S0 →
3P2 transition in Ac+. There is no SI contribution to this transition.
Units: 10−10iea0�.

I Fa Fb EPNC

227Ac+ 1.5 1.5 0.5 1.05
1.5 2.51
2.5 − 2.35

231Ac+ 0.5 0.5 1.5 − 4.44

components of the SD-PNC amplitudes. These amplitudes
are almost as large as the corresponding 1S0 − 3D2 transitions
in radium. Despite the difficulties of working with ions, it
is possible that there are advantages in using actinium. The
227Ac nucleus has a half-life of 22 yr, much longer than the 42
min half-life of the most stable odd-nucleon isotope of radium
227Ra or the 22 min of the most stable francium isotope 223Fr.

This transition in Ac+ could be measured using a similar
method to that put forward by Fortson in Ref. [14] for
measuring PNC in single ions that have been laser trapped
and cooled. The upper 6d2 level of the transition should be
relatively stable, a condition for accuracy in this method, since
the only allowed E1 transition to a lower level is suppressed
by the small interval 18.93 cm−1. Including all E1, E2, and
M1 transitions to lower levels, we calculate the lifetime of this
state to be about 0.2 s.

VII. THORIUM

Thorium has four valence electrons. Full-scale accurate
calculations for this atom are beyond the scope of the present
work; however, we use the same methods outlined above (using
a V N−4 potential) to perform preliminary calculations here
also.

To perform the calculations of the PNC amplitudes we
calculate only the dominating contribution using the matrix
elements of the PNC and E1 interactions, without trying
to evaluate the entire sum. For the wave functions we
include the eight leading configurations and from these allow
single excitations. This provides a fair compromise between
completeness of the wave functions and ease of computation.
Here we include correlation corrections, but we calculate these
to second order in MBPT only. We also do not perform any
rescaling of the correlation potential. This is because the
uncertainty here is dominated by the completeness of the
basis, not by the effect of the correlation potential. We have
performed calculations of several energy levels of interest to
PNC in thorium. These are presented in Table XIV (note
that this is not a comprehensive list of states). Despite the
lower-level approximation for the more complex system the
agreement is reasonably good, particularly for the lower states.
Calculations of the relevant E1 and PNC reduced matrix
elements are presented in Table XV.

It is worth noting that for thorium (and also for protac-
tinium) the configuration mixing is very large, particularly
for the higher states. The configurations given in Tables XIV
and XV are the leading configurations (taken from Ref. [72]),
but other contributing configurations are important as well.

TABLE XIV. Calculated energy levels for thorium and compari-
son with experiment (Ref. [72]). Units are cm−1.

State Calc. Expt.

6d27s2 3F2 0 0
3P0 2546 2558
3F3 3168 2869
1P2 4120 3688
3P1 3926 3865
3F4 5650 4962

6d37s 5F1 5257 5563
5F2 6232 6362
3H4 18358 15493
3F3 18536 17398

5f 6d7s2 3Go
5 18846 15490

6d7s27p 3Do
3 20190 17411

For example, the SI-PNC (γ5ρ) reduced matrix element
between the 6d7s27p 3D3 and 6d27s2 3F3 states is rather
large (see Table XV), which is unexpected since the leading
configurations suggest this transition is essentially a single-
electron p-d transition. (This particular matrix element does
not contribute to the PNC amplitude we study here.) However,
due to the large configuration mixing this matrix element
also has a large contribution coming from single-electron s-p
mixing, enhancing this amplitude. The extent of this mixing
is detrimental to the accuracy of the calculations, especially
when the overall accuracy is not high, since even relatively
small errors in the calculated configurations may lead to large
errors in the weak matrix elements (as discussed in Sec. II).
Fortunately, the weak matrix elements of relevance to the PNC
amplitudes studied here are relatively stable in this regard. Still,
this is a large contributing factor to the low accuracy for these
calculations in thorium and protactinium.

Thorium has several isotopes of nonzero nuclear spin, e.g.,
227Th with I = 1/2, 225Th with I = 3/2, and 229Th with I =
5/2. The most long lived of these is 229Th, which has a half-life
of about 7300 yr, and the most stable thorium isotope is 232Th,
which has zero nuclear spin and a half-life of 1.4 × 1010 yr.
The nuclear spin of thorium is produced by a valence neutron.
There are two interesting PNC transitions in thorium that are
enhanced by close opposite parity levels.

TABLE XV. Reduced matrix elements 〈b||Ĥ ||a〉 of the ampli-
tudes between the relevant states of Th (a.u.).

Odd state Even state Hba

a b −er γ5ρ αρ

6d7s27p 3D3 6d27s2 3F2 − 0.17 − 14
3F3 − 0.20 −47 2.8
3F4 − 0.51 − 32

6d37s 3H4 − 0.01 − 7.1
3F3 0.15 −0.37 4.5

5f 6d7s2 3G5 6d27s2 3F4 1.7 53
6d37s 3H4 0.14 2.9
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TABLE XVI. SD-PNC amplitudes (z components) for the 3F4 →
3H4 transition in thorium. The SI contribution to this transition is not
enhanced. Units: 10−10iea0�.

I Fa Fb EPNC

227Th 0.5 3.5 4.5 3.4
4.5 4.5 − 1.0

229Th 2.5 1.5 2.5 1.4

2.5 2.5 − 0.87
3.5 1.7

3.5 2.5 − 0.12
3.5 − 1.4
4.5 1.8

4.5 3.5 − 0.16
4.5 − 1.7

5.5 1.8
5.5 4.5 − 0.14

5.5 − 1.5

6.5 1.5
6.5 5.5 − 0.086

6.5 − 1.0

The first is a transition between the metastable 6d27s2 3F4

state and the higher 6d37s 3H4 state, which is induced by
the nuclear anapole moment. This transition is enhanced
by the extremely small 3.1 cm−1 energy interval between
the 5f 6d7s2 3Go

5 state and the 3H4 state. This transition is
given by

EPNC � kSD

〈3
H4

∣∣|αρ|∣∣3Go
5

〉〈
3Go

5

∣∣| − er|∣∣3
F4

〉
E

(3
H4

) − E
(

3Go
5

) , (17)

where the factor kSD is given in Eq. (12). The SD-PNC ampli-
tudes between various hyperfine components for this transition
are given in Table XVI. There is also a SI contribution to
this transition, though it is not enhanced by the proximity of
opposite parity levels and doesn’t contain a single dominating
term. It is likely between one and two orders of magnitude
smaller than the SD contribution, below the current level of
accuracy.

The second transition of interest in thorium is between the
ground 6d27s2 3F2 state and the higher 6d37s 3F3 state. This
transition is enhanced by a 12.8 cm−1 energy interval between
the 6d7s27p 3Do

3 state and the 3F3 state, and has contributions
from both the anapole moment and the nuclear weak charge.
The amplitudes for this transition are presented in Table XVII,
where, as for radium, we present the amplitudes in the form
EPNC = P (1 + R). Note that the ratio of the SD contribution
to the SI contribution is significantly larger for thorium than
for radium.

The z component (Jz = 2) of the SI-PNC amplitude for
the (F -independent) 3F2 − 3F3 transition in 232Th is calculated
to be

EPNC(232Th) = 9.9 × 10−11(−QW/N)iea0. (18)

There is no SD-PNC contribution here due to the fact that
232Th has nuclear spin I = 0. Despite suppression from both
the E1 and PNC matrix elements the amplitude is large, an

TABLE XVII. PNC amplitudes (z components) for the 3F2 → 3F3

transition in thorium. Units: 10−10iea0.

QW I Fa Fb EPNC

227Th −128.9 0.5 1.5 2.5 0.95 × [1 + 0.22�]
2.5 2.5 −0.34 × [1 + 0.22�]

3.5 0.83 × [1 − 0.16�]
229Th −130.8 2.5 0.5 0.5 −0.79 × [1 + 0.21�]

1.5 0.72 × [1 + 0.18�]

1.5 0.5 −0.42 × [1 + 0.21�]
1.5 −0.91 × [1 + 0.18�]
2.5 0.68 × [1 + 0.13�]

2.5 1.5 −0.28 × [1 + 0.18�]
2.5 −0.91 × [1 + 0.13�]
3.5 0.68 × [1 + 0.054�]

3.5 2.5 −0.17 × [1 + 0.13�]
3.5 −0.83 × [1 + 0.053�]
4.5 0.68 × [1 − 0.042�]

4.5 3.5 −0.091 × [1 + 0.053�]
4.5 −0.62 × [1 − 0.043�]
5.5 0.68 × [1 − 0.16�]

order of magnitude larger than the 6s − 7s transition in cesium.
Though the accuracy here is not high, this transition could be
used in isotopic chain measurements to determine ratios of
the weak charges for different isotopes of thorium. 232Th is
practically stable, with a half-life of 1.5 × 1010 yr.

VIII. PROTACTINIUM

As well as the enhancement that is due to the presence of
close electronic levels of opposite parity, there is some sugges-
tion that there may also be a very large nuclear enhancement
of P -, T -odd effects in 229Pa [28] (see also [29–32]), which
has nuclear spin I = 5/2. The suggestion of large nuclear
enhancement comes from experimental evidence that there
is an extremely small energy splitting (∼0.22 keV) between
the members of a ground-state parity doublet [73]. However,
more recent experimental work has put the identification
of these levels into doubt (see, e.g. [74,75]). Even so, the
parity-violating nuclear effects can reasonably be expected to
be large, and along with the electronic enhancement this makes
protactinium an interesting case also.

To perform these calculations for protactinium, which has
five valence electrons, we follow a similar procedure as in
thorium; however, we do not allow any excitations from the
eight leading configurations in the production of the wave
functions. The experimental energies of these states, as well
as calculations of the reduced matrix elements of the relevant
operators, are presented in Table XVIII.

Note that it would be preferable to perform calculations
in protactinium (and even thorium) using the conventional CI
method with a V N potential. The benefits for this type of
Hartree-Fock potential when only a small basis is used for the
valence wave functions was discussed in Sec. IV. However,
we find that in these cases the convergence of the TDHF
equations (9) is problematic due to the open s, f , and d shells
of the important configurations. This is especially true for the
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TABLE XVIII. Reduced matrix elements 〈a||Ĥ ||b〉 for the
amplitudes between the relevant states of Pa. Also shown are the
experimental energies of the levels [72].

Odd state Even state Hab (a.u.)

a b −er γ5ρ αρ

5f 6d37s 6I o
9/2 5f 26d7s2 4K11/2 0.22 −13.7

(8583 cm−1) (0 cm−1)

5f 26d7s2 4G11/2 0.36 −4.5
(8571 cm−1)

5f 26d7s2 4H9/2 − 0.08 2.8 3.8
(8596 cm−1)

operator of the SD-PNC interaction, which leads to unstable
and unreliable results. It is for this reason we use the V N−M

potential approach despite the reduction in accuracy.
There are two transitions of particular interest in protac-

tinium. The first is between the even 5f 26d7s2 4K11/2 ground
state and the 5f 26d7s2 4G11/2 upper state, and the other
is between the ground state and the 5f 26d7s2 4H9/2 state.
Both transitions are enhanced by the proximity of the odd
5f 6d37s 6I o

9/2 state to the upper state of the transitions with
energy intervals of 12.0 cm−1 and 13.2 cm−1, respectively.

Calculations of the anapole moment induced PNC am-
plitudes for the 4K11/2 − 4G11/2 transition are presented in
Table XIX. There is also a SI contribution to this transition but
it is not enhanced and is smaller than the SD part.

TABLE XIX. SD-PNC amplitudes (z components) for the
4K11/2 → 4G11/2 transition in protactinium. The SI contribution to
this transition is not enhanced. Units: 10−10iea0�.

I Fa Fb EPNC

229Pa 2.5 3 3 0.039
4 0.0061

4 3 − 0.055
4 0.063
5 0.0070

5 4 − 0.071
5 0.072
6 0.0056

6 5 − 0.078
6 0.067
7 0.0028

7 6 − 0.077
7 0.043

8 7 − 0.064
231Pa 1.5 4 4 0.041

5 0.0032
5 4 − 0.078

5 0.056
6 0.0024

6 5 − 0.092

6 0.043

TABLE XX. PNC amplitudes (z components) for the 4K11/2 →
4H9/2 transition in protactinium. Units: 10−10iea0.

QW I Fa Fb EPNC

229Pa −129.8 2.5 3 2 −5.1 × [1 + 0.023�]
3 3.0 × [1 + 0.018�]
4 0.35 × [1 + 0.011�]

4 3 −4.4 × [1 + 0.018�]
4 3.5 × [1 + 0.011�]
5 0.32 × [1 + 0.0028�]

5 4 −3.8 × [1 + 0.011�]
5 3.5 × [1 + 0.0028�]
6 0.25 × [1 − 0.0073�]

6 5 −3.8 × [1 + 0.0028�]
6 3.0 × [1 − 0.0073�]
7 0.15 × [1 − 0.019�]

7 6 −3.5 × [1 − 0.007�]
7 2.3 × [1 − 0.019�]

8 7 −3.5 × [1 − 0.019�]
231Pa −131.8 1.5 4 3 −4.7 × [1 + 0.023�]

4 2.2 × [1 + 0.012�]
5 0.14 × [1 − 0.0022�]

5 4 −4.1 × [1 + 0.012�]
5 2.3 × [1 − 0.0022�]
6 0.10 × [1 − 0.019�]

6 5 −3.8 × [1 − 0.002�]
6 1.9 × [1 − 0.019�]

7 6 −3.8 × [1 − 0.019�]

The 4K11/2 − 4H9/2 transition has enhanced contributions
from both the anapole moment and QW induced contributions.
The amplitudes for this transition are presented in Table XX.
The SD amplitudes in Tables XIX and XX are approximately
10 times smaller than those calculated for thorium; however,
the anapole moment, κa(229Pa), may be much larger.

We calculate the z component (Jz = 9/2) for the
F -independent part of the 4K11/2 − 4H9/2 SI-PNC amplitude
to be

EPNC(231Pa) = −44 × 10−11(−QW/N )iea0. (19)

As for Th, the accuracy here is not high, though the amplitude
is very large, about the same size as the 7s − 6d3/2 amplitudes
in Fr and Ra+, and about a third of the size of the 1S0 − 3D1

amplitude in neutral radium. This transition would therefore
be of interest for measuring the ratio weak charges for a
number of different isotopes of Pa, the most stable of which
being 231Pa, with a half-life of about 32 500 yr.

IX. DISCUSSION AND CONCLUSION

We have presented calculations of strongly enhanced
atomic parity nonconservation due both to the nuclear weak
charge and the nuclear anapole moment in the hope of
motivating experiment. Experiments, including the production
of beams of various radium isotopes, are currently under way
with atomic parity violation in mind; see, e.g. [76–78]. These
methods can also be exploited for other actinides, including

042509-11



B. M. ROBERTS, V. A. DZUBA, AND V. V. FLAMBAUM PHYSICAL REVIEW A 89, 042509 (2014)

neutral atoms and ions [78]. Parity-violation experiments in
ytterbium have already been performed [71]. In principle,
these could make use of the chain of isotopes method, and also
lead to the extraction of the anapole moment. For most of the
atoms considered here, experiments similar to the type used to
measure PNC in ytterbium would be applicable. In principle,
an experiment like that currently being used to search for
PNC in dysprosium could also be used [79]. In this method
it is not directly the PNC amplitude that is measured, and the
quantity of immediate interest is the weak matrix element
of the dominating term, making this method particularly
interesting for the transitions that would otherwise be from
excited states. A condition here, however, is that the upper state
be relatively stable [79]. For the Ac+ ion, a method similar to
that put forward by Fortson in Ref. [14] for measuring PNC
in single ions that have been laser trapped and cooled could
be used.

Note that we have not considered PNC in dysprosium in
this work, since calculations for PNC in dysprosium have
been performed fairly recently [80]. The feature of dysprosium
that makes it a particularly interesting system for the study of
atomic PNC is the existence of two nearly degenerate states of
opposite parity and the same total angular momentum, J = 10,
at E = 19 797.96 cm−1. Despite this close-level enhancement,
the overall PNC effect in dysprosium has been found to
be small, due to only very small amounts of s-p mixing
in the relevant matrix element [79,80], and a nonzero PNC
signal has not yet been observed. This doesn’t mean that
this transition is not interesting, however, and it is still the
subject of much interest and ongoing work, not only to measure
PNC, but also as a test of other fundamental symmetries and
as a possible sensitive test for variation of the fundamental
constants [81,82], as well as searching for evidence of a
parity-violating cosmic field [83,84].

Anapole moment induced transitions are presented for
systems whose nuclear spin is caused both by a valence
neutron (Ra, Ba, and Th) and a proton (Ac+ and Pa). We
expect the accuracy of the calculations to be approximately
20% for Ra, Ba, and Ac+, and provide order-of-magnitude
calculations for Th and Pa. Calculations for thorium and
protactinium can be improved by extending the CI calculations
and performing a summation for the entire PNC amplitude.

More complete calculations for all systems can be performed
if experimental work is under way. Due to the very large
enhancement of the PNC amplitudes the atoms and ions
considered here are promising candidates for experimental
studies of parity-violating nuclear forces and for studying PNC
in a chain of isotopes.
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APPENDIX: FORMULAS

The parity-violating E1 transition induced by the hPNC

interaction (1) is given by Eq. (4). With use of the Wigner-
Eckart theorem, this amplitude can be expressed via the
reduced matrix elements:

EPNC = (−1)Fb−Mb

(
Fb 1 Fa

−Mb q Ma

)
〈JbFb||dPNC||JaFa〉.

(A1)

For z components we take M = min(Fa,Fb).
The reduced matrix elements obey the symmetry rule

〈JaFa||dPNC||JbFb〉 = (−1)Fb−Fa 〈JbFb||dPNC||JaFa〉∗,
(A2)

where ∗ means complex conjugation and results in a change
of sign for the PNC amplitudes.

For the single-electron wave functions we use the form

ψjlm(r) =
(

f (r)�(r/r)κm

iαg(r)�(r/r)−κm

)
, (A3)

where α ≈ 1/137 is the fine-structure constant, and κ =
∓(j + 1/2) for j = 1 ± 1/2 is the Dirac quantum number.

1. Spin-dependent PNC

For the SD-PNC amplitude, the reduced matrix element is
given by

〈JbFb||dSD||JaFa〉 = GF√
2
�
√

(I + 1)(2I + 1)(2Fb + 1)(2Fa + 1)/I

×
∑

n

[
(−1)Jb−Ja

{
Jn Ja 1
I I Fa

}{
Jn Jb 1
Fb Fa I

} 〈Jb||d̂E1||Jn〉〈Jn||αρ||Ja〉
Ea − En

+ (−1)Fb−Fa

{
Jn Jb 1
I I Fb

}{
Jn Ja 1
Fa Fb I

} 〈Jb||αρ||Jn〉〈Jn||d̂E1||Ja〉
Eb − En

]
. (A4)

The single-electron contributions to the reduced matrix element of the SD-PNC interaction has the form

〈Ja||αρ||Jb〉 = iR1SDC1SD + iR2SDC2SD, (A5)

where

R1SD = −α

∫
ρgafb dr, R2SD = −α

∫
ρfagb dr (A6)
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are the radial integrals with ρ(r) the (Fermi-type) nuclear density normalized to 1, and C1,2SD are the angular coefficients:

C1SD = (−1)Ja+lb+1/2
√

6(2Ja + 1)(2Jb + 1)

{
1/2 Ja lb
Jb 1/2 1

}
,

C1SD = (−1)Ja+la+3/2
√

6(2Ja + 1)(2Jb + 1)

{
1/2 Ja la
Jb 1/2 1

}
.

2. Spin-independent PNC

For the QW induced SI amplitude, the reduced matrix element is given by

〈JbFb||dSI||JaFa〉 = i
GF

2
√

2
(−QW )(−1)I+Fa+Jb+1

√
(2Fb + 1)(2Fa + 1)

{
Ja Jb 1
Fb Fa I

}

×
∑

n

[(
Ja 0 Ja

−m 0 m

) 〈Jb||d̂E1||Jn〉〈Jn||γ5ρ||Ja〉
Ea − En

+
(

Jb 0 Jb

−m 0 m

) 〈Jb||γ5ρ||Jn〉〈Jn||d̂E1||Ja〉
Eb − En

]
, (A7)

with m = min(Ja,Jb).
The reduced matrix element of the SI-PNC interaction is defined:

〈Ja||γ5ρ||Jb〉 = iRSICSI, (A8)

where

RSI = −α

∫
ρ(fagb − gafb) dr (A9)

is the single-electron radial integral and CSI = √
2Ja + 1 is the angular coefficient. [Note that the coefficient CSI and the 3j

symbol in (A7) cancel.]
The electron (F -independent) part of the SI-PNC amplitude [i.e., with |a〉 = |Ja,la,ma〉 in (4)] is given by the formula

EPNC = GF

2
√

2
(−QW )

∑
n

(−1)Jb+Jn−2m

[(
Jb 1 Jn

−m 0 m

)(
Jn 0 Ja

−m 0 m

) 〈Jb||d̂E1||Jn〉〈Jn||γ5ρ||Ja〉
Ea − En

+
(

Jb 0 Jn

−m 0 m

)(
Jn 1 Ja

−m 0 m

) 〈Jb||γ5ρ||Jn〉〈Jn||d̂E1||Ja〉
Eb − En

]
, (A10)

where for the z component we take m = min(Ja,Jb).
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