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The Pauli exclusion principle requires the spectrum of the occupation numbers of the one-electron reduced
density matrix (1-RDM) to be bounded by one and zero. However, for a 1-RDM from a wave function, there
exist additional conditions on the spectrum of occupation numbers, known as pure N -representability conditions
or generalized Pauli conditions. For atoms and molecules, we measure through a Euclidean-distance metric the
proximity of the 1-RDM spectrum to the facets of the convex set (polytope) generated by the generalized Pauli
conditions. For the ground state of any spin symmetry, as long as time-reversal symmetry is considered in the
definition of the polytope, we find that the 1-RDM’s spectrum is pinned to the boundary of the polytope. In
contrast, for excited states, we find that the 1-RDM spectrum is not pinned. Proximity of the 1-RDM to the
boundary of the polytope provides a measurement and classification of electron correlation and entanglement
within the quantum system. For comparison, this distance to the boundary of the generalized Pauli conditions is
also compared to the distance to the polytope of the traditional Pauli conditions, and the distance to the nearest
1-RDM spectrum from a Slater determinant. We explain the difference in pinning in the ground- and excited-state
1-RDMs through a connection to the N -representability conditions of the two-electron reduced density matrix.
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I. INTRODUCTION

The Pauli exclusion principle states that two identical
fermions cannot occupy the same quantum state [1]. Postulated
by Pauli in 1925 to explain atomic transitions [2], this principle
plays a key role in predicting electronic configurations of atoms
and molecules. Stated otherwise, the Pauli principle says that
the fermion occupation numbers λi of a quantum system must
lie between 0 and 1,

0 � λi � 1. (1)

Subsequent work by Dirac [3] and Heisenberg [4] showed
that this principle arises from the antisymmetry of the fermion
wave function.

As discussed by von Neumann [5], a general N -fermion
quantum state is expressible by an N -fermion ensemble
density matrix,

ND(1,2, . . . ,N ; 1̄,2̄, . . . ,N̄ )

=
∑

i

wi�i(1,2, . . . ,N)�∗
i (1̄,2̄, . . . ,N̄ ), (2)

where wi are non-negative weights that sum to unity,
�i(1,2, . . . ,N ) are N -fermion wave functions, and each
number denotes the spatial and spin coordinates of a fermion.
Integration of the N -fermion ensemble density matrix over the
coordinates of all fermions save one yields the one-fermion
reduced density matrix (1-RDM),

1D(1; 1̄) =
∫

ND(1,2, . . . ,N ; 1̄,2, . . . ,N)d2d3 · · · dN. (3)

Like the N -fermion density matrix, the 1-RDM must be (i)
Hermitian, (ii) normalized, and (iii) positive semidefinite.
However, the 1-RDM must also obey additional constraints to
ensure that it is derivable from the integration of an N -fermion
ensemble density matrix ND. These additional constraints
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are known as ensemble N-representability conditions [6].
The eigenfunctions of the 1-RDM are known as natural
orbitals, while the eigenvalues of the 1-RDM are known as the
natural occupation numbers. Coleman showed that the Pauli
exclusion principle applied to the natural occupation numbers
imposes necessary and sufficient ensemble N -representability
conditions on the 1-RDM, i.e., the eigenvalues of the 1-RDM
must lie between 0 and 1 [6].

While the Pauli conditions of the 1-RDM are complete
ensemble N -representability conditions, additional conditions
on the 1-RDM are required to ensure that it arises from the
integration of an N -fermion pure density matrix,

ND(1,2, . . . ,N ; 1̄,2̄, . . . ,N̄ )

= �(1,2, . . . ,N)�∗(1̄,2̄, . . . ,N̄ ), (4)

where the ND can be spectrally resolved in terms of the single
N -fermion wave function �(1̄,2̄, . . . ,N̄ ). These additional
1-RDM constraints are known as pure N-representability
conditions or generalized Pauli conditions [6–11]. The pure
N -representability conditions of the 1-RDM depend only on
its natural occupation numbers [6], and, hence, we will use the
terms N representability of the 1-RDM and N representability
of the 1-RDM spectrum interchangeably. Smith showed that
pairwise degeneracy of occupation numbers is sufficient to
ensure pure N representability of the 1-RDM [7]. Furthermore,
he showed that such degeneracy occurs naturally in even-N
quantum systems with time-reversal symmetry. In 1972, Bor-
land and Dennis reported pure N -representability conditions
for an active space of three fermions in six orbitals denoted
by ∧3[H6], on the basis of numerical calculations [8]. For an
ordered set of occupation numbers λi � λi+1, their conditions
are given by

λ1 + λ6 = λ2 + λ5 = λ3 + λ4 = 1, (5)

λ5 + λ6 − λ4 � 0. (6)
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Until recently, a systematic enumeration of generalized Pauli
constraints has been elusive. Based on work in quantum
marginal theory, Klyachko was able to list the necessary and
sufficient constraints for N fermions in r orbitals [9,12]. These
constraints are expressible in the form of linear inequalities in
the occupation numbers {λi},

κ0 + κ1λ1 + · · · + κrλr � 0, (7)

which can be visualized as a convex polytope in Rr [13]. The
polytope for N = 3 and r = 6, whose boundary is defined by
the Borland-Dennis inequalities in Eqs. (5) and (6), is shown
in Fig. 1.

In this paper, we study the generalized Pauli conditions
for ground and excited states of three- and four-electron

FIG. 1. (Color online) The sets of (a) ensemble and (b) pure
N -representable 1-RDMs are shown for a general three-electron
(N = 3) and six-orbital (r = 6) quantum system. The plane de-
fined by the Borland-Dennis equalities in Eq. (6) causes the pure
N -representable set of 1-RDMs in (b) to be significantly smaller than
the ensemble N -representable set of 1-RDMs in (a). The sets are
shown in terms of the first three natural occupation numbers, λ1,
λ2, and λ3, ordered from highest to lowest, relative to a fixed set of
natural orbitals. These three occupation numbers provide a complete
three-dimensional description of the pure 1-RDM spectra because the
other occupation numbers are determined from the Borland-Dennis
equalities in Eq. (5); they provide a partial description of the full
five-dimensional ensemble 1-RDM spectra.

atoms and molecules, including Li, LiH, BH, and BeH2 as
well as H3 and H4. Both H3 and H4 are studied at both
equilibrium and nonequilibrium geometries. Previous work
has explored these conditions for the ground states of a
quantum harmonic oscillator in a harmonic potential [10] and
the lithium isoelectronic sequence [11]. While previous work
examined the residual of the generalized Pauli conditions to
measure saturation of the inequalities [10,11], we measure the
distance of the 1-RDM from the boundary of the set of pure
N -representable 1-RDMs through a Euclidean metric [14].
Specifically, we compute the minimum Euclidean distance
between the natural occupation numbers of the 1-RDM to
the boundary of the polytope generated by the generalized
Pauli conditions. The distance of the 1-RDM spectrum to
the nearest facet of the polytope provides a measurement
and classification of electron correlation and entanglement.
For comparison, we also compute the minimum Euclidean
distance to the boundary of the ensemble N -representable
1-RDMs and the minimum Euclidean distance to the nearest
noninteracting 1-RDM, that is, a 1-RDM corresponding to a
Slater determinant. The computations of both the 1-RDMs and
the Euclidean distances are performed in the computer algebra
program MAPLE [15] with arbitrary-precision floating-point
arithmetic. The 1-RDMs are computed from full configu-
ration interaction (FCI) calculations; in several cases, for
comparison, the 1-RDMs are also computed from variational
2-RDM computations [16–31] with approximate ensemble
N -representability conditions on the 2-RDM [32–36].

For three-electron atoms and molecules, we find that the
1-RDM of the ground-state wave function is always pinned to
the boundary of the pure N -representable set of 1-RDMs.
Importantly, this pinning of the 1-RDM to the boundary
of its pure N -representable set occurs even for strongly
correlated three-electron molecules such as equilateral H3.
This constitutes numerical evidence of pinning in a strongly
correlated molecule. For four-electron atoms and molecules,
we find that the 1-RDM of the ground-state wave function is
not pinned to the boundary of the generalized Pauli conditions
derived by Klyachko [9]. However, because these four-electron
atoms and molecules obey time-reversal symmetry, we should,
in fact, consider the generalized Pauli conditions derived by
Smith [7] that explicitly account for this additional symme-
try. With time-reversal symmetry included, the ground-state
1-RDM of four-electron systems is found in all cases to be
pinned to the boundary of the generalized Pauli conditions. In
contrast to the ground states, some of the 1-RDMs from excited
states of a given spin symmetry are found to be significantly
inside the set of pure N -representable 1-RDMs. In Sec. II A,
for both ground and excited states, we theoretically motivate
these computational findings through an analysis of the pure
N -representable set of 2-RDMs, i.e., the set of 2-RDMs that
correspond to at least one N -fermion wave function.

II. PINNING OF 1-RDM SPECTRA

In Sec. II A, we discuss a necessary 2-RDM condition for
pinning of the 1-RDM to the boundary of pure N -representable
1-RDMs. The condition is valid for a one-electron basis set
in the case of a finite rank r as well as in the limit that
the rank r approaches infinity. In Sec. II B, we compute the
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minimum Euclidean distances to the boundaries of the sets of
N -representable 1-RDMs that are pure and ensemble, respec-
tively. These Euclidean distances are useful for both measuring
and classifying electron correlation and entanglement. Finally,
in Sec. II C, we discuss the pure N -representable 1-RDM set
for even-N quantum systems with time-reversal symmetry.

A. Necessary 2-RDM condition

The ground-state energy of an N -electron system can be
expressed as a functional of the 2-RDM,

E = N (N − 1)

2
Tr(2K 2D), (8)

where 2D is the 2-RDM,

2D(1,2; 1̄,2̄) =
∫

ND(1,2, . . . ,N ; 1̄,2̄, . . . ,N)d3 · · · dN, (9)

and 2K is the two-electron reduced Hamiltonian,

2K(1,2; 1̄,2̄) = 1

N − 1

2∑
i=1

(
−1

2
∇̂2

i −
∑

k

Zk

rik

)
+ 1

r12
. (10)

Minimization of the energy over the convex set E2
N of ensemble

N -representable 2-RDMs yields the ground-state energy E0 of
the N -electron quantum system [6,34,35],

E0 = min
2D∈E2

N

E(2D). (11)

Because the energy is a linear functional of the 2-RDM, the
optimal 2-RDM for a nondegenerate ground state lies on the
boundary of the convex set E2

N .
A 2-RDM that is ensemble N representable must be

derivable from the integration of at least one N -electron
density matrix. The 2-RDM that is pure N representable must
also be derivable from the integration of at least one pure
N -electron density matrix. From these definitions, it follows
that the set P 2

N of pure N -representable 2-RDMs is contained
in the set E2

N of ensemble N -representable 2-RDMs, that is,
P 2

N ⊂ E2
N . By the energy minimization discussed above, the

2-RDM of a nondegenerate ground state lies on the boundary of
the ensemble set E2

N . Because the 2-RDM of a nondegenerate
ground state is pure N representable and P 2

N ⊂ E2
N , it also lies

on the boundary of the pure set P 2
N . In contrast, an excited-state

2-RDM generally lies inside the ensemble set E2
N of 2-RDMs.

Because a 1-RDM arises from the integration of a ground-
state 2-RDM over the coordinates for electron two, the
ground-state 1-RDM can lie in the boundary of its pure
N -representable set P 1

N only if it derives from a 2-RDM that
lies on the boundary of its pure N -representable set P 2

N . Hence,
the 2-RDM contains a necessary condition for the pinning of
the 1-RDM spectra to the generalized Pauli conditions. This
result also provides important information about the potential
difference in pinning of the ground-state and excited-state
1-RDM spectra. Because the ground-state 2-RDM lies on
the boundary of the ensemble N -representable 2-RDM set
E2

N and, hence, on the boundary of the pure N -representable
2-RDM set P 2

N , it is possible for the ground-state 1-RDM to
lie on the boundary of the pure N -representable 1-RDM set
P 1

N . In contrast, because an excited-state 2-RDM does not
necessarily lie on the boundary of E2

N or P 2
N , it is possible for

the excited-state 1-RDM (of a given spin symmetry) to lie in
the interior (not on the boundary) of the set P 1

N .

B. Euclidean distances

In this section, we develop optimization programs for com-
puting the minimum Euclidean distance from a given 1-RDM’s
r-dimensional spectrum of natural occupation numbers �n =
{λi} to three other points in the Euclidean space of spectra:
(i) the nearest point �p on the boundary of the set of pure N -
representable 1-RDMs, (ii) the nearest point �e on the boundary
of the set of ensemble N -representable 1-RDMs, and (iii) the
nearest point �s corresponding to a 1-RDM with a Slater deter-
minant preimage. These three distances are useful in assessing
a quantum system’s electron correlation as well as its purity. A
quantum system is pure if and only if it is described by a single
wave function rather than an ensemble of wave functions.

First, we can compute the minimum distance of the
spectrum �n to the boundary of pure N -representable
1-RDMs or, in other words, the minimum distance of �n to the
polytope facets defined by the generalized Pauli conditions
M �p � b, the Pauli conditions 0 � pi � 1, the trace condition∑

i pi = N , and a condition ordering the occupation numbers
from highest to lowest in magnitude pi+1 � pi where �p is any
point in the d-dimensional Euclidean space Rr :

min
j

min
�p∈Rr

||�n − �p||, (12)

such that
∑

i

pi = N, (13)

pi+1 � pi for all i ∈ [1,r − 1], (14)

0 � pi � 1 for all i ∈ [1,r], (15)

M �p � b, (16)∑
i

M
j

i pi = bj . (17)

The boundary of the convex polytope defined by the affine
inequalities M �p � b is the union of the hyperplanes defined
by the saturated inequalities intersected with the domain under
consideration. A point lies on the boundary when at least one of
the constraints M �p � b is saturated. If we name the saturated
constraint j , then the constraints in Eqs. (12)–(17) express
that �p belongs to the facet j of the convex polytope. The
algorithm works by (i) minimizing the Euclidean distance to
each facet j and (ii) minimizing over the results from (i). For
N = 3, the constraints M �p � b represent the Borland-Dennis
constraints, and, for N = 4, the constraints represent either the
Klyachko or Smith constraints. We shall refer to the set of pure
N -representable 1-RDMs as the pure set and the minimum
Euclidean distance to the boundary of the pure set as the pure
distance.

Second, we can compute the minimum Euclidean distance
to the boundary of the set of ensemble N -representable
1-RDMs, defined by the Pauli principle and the trace condition,
as follows:

min
j

min
b∈{0,1}

min
�e∈Rr

||�n − �e||, (18)

such that
∑

i

ei = N, (19)
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ei+1 � ei for all i ∈ [1,r − 1], (20)

0 � ei � 1 for all i ∈ [1,r], (21)

ej = b, (22)

where �e = {ei} is any point in the ensemble set. The saturation
of the constraints corresponds to an element with one occupa-
tion number being either 0 or 1. We shall refer to the minimum
Euclidean distance to the boundary of the ensemble set as the
ensemble distance. The pure distance is less than or equal to
the ensemble distance because P 1

N ⊂ E1
N .

Finally, the natural occupation numbers of a noninteracting
1-RDM, i.e., the 1-RDM that derives from a Slater determi-
nant, are either fully occupied or empty. These eigenvalues
define the components of a Slater point �s in Euclidean space,

�s = (1,1, . . . ,0,0). (23)

The minimum Euclidean distance from a given 1-RDM’s
spectrum �n to the nearest Slater point can be computed from
the following minimization:

min
�s∈Sr

||�n − �s||, (24)

where Sr denotes the set of all Slater points. The nonconvex
set of Slater points is a subset of the points on the boundary of
the ensemble N -representable set E1

N . Hence, the minimum
distance to the boundary of the ensemble set (ensemble
distance) is strictly less than or equal to the minimum distance
to the nearest Slater point. The Euclidean distance ||�n − �s||
of the spectrum from the nearest Slater point, which we
call the Slater distance, gives a useful measure of electron
entanglement and correlation that equals zero in the absence
of correlation.

C. Time-reversal symmetry

Smith proved two key results in the study of the pure
N -representability conditions of the 1-RDM [7]. First, for
an even-N quantum state, if all of the eigenvalues of the
state’s 1-RDM are evenly degenerate, then the 1-RDM is
pure N representable. Second, if an even-N quantum state
has time-reversal symmetry, then all of the eigenvalues of the
state’s 1-RDM are evenly degenerate. Hence, if an even-N
quantum state has time-reversal symmetry, the degeneracy of
the eigenvalues of the 1-RDM is necessary and sufficient for
the 1-RDM to be pure N representable.

Smith’s set of pure N -representable 1-RDMs with time-
reversal symmetry S1

N is a subset of the pure N -representable
set of 1-RDMs P 1

N , that is, S1
N ⊂ P 1

N . Importantly, any 1-RDM
from a pure state with time-reversal symmetry is pinned to the
boundary of the Smith set S1

N . For example, for N = 4 and
r = 8, the Smith set is characterized by the four equalities
between natural occupation numbers,

λ1 = λ2, (25)

λ3 = λ4, (26)

λ5 = λ6, (27)

λ7 = λ8. (28)

TABLE I. For N = 4 and r = 8, the generalized Pauli inequalities
on the natural occupation numbers of the 1-RDM, shown in Eqs. (31)
and (32), have seven sets of coefficients M

j

i displayed below, where
j labels the set and i labels the coefficient within a set.

Coefficients in Eqs. (31) and (32)

j M
j

1 M
j

2 M
j

3 M
j

4 M
j

5 M
j

6 M
j

7 M
j

8

1 5 −3 1 1 1 1 −3 −3
2 5 1 −3 1 1 −3 1 −3
3 5 1 1 −3 1 −3 −3 1
4 5 1 1 −3 −3 1 1 −3
5 1 5 1 −3 1 −3 1 −3
6 1 1 5 −3 1 1 −3 −3
7 1 1 1 1 5 −3 −3 −3

Each equality can be viewed as two inequalities; for example,
the first equality can be expressed as the following two
inequalities:

λ1 � λ2, (29)

λ2 � λ1. (30)

Because these inequalities are always saturated, any 1-RDM
in the Smith set is pinned to the boundary of the Smith set.
More generally, this result is true for any even N and r .

For N = 4 and r = 8, the generalized Pauli inequalities on
the natural occupation numbers of the 1-RDM, determined
computationally by Borland and Dennis [8] and derived by
Klyachko [9], are

4 −
8∑

i=1

M
j

i λi � 0, (31)

4 +
8∑

i=1

M
j

9−iλi � 0. (32)

Seven sets of coefficients M
j

i are given in Table I for a total of
14 inequalities. When time-reversal symmetry is imposed on
the 1-RDM by forcing its eigenvalues to be evenly degenerate,
these generalized Pauli inequalities reduce to the traditional
Pauli exclusion principle. Consequently, a 1-RDM with time-
reversal symmetry is pinned to the Klyachko inequalities if and
only if it is pinned to the traditional Pauli conditions, meaning
the boundary of the ensemble N -representable 1-RDM set.
The 1-RDM with time-reversal symmetry has a spectrum that
is typically not pinned to the convex Klyachko set P 1

N because
P 1

N contains more 1-RDMs than the convex Smith set S1
N that

break time-reversal symmetry.

III. APPLICATIONS

We evaluate the deviation of the 1-RDM spectrum in
atoms and molecules from the boundary of the ensemble
N -representable 1-RDM set and boundaries of the pure
N -representable 1-RDM sets, both with and without time-
reversal symmetry.

A. Computational details

For each atom or molecule, the 1-RDM’s spectrum of
occupation numbers was obtained by computing the wave
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function from a full configuration interaction (FCI) cal-
culation in arbitrary-precision floating-point arithmetic. For
comparison, the 1-RDMs of several four-electron molecules
were also computed without the wave function from the
variational 2-RDM method [16–31] with approximate en-
semble N -representability conditions on the 2-RDM [32–36].
The pure, ensemble, and Slater distances were calculated in
arbitrary-precision arithmetic by the constrained optimizations
described in Sec. II B. The FCI calculations computed all of
the Hamiltonians’ eigenvalues through a QR method [37].
The distance calculations were performed with the sequential
quadratic programming algorithm available in MAPLE [15].
Calculations with 50 decimals of floating-point precision
employed an optimality tolerance of 10−36. The initial guess
was selected randomly. All molecules were treated in the
Slater-type-orbital (STO-3G) basis set in which each Slater
function is expanded in three Gaussian functions [38]. The
number r of orbitals is always set to be twice the number N of
electrons. To achieve either N = 3 or N = 4 with 2N orbitals,
we froze core and virtual orbitals in atoms and molecules,
as needed. Electron integrals from the GAMESS package [39]
were employed. Molecular equilibrium geometries were ob-
tained from the Computational Chemistry Comparison and
Benchmark Database [40].

B. Lithium

For the three-electron lithium atom, the Euclidean distances
of the 1-RDM’s spectrum to the pure and ensemble boundaries
and the nearest Slater point were computed. Previous calcula-
tions on the lithium atom were inconclusive about whether
the 1-RDM’s spectrum was pinned or only nearly pinned
(quasipinned) to one of the generalized Pauli constraints [11].
To resolve the issue, we performed both the FCI and the
Euclidean-distance calculations with high-precision floating-
point arithmetic with as many as 35 digits of precision. Table II
shows the pure and Slater distances as functions of the floating-
point precision. While the Slater distance remains constant at
8.53 × 10−5 as the precision is increased, the logarithm of
the pure distance decreases linearly with the precision (also
refer to Fig. 2). These results demonstrate within the limit of

TABLE II. For the ground state of lithium, the pure and Slater
distances of the 1-RDM spectrum of natural occupation numbers
are shown as functions of the floating-point precision. While the
Slater distance remains constant at 8.53 × 10−5 as the floating-point
precision is increased, the logarithm of the pure distance decreases
linearly with the precision. These results demonstrate that the ground-
state 1-RDM spectrum of lithium is pinned to the boundary of the
pure set.

Precision Pure Slater

5 10−5 8.00 × 10−5

10 10−10 8.53 × 10−5

15 10−15 8.53 × 10−5

20 10−20 8.53 × 10−5

25 10−25 8.53 × 10−5

30 10−30 8.53 × 10−5

35 10−35 8.53 × 10−5

10-35
10-30
10-25
10-20
10-15
10-10
10-5
100

 0  5  10  15  20  25  30  35  40

D
ist

an
ce

Digits of Precision

Distance vs Precision

Pure
Slater

FIG. 2. (Color online) For the ground state of the lithium atom,
the logarithm of the pure distance decreases linearly with the precision
of the floating-point calculations. The plot demonstrates that the
ground-state 1-RDM spectrum of lithium is pinned to a facet to at
least 35 digits of floating-point precision.

numerical precision that the ground-state 1-RDM spectrum for
the lithium atom is pinned to the boundary of the pure set.

Table III shows the Euclidean distances of ground- and
excited-state 1-RDM spectra of the lithium atom from the
pure and ensemble boundaries and from the Slater point.
Calculations of the 1-RDMs and the Euclidean distances were
performed with a numerical precision of 30 decimals. While
the spectra of the ground states of a given spin symmetry were
always found to be pinned to the boundary of the pure set, the
spectra of the excited states were not necessarily pinned. For
example, the spectrum of excited state 3 lies well within the
boundary of the pure set. The difference in pinning between the
ground and excited states was foreshadowed by the discussion
in Sec. II A of the necessary 2-RDM condition for pinning. A
1-RDM spectrum can be pinned to a facet of the generalized
Pauli condition only if the 2-RDM is pinned to the boundary
of the pure N -representable 2-RDM set. While a ground-state
2-RDM is always on the boundaries of the ensemble and the
pure N -representable sets of 2-RDMs, an excited-state 2-RDM
is not necessarily on the boundary of either the ensemble or
pure sets. Hence, the spectrum of an excited-state 1-RDM is not

TABLE III. For the ground and excited states of the lithium atom,
Euclidean distances of the 1-RDM spectra from the pure and ensemble
boundaries and from the Slater point are shown. While the spectra of
the ground states of a given spin symmetry were always found to be
pinned to the boundary of the pure set, the spectra of the excited states
were not necessarily pinned. For example, the spectrum of excited
state 3 lies well within the boundary of the pure set. Calculations
of the 1-RDMs and the Euclidean distances were performed with a
numerical precision of 30 decimals.

Euclidean distance

State Sz Energy (a.u.) Pure Ensemble Slater

0 0.5 −7.316 1.00 × 10−30 1.00 × 10−30 8.53 × 10−5

1 −7.230 1.00 × 10−30 4.10 × 10−5 1.41 × 10−4

2 −5.264 1.00 × 10−30 1.00 × 10−30 1.75 × 10−1

3 −5.244 2.72 × 10−1 3.65 × 10−1 8.16 × 10−1

4 1.5 −5.244 1.00 × 10−30 1.00 × 10−30 1.00 × 10−30
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necessarily on the boundary of the pure set of N -representable
1-RDMs.

C. Strongly correlated systems

The neutral triatomic hydrogen molecule is strongly
correlated due to multireference effects that arise from
degeneracy in electronic configurations [41,42]. The spectrum
of the ground-state 1-RDM, we find, is on the boundary of
the pure set for all molecular geometries. This constitutes
numerical evidence of pinning of the 1-RDM spectra in a
strongly correlated molecule. Table IV gives a summary
of the results for linear and triangular geometries of H3.
The spectra of the excited-state 1-RDMs are not necessarily
on the boundary of the pure set, as demonstrated for both
molecular geometries by state 2. As functions of the bond
angle in ground-state H3, (a) the Hartree-Fock and correlation
energies as well as (b) the minimum Euclidean distances to
the boundaries of the pure and ensemble sets and the nearest
Slater point are shown in Fig. 3. Both the ensemble and Slater
distances are greater than 0.01 for all bond angles, while the
pure distance is zero for all angles. The large distance to the
nearest Slater point shows that H3 is significantly correlated.
The vanishing pure distance shows that the generalized Pauli
conditions can be saturated even when the traditional Pauli
conditions are far from being saturated.

Euclidean distances of the 1-RDM spectra to the boundaries
of pure (Smith), pure (Klyachko), and ensemble (Pauli) sets
and the Slater point are shown in Table V for the ground
states of several four-electron molecules in eight spin orbitals
(∧4[H8]). Because the ground-state 1-RDM spectra in all cases
are pairwise degenerate, they are pinned to the boundary of the
Smith set. The Euclidean distances of the 1-RDM spectra to the
pure (Klyachko) and ensemble (Pauli) boundaries are found
to be the same in all cases. The pure (Klyachko) distances are
nonzero because the generalized Pauli conditions describing
the boundary of the Klyachko polytope break time-reversal
symmetry.

The rectangular H4 molecule, comprised of two H2

monomers, has well-documented multireference correlation

effects in the form of pronounced diradical character [43]. As
functions of distance between H2 dimers, Fig. 4 shows (a) the
potential-energy surfaces from FCI and the variational 2-RDM
method as well as (b) the minimum Euclidean distances from
the 1-RDM spectra to the ensemble set and a Slater point from
FCI and the variational 2-RDM method. The peak in the Slater
distance at a dimer distance of 1 Å shows that the maximum
electron correlation occurs when the two H2 dimers form a
square diradical H4 molecule. While the ensemble distance is
about 0.01 or larger for all dimer distances, the 1-RDM spectra
are pinned to Smith’s set of pure N -representable 1-RDMs
with time-reversal symmetry. The figures also show that the
FCI and variational 2-RDM methods give similar results for
both energies and Euclidean distances.

IV. DISCUSSION AND CONCLUSIONS

Generalized Pauli conditions on the 1-RDM spectrum are
explored for the ground and excited states of atoms and
molecules. We employ Euclidean distance as a systematic
means for measuring the distance between 1-RDMs repre-
sented as vectors in a Euclidean space [14]. While previous
work examined the residual of the generalized Pauli conditions
to assess their saturation [10,11], we compute the minimum
Euclidean distances between 1-RDM spectra and facets of
the polytope described by the generalized Pauli conditions,
also known as pure N -representability conditions [6–11]. The
Euclidean metric allows us to compare the pure distance with
other distances including the minimum distance of the 1-RDM
to the boundary of the ensemble N -representable set, which we
called the ensemble distance, as well as the minimum distance
of the 1-RDM to a Slater 1-RDM, which we called the Slater
distance. Euclidean distances have the following order:

pure � ensemble � Slater. (33)

The Slater distance vanishes if and only if the 1-RDM corre-
sponds to a noninteracting Slater-determinant wave function.
Both the ensemble and pure distances can vanish for correlated
quantum systems. The ensemble distance vanishes if and only
if the 1-RDM spectrum is pinned to one of the traditional Pauli

TABLE IV. Euclidean distances to the pure and ensemble boundaries and the Slater point for linear and equilateral configurations of neutral
triatomic hydrogen H3. The spectrum of the ground-state 1-RDM, we find, is on the boundary of the pure set for both molecular geometries.
The spectra of the excited-state 1-RDMs are not necessarily on the boundary of the pure set, as demonstrated for both molecular geometries by
state 2. The distance to the nearest Slater point, which represents a completely uncorrelated system, shows that the H3 is significantly correlated,
especially in the vicinity of the equilateral geometry.

Occupation numbers Euclidean distance

Configuration State Sz Energy (a.u.) λ1 λ2 λ3 Pure Ensemble Slater

Linear 0 0.5 −2.958 0.9902 0.9789 0.9691 1.0 × 10−30 1.1 × 10−2 5.5 × 10−2

1 −2.666 1.0000 0.6479 0.6479 1.0 × 10−30 1.0 × 10−30 7.0 × 10−1

2 −2.448 0.6667 0.6667 0.6667 2.7 × 10−1 3.7 × 10−1 8.2 × 10−1

3 −2.358 1.0000 0.6530 0.6530 1.0 × 10−30 1.0 × 10−30 6.9 × 10−1

4 1.5 −2.448 1.0000 1.0000 1.0000 1.0 × 10−30 1.0 × 10−30 1.0 × 10−30

Equilateral 0 0.5 −3.308 0.9929 0.9909 0.9838 1.0 × 10−30 7.7 × 10−3 2.8 × 10−2

1 −3.304 1.0000 0.9835 0.9835 1.0 × 10−30 1.0 × 10−30 3.3 × 10−2

2 −2.652 0.6667 0.6667 0.6667 2.7 × 10−1 3.7 × 10−1 8.2 × 10−1

3 −2.368 1.0000 0.5182 0.5182 1.0 × 10−30 1.0 × 10−30 9.6 × 10−1

4 1.5 −2.652 1.0000 1.0000 1.0000 1.0 × 10−30 1.0 × 10−30 1.0 × 10−30
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FIG. 3. (Color online) As functions of the bond angle in H3, (a) the Hartree-Fock and correlation energies as well as (b) the minimum
Euclidean distances to the boundaries of the pure and ensemble sets and the nearest Slater point are shown. Both the ensemble and Slater
distances in (b) are greater than 0.01 for all bond angles, while the pure distance is zero for all angles. The large distance to the nearest Slater
point shows that H3 is significantly correlated. The vanishing pure distance shows that the generalized Pauli conditions can be saturated even
when the traditional Pauli conditions are far from being saturated.

conditions, and the pure distance vanishes if and only if the
1-RDM spectrum is pinned to one of the generalized Pauli
conditions. Importantly, as demonstrated in the examples, the
1-RDM spectra can be on the boundary of the set of pure
N -representable 1-RDMs even if it is not on the boundary of
the set of ensemble N -representable 1-RDMs.

The Slater distance provides a measure of electron corre-
lation and entanglement because it vanishes in the absence of
electron correlation [44–46]. The pure and ensemble distances,
which can vanish in the presence of electron correlation,
provide an additional classification of electron correlation and
entanglement. In general, the quantum system becomes more
correlated the further the 1-RDM is located from the nearest
Slater point and the boundaries of its pure and ensemble sets.
Proximity of the 1-RDM spectrum to a facet of the pure or
ensemble N -representable 1-RDM set provides important spe-
cific information about the nature and character of the electron
correlation and entanglement present in the quantum system.

The ensemble and pure N -representable sets of 2-RDMs,
we show, provide a necessary condition for the pinning of the
1-RDM to the boundary of the pure N -representable 1-RDM
set. Because the 1-RDM is derivable from the 2-RDM through
integration over one of the electrons, the 1-RDM can be on the
boundary of its pure N -representable set only if the 2-RDM
lies of the boundary of its pure set. This necessary 2-RDM
condition provides insight into the difference in the 1-RDM
between ground and excited states. Computationally, we find
that the 1-RDM spectra from ground states are consistently
pinned to the boundary of the pure N -representable set, while
the 1-RDM spectra from excited states are not necessarily
pinned to the boundary. The ground-state 2-RDMs satisfy
the necessary condition for the pinning of the 1-RDM to
its pure boundary. In contrast, the excited-state 2-RDMs do
not necessarily satisfy this condition, and, in fact, they often
lie significantly within the set of ensemble N -representable
2-RDMs.

TABLE V. Euclidean distances of the 1-RDM spectra to pure (Smith), pure (Klyachko), and ensemble (Pauli) sets and the Slater point are
shown for the ground states of several four-electron molecules. Because the ground-state 1-RDM spectra in all cases are pairwise degenerate,
they are pinned to the boundary of the Smith set. The Euclidean distances of the 1-RDM spectra to the pure (Klyachko) and ensemble (Pauli)
boundaries are the same in all cases. The pure (Klyachko) distances are nonzero because the generalized Pauli conditions describing the
boundary of the Klyachko polytope break time-reversal symmetry. All molecules except H4 are treated in their equilibrium geometries from
the Computational Chemistry Comparison and Benchmark Database [40]. The H4 molecule is treated with the four hydrogen atoms in a square
with sides of 1.058 Å.

Occupation numbers Pure

Molecule λ1 = λ2 λ3 = λ4 λ5 = λ6 λ7 = λ8 Smith Klyachko Ensemble Slater

LiH 1.0000 0.9985 0.0013 0.0002 0.00000 0.00002 0.00002 0.00281
BH 0.9991 0.9260 0.0375 0.0375 0.00000 0.00098 0.00098 0.12876
BeH2 0.9957 0.9938 0.0068 0.0037 0.00000 0.00398 0.00398 0.01527
H4 0.9694 0.5000 0.5000 0.0306 0.00000 0.03270 0.03270 1.00187
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FIG. 4. (Color online) As functions of the distance between H2 dimers, the figure shows (a) the potential-energy surfaces from FCI and the
variational 2-RDM method as well as (b) the minimum Euclidean distances from the 1-RDM spectra to the ensemble set and a Slater point from
FCI and the variational 2-RDM method. The peak in the Slater distance at a dimer distance of 1 Å shows that the maximum electron correlation
occurs when the two H2 dimers form a square H4 molecule. While the ensemble distance is about 0.01 or larger for all dimer distances, the
1-RDM spectra are pinned to Smith’s set of pure N -representable 1-RDMs with time-reversal symmetry. The figures also show that the FCI
and variational 2-RDM methods give similar results for both energies and Euclidean distances.

The difference in the 1-RDM spectrum between ground and
excited states is significant because it reflects a fundamental
difference in the nature of electron correlation between ground
and excited states. Unlike the ground-state 1-RDM spectrum,
which we find pinned to a particular facet of the generalized
Pauli conditions, the excited-state 1-RDM spectrum can be
buried deeper in the polytope, which is associated with
greater electron correlation. Consequently, the geometric
difference between ground- and excited-state 1-RDM spectra
may provide an explanation, complementary to wave-function
arguments, for the propensity of excited states to be more
correlated than the ground state.

In the 1960s, Smith demonstrated that any 1-RDM with
time-reversal symmetry and an even number N of electrons is
pure N representable [7]. He showed that if N is even, time-
reversal symmetry causes all of the eigenvalues of a 1-RDM to
be evenly degenerate. This degeneracy of the 1-RDM spectra
can occur if and only if the 1-RDM is pure N representable.
Here we show that for N = 4, time-reversal symmetry must be
considered to observe pinning of the 1-RDM spectrum from
a ground state of an atom or molecule to the boundary of
the pure N -representable 1-RDM set. For N = 4, the 1-RDM
spectrum is not pinned to a facet of the polytope defined by the
conditions of Klyachko, which do not consider time-reversal
symmetry; in fact, for a 1-RDM with even N and time-reversal
symmetry, the conditions of Klyachko reduce to the traditional
Pauli conditions. In contrast, all of the 1-RDMs in the Smith
set, which obey time-reversal symmetry, are pinned to its
boundary. The presence of symmetry in the quantum state
is important in the definition of a system-appropriate set
of pure N -representable 1-RDMs. Symmetry restricts the
set of 1-RDMs to be physically realistic for the set of
quantum systems under consideration, and in many cases it
is an active constraint in that a state’s 1-RDM saturates the
symmetry constraint. In the case of time-reversal symmetry,

the symmetry provides sufficiently tight restrictions on the
1-RDM spectrum to guarantee its pure N representability, and
thereby highlights an interesting interplay between symmetry
and N representability.

In addition to providing a useful measure and classification
of electron correlation and entanglement, the generalized Pauli
conditions also offer insight into the improvement of electronic
structure methods based on wave functions as well as 1- and
2-RDMs. The theorem of Hohenberg-Kohn [47] at the heart
of density functional theory [48] intimates that the 1-RDM
contains key elements of an atom’s or molecule’s electronic
structure, including possible signatures for strong electron cor-
relation. The generalized Pauli conditions further demonstrate
that key features of electron correlation and entanglement are
encoded within the 1-RDM. The definition of the set of pure
N -representable 1-RDMs by the generalized Pauli conditions
may provide insight into the development of practical 1-RDM-
based electronic structure methods [49,50]. The generalized
Pauli conditions may also be useful in some cases as further
restrictions on the N representability of the 2-RDM [32–36]
in variational calculations based on the 2-RDM [16–31]
rather than the wave function. Although the generalized Pauli
conditions are already implied for even N by the time-reversal
symmetry of the 2-RDM, these conditions may be useful for
odd N or states without time-reversal symmetry. As suggested
by other authors [10,11], the generalized Pauli conditions may
also provide insight into the structure of the wave function.
Pinning of the 1-RDM to the generalized Pauli conditions
provides potentially useful information about the Slater
determinants that contribute most significantly to the wave
function.

In summary, the generalized Pauli conditions, also known
as pure N -representability conditions, provide additional
constraints beyond the Pauli exclusion principle to ensure
that a 1-RDM is derivable from a pure density matrix with a
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single wave-function spectrum. Using the Euclidean-distance
metric, we have explored these conditions for the lithium atom
and a variety of molecules at equilibrium and nonequilibrium
geometries. Even with the presence of strong correlation,
we find the ground-state 1-RDM spectra remain pinned to
the boundary of the pure N -representable set of 1-RDMs.
For excited states, the 1-RDM spectra are not necessarily
pinned, and we explain the important difference between
ground and excited states through a necessary condition
on the 2-RDM for pinning. The generalized Pauli condi-
tions are useful in the measurement and classification of

electron correlation and entanglement. More generally, these
conditions provide fundamental insight into the structure of
many-electron quantum systems, which may be useful for
both the classification and the computation of strong electron
correlation.
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