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Relativistic configuration interaction calculations for some two- and three-electron systems
with screened hydrogenic spin orbitals
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An approach is proposed for the generation of virtual spin orbitals required to construct a configuration
state function basis set for relativistic configuration interaction calculations. Screened hydrogenic spin orbitals,
corresponding to noninteger nuclear numbers determined separately for each orbital employing the so-called
condensed-space concept are proposed and used here. To test the method calculations are performed of ionization
and transition energies of two- and three-electron systems such as He, He-like Ne and He-like U, Li, Li-like Ne
and Li-like U, including Breit interaction and quantum electrodynamic corrections.
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I. INTRODUCTION

The knowledge of atomic structure data such as energy lev-
els, transition probabilities, and lifetimes is still important for
laboratory and astrophysical plasma diagnostics, construction
of new light sources, atomic clocks, as well as atomic and
ionic manipulation for quantum information transformation.
Contemporary calculation tools in popular use are the rela-
tivistic multiconfiguration Dirac-Fock method (MCDF) [1,2]
and the configuration interaction Dirac-Fock approach (CIDF).
The first method includes determination of both spin orbitals
and coefficients needed to construct multiconfiguration wave
functions in subsequent double iterative self-consistent field
processes in order to minimize the energy of required level
(optimal level, OL scheme) or chosen average of levels
(average level, AL scheme). This approach is the most efficient
known so far if one accepts the full separation of variables in
the many-electron wave function. However, with the use of
a reasonably long configuration state function (CSF) basis
set, such procedure is still plagued by convergence problems
of the iterative process. Therefore the most often used
alternative is the configuration interaction approach, where
only the spin orbitals are determined in a self-consistent field
iterative process and configuration interaction coefficients are
computed in a single energy matrix diagonalization procedure.
The main inconvenience in this case is the need to use a large
basis set to represent electron correlation effects, particularly
when spectroscopic spin orbitals are used as correlating virtual,
i.e., unoccupied orbitals. It had been observed a long time ago
that correlating orbitals obtained in fully multiconfiguration
procedures are much more contracted in comparison with their
spectroscopic counterparts. For instance the correlating orbital
in Be obtained in MCHF calculation is much more close to the
orbital of Be+ ion than to its spectroscopic counterpart [3,4].
The use of appropriate correlating orbitals largely improves the
efficiency of the CI scheme to represent electron correlation
effects. Therefore in the past few years we had tried to explore
different methods to generate the virtual spin orbitals in the
field of an ab initio model potential in order to use them in CI
procedure [3–5]. This idea turned out to be successful in many
cases, particularly when the core-valence electron correlation
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dominates over the intravalence or core-core correlation.
However in our opinion there is still a need to develop a more
general approach to problems of construction spin orbitals to
improve the efficiency of the CI scheme. We found that each
correlated spin orbital feels different attraction by the nucleus.
This enabled us to use hydrogenic spin orbitals corresponding
to noninteger atomic numbers. Of course such orbitals are too
contracted in comparison, for example, with those obtained
by the MCDF approach. But this inconvenience should be
corrected by the greater contribution of higher excited spin
orbitals. It is supposed here that the lower the excited spin
orbital, the lower the noninteger nucleus charge is affecting
it. In that sense the lower excited spin orbitals are screened.
On the other hand, the higher the excited virtual spin orbitals
are, the greater is their ability to penetrate the region near the
nucleus.

In this paper we propose an approach and test it in
computation of energies of two- and three-electron systems
such as He, He-like Ne, He-like U and Li, Li-like Ne and
Li-like U.

II. CALCULATIONS

A. Generation of spin orbitals; concept of condensed space
transformation of energy levels

The presented method is based on an assumption that there
exists a space of energy states for charged particles called by
us Q space. Q space is assumed to be countable, which means
that all states can be numbered. The states in Q space can be
interpreted as energy levels occupied by the charged particles.
They are denoted by |q〉 where q is the integer number. Let
us introduce subspace E as a set of energy states and assume
that all the other states in Q space are completely filled. The
ground state of the E space is always denoted as |1〉. The
remaining states are designated by the q-integer numbers in
order of their positions. If some states are filled the proper
levels will be omitted. We can also introduce the Ẑ operator,
which acts in the E space representing a charge affecting the
particle being in particular state. It can be associated with the
eigenvalue equation

Ẑ|q〉 = Zq |q〉. (1)
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base level

FIG. 1. The model of E space for the hydrogen atom in
nonrelativistic approximation. The horizontal dotted lines represent
filled states of the space. The solid lines represent spectroscopic states.
The base level represents here the ground level

The eigenvalues Zq assume real positive values. The repre-
sentation of the |q〉 states in Q space is the hydrogenlike
wave functions with Z = Zq and n = q principle quantum
number. The states of particles corresponding to the integer
Zq eigenvalues are called spectroscopic, i.e., they can be
observed. Let us consider the E space as a set of energy states
of a hydrogen atom in Schrödinger approximation. The energy
levels can be evaluated in a.u. from

εn = − 1

2n2
, (2)

where n is the integer principle quantum number. Since all
eigenvalues of the Ẑ operator in this space are equal to 1 all
states are spectroscopic. Now let us perform a transformation
denoted by εs → ε1, which moves the position of one of the
excited energy levels εs into the place originally occupied by
the ground level ε1. It can simply be done by increasing the
atomic charge. In result all other levels change its position
creating new E(s) space. The level denoted here by ε1 is called
base level. We arbitrarily assume that such transformation
cannot create new states lying under the base level in the E(s)

space. This means that two spaces E and E(s) have the same
ground level. It has fundamental meaning for the conception of
condensed space. The possible explanation of this fact may be
done in terms of quantum dynamics theory. We suppose that
during the transformation of the E space into E(s) the virtual
positron-electron pairs are created from which the electrons
move under the base level and positrons move above the base
level. As a consequence all states under the base level are
being kept filled and above the base level the virtual states
are produced. It is interesting to note that all spectroscopic
levels also remain unchanged. But, in the E(s) space some
new levels emerge between the spectroscopic levels. The
pictures of two spaces E and E(s) are illustrated in Figs. 1
and 2. The space E in Fig. 1 represents here the Coulomb
potential in a hydrogen atom but E(s) on Fig. 2 corresponds to
some different potential, which might even not be expressed
analytic form. All levels in the E(s) space except base level
correspond to noninteger eigenvalues of the Ẑ operator,
therefore we can call them virtual levels. The eigenvalues
of the Ẑ operator in that space can be evaluated from

base level

FIG. 2. Condensed E(s) space of degree s = 2. The base level
represents here the ground level. The dashed lines represent virtual
states. The solid lines except for base level also represent virtual states
in that space. Note that solid lines correspond to the spectroscopic
states in original E space.

the formula

Zq = q(s + b)

b(s + q)
, (3)

with the integer parameters b = 1 and q � 1. States named
|(s + 1)q〉 correspond to the spectroscopic states of the E

space. If we allow for all virtual states in the E(s) space to
be filled then the only accessible states are the spectroscopic
states and this leads back to the spectroscopic E space. Thus
the spectroscopic space of energy levels can be treated as a
subspace of Q having all its virtual states filled.

The transformation described above is called by us a
condensed-space transformation, which may be also inter-
preted as creating a charge operation. We denote such trans-
formation by εs → εb, where the b parameter is the principal
quantum number of the state associated with so-called base
level (which in general does not need to be the ground
level) and s � 0 is the integer parameter. The base level
must correspond to some of the existing spectroscopic state.
This transformation acts in Q space. It transforms the E ⊂ Q

space into the E(s) ⊂ Q space. We assume that E(0) ≡ E. The
representation of the |q〉 states belonging to the E(s) space
is the hydrogenlike wave functions with Z = Zq and n = q.
The Zq eigenvalues of the Ẑ operator can be evaluated from
the formula (3). The transformation creates new virtual states
above base level in the E(s) space (Fig. 2). Both E and E(s)

spaces have the common states with q � b. The transformation
cannot change the spectroscopic energy levels of the original
E space although they may correspond to different states in
the E(s) space. In the model of quantum dynamics electrons
interact with each other via exchange of virtual photons.
Thus in our opinion the model of condensed space should
be adequate to reproduce e-e interactions in the relativistic
configuration interaction scheme.

In our CI calculations the basis set is constructed using a
finite E(s) subspace of virtual states. For such subspace we can
define quantity ρ by

ρ = 1

|εb − εm| , (4)
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as a density of space. An integer m is the size of the chosen
subspace of E(s). The density of subspace can be enlarged by
increasing the integer parameter s. Taking CI calculations into
account the largest ρ should be provided. In the relativistic
approach the spectroscopic E space should be created by the
states of the hydrogenlike ion in Dirac-Coulomb approxima-
tion. The energy levels depend here on two quantum numbers.
The proper condensed-space transformation that preserves the
spectroscopic states can be written as εb+s,1+s → εb,1. The
base level depends on the integer b principle quantum number
and the |κ| = 1 quantum number associated with electron total
angular momentum. We can find that |(s + 1)n,(s + 1)|κ|〉
states correspond to the spectroscopic states in the E space.
The eigenvalues of the Ẑ operator can be obtained as solutions
to

A(s + 1)

(s + 1)
√

1 − (αA)2 + n − |κ| + s(b − 1)

= Zn,κ√
κ2 − (αZn,κ )2 + n − |κ| , (5)

where A is atomic number, α fine structure constant, and with
n � b,|κ| � n the integer quantum numbers. Equation (5) is
the relativistic form of Eq. (3). The ρ density of the E(s)

condensed space increases with the integer parameter s, which
therefore it can be interpreted as a degree of condensation. As
we mentioned earlier the larger the value of s, the more virtual
states occur in the E(s) space and consequently this yields
the better reproduction of the electron-electron interaction.
However one can note that for large enough value of the
parameter s and particularly for heavy systems, some states,
especially with |κ| = 1, may not have the real eigenvalues
of the Ẑ operator due to the singularity in Eq. (5). Thus
the magnitude of the s parameter may be increasing until
this singularity occurs. This may happen especially for higher
excited virtual states in strongly ionized systems. As we see,
in the relativistic approach the degree of condensation of E

space is limited.
We employed the E(s) space in our relativistic configuration

interaction calculations assuming that it represents all possible
states that may be occupied by the charged particles. The
value of the s parameter in Eq. (5) was chosen as high
as possible. The b parameter in Eq. (5), which corresponds
to base level in E(s) space was determined as the principal
quantum number of the outermost orbital in the ground-state
configuration of the system studied. Since the virtual states
under the base level are filled, the one-particle states of
the ground-state configuration are treated in the E(s) space
as the spectroscopic states. The wave functions of these
states were determined as the hydrogenlike wave functions
in Dirac-Coulomb approximation. The wave functions of
the virtual states satisfied the one-electron Dirac-Coulomb
eigenequations(

cα · p̂ + mc2β − Zn,κ

r

)
φn,κ = εφn,κ , (6)

where the Zn,κ parameters were evaluated as the eigenvalues
of the Ẑ operator in the E(s) condensed-space. We used the
orthogonal basis φn,κ in CI calculations. One can note that such
scheme of generation of wave functions enabled us to use the

same set of spin orbitals in CI calculations for all states of the
system under consideration.

B. Relativistic configuration interaction (RCI) scheme

A many-body Hamiltonian most commonly used for atomic
structure calculations is the relativistic Dirac-Coulomb Hamil-
tonian, which is given by

HDC =
∑

i

hD(i) +
∑
i<j

1

rij

, (7)

where hD is the one-electron Dirac Hamiltonian and 1/rij

represents the nonrelativistic Coulomb repulsion between two
electrons. The relativistic correction to the Coulomb repulsion,
which is known as Breit interaction

Bij = −αj · αj

rij

cos (ωij · rij )

+αi∇i · αj∇j

[
cos (ωij · rij ) − 1

ω2
ij · rij

]
(8)

included in the electron-electron Coulomb interaction yields
the Dirac-Coulomb-Breit Hamiltonian

H DCB =
∑

i

hD(i) +
∑
i<j

(
1

rij

+ Bij

)
. (9)

The variable ω [Eq. (8)] is defined here

ωij = (εi − εk) · α (10)

as the frequency of the virtual photon exchanged between
interacting electrons, where α is the fine-structure constant. In
our approach the quantity εi considered as the level from the
condensed space of energy levels leads to

|ωij | � 1

ρ
, (11)

where ρ is the density of condensed space defined above. It is
interesting to note that enlargement of the density ρ leads to
decrease the frequency ω in the Breit term of the Hamiltonian.
Since the largest density ρ can be achieved only for neutral or
light ionized atoms, the Breit interaction term can be reduced
here to its limiting static form

Bij (0) = −αi · αj

2rij

− (αi · rij)(αj · rij)

2r3
ij

, (12)

the so-called frequency-independent Breit operator. For highly
ionized systems the density ρ must be considerably smaller
due to singularity of Dirac equation eigenenergies for s1/2 or
p1/2 states (as discussed in Sec. II A) and in consequence the
frequency-dependent Breit operator should be applied in such
systems.

The present calculations employ both the Dirac-Coulomb
(DC) as well as Dirac-Coulomb-Breit (DCB) Hamiltonian.
To avoid the problem of variational collapse the basis set
expansion of CSF should be restricted to electron states. In this
study the projection onto electron states was achieved by using
positive energy hydrogenic spin orbitals as basis functions
which were solutions of Eq. (6). The electron correlation
effects included here are represented by single, double, and
for a system with three electrons, also triple excitations from

042503-3



LESZEK GŁOWACKI AND JACEK MIGDAŁEK PHYSICAL REVIEW A 89, 042503 (2014)

TABLE I. Comparison of CI calculations using screened hydrogenic (SH) basis and H-like basis.

Method He ground state ionization energy (ev) Excitation energy of 1s2p 3P1 in He (cm−1)

CI(H-like Z = 2) 23.7408(1235 no. CSF) 165655 (3150 no. CSF)
CI(H-like Z = 8) 24.4714(1235 no. CSF) 168527 (3150 no. CSF)
CI(SH) 24.5863(1235 no. CSF) 169055 (3150 no. CSF)
Experiment 24.587387a 169086.8b

aReference [7].
bReference [8].

the reference configuration. The excitation range depended
on the system under consideration and for helium reached
n = 60 with l � 5 whereas for lithium it was n = 15–30 and
l � 3. For heliumlike ions the corresponding range of quantum
numbers were n � 25 and l � 5, whereas for lithiumlike
systems n � 20 and l � 3.

The construction of configuration state function (CSF)
space was performed in two steps. First, the large sparse
Hamiltonian matrix was evaluated as complete CI expansion
as possible. The off-diagonal matrix elements were evaluated
only for configurations built as the single excitations from
the reference configuration. It means that the off-diagonal
sparse-matrix elements, which involved the pair of configu-
rations being double or triple excitations from the reference
configuration were neglected. The sparse matrix included
2300–42350 CSF for helium and 100 000–700 000 for lithium.
The configurations’ expansion coefficients resulting from
the diagonalization of the sparse matrix were later used to
select configurations with large enough contributions, i.e.,

TABLE II. Ionization energies (in eV) of some levels of
helium, heliumlike neon (Ne+8) and heliumlike uranium (U+90)
computed in this study [RCI(SH)] in Dirac-Coulomb (DC), Dirac-
Coulomb-Breit (frequency-independent) [DCB(0)], Dirac-Coulomb-
Breit (frequency-dependent) [DCB(ω)] approximations with and
without QED corrections.

He (1s2 1S0)

RCI(SH), DCB(0) + QEDa 24.587618
Experimentd 24.587387

Ne+8(1s2p 3P0)
DC DCB(0)

RCI(SH)b 281.15419 281.04649
RCIe 281.15422 281.04652
MBPTf 281.15425 281.04657

U+90(1s2 1S0)
RCI(SH), DCB(ω) + QEDc 129568.2
Artemyev et al.g 129570.3(6)

aBasis set expansion: 58s58p58d58f 58g58h, number of selected
CSF 12726.
bBasis set expansion: 20s20p20d20f 20g20h, number of selected
CSF 1696.
cBasis set expansion: 20s20p20d20f 20g20h, number of selected
CSF 759.
dReference [7].
eReference [9].
fReference [10].
gReference [11].

with mixing coefficients greater than 10−5 or 10−6. This
enabled us to construct the so-called dense matrix, from
which all off-diagonal elements for selected configurations
were evaluated. In the most cases the order of the matrix
ranged from 1500–17000 CSF depending on the system under
consideration.

Ionization and transition energies as well as correlation
energy contributions have been computed for helium, heli-
umlike neon and heliumlike uranium, lithium and lithiumlike
neon, and lithiumlike uranium including Breit frequency-
independent [B(0)] and frequency-dependent [B(ω)] contri-
bution with and without QED corrections.

For highly ionized systems such as heliumlike uranium
the quantum mechanics (QED) effects become very strong.
However it is not possible to do a full QED treatment as a part
of relativistic Hamiltonian. In our calculations the dominant
QED corrections (self-energy, vacuum polarization) referred
as a Lamb shift were evaluated in perturbative way. This
means that total QED corrections to many-electron atoms or
ions were given by a sum of one-electron QED contributions
weighted by effective occupation number of each spin orbital
as obtained form the eigenvectors of CI-DCB calculations. The
most important one-electron self-energy contributions were
calculated using the method developed by Mohr [6] and the
screened self-energy was obtained using the model based on
the ratio of the electron charge densities near the nucleus.
Three leading contributions to vacuum polarization of orders:
α(Zα), α(Zα)3, α2(Zα) were included in the Lamb shift.
The strongest effect near the nucleus, besides the relativistic
one, comes from extended nuclear charge density. We used
the finite nuclear model with uniform spherical charge for the
nuclei of light (Z � 45) and Fermi (with a thickness parameter
2.3 fm) distribution for heavy atoms. The finite nuclear size
correction to the self-energy were also taken into account in
our DCB + QED calculations.

III. DISCUSSION OF RESULTS

In order to compare our CI approach with original CI using
the H-like basis we performed calculations of the ground-state
ionization energy in neutral helium and the excitation energy
of its excited state. The calculations were done with the
nonrelativistic approach (i.e., assumed speed of light was 106).
The original CI approach used the virtual H-like basis with
Z = 2. We found also that the H-like Z = 8 basis yielded
the best result of ionization energy. For comparison we took
both results. The obtained results are presented in Table I.
Comparing to experiment both the ground-state ionization
energy and the excitation energy of 1s2p 3P1 state in neutral
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TABLE III. Excitation energies (in cm−1) (vs the ground state)
of energy levels in neutral helium calculated with RCI(SH) method
in Dirac-Coulomb approximation.

Level Present resultsa Experimentb

1s2p 3P1 169074.1 169086.8
1P1 171121.7 171134.9
1s3p 3P1 185550.7 185564.6
1P1 186195.4 186209.4
1s4p 3P1 191200.0 191217.8
1P1 191474.3 191492.7
1s5p 3P1 193809.9 193800.7
1P1 193968.7 193942.5

aBasis set:55s55p55d55f 55g55h, number of selected CSF for 1P1,
3P1:10880 and for 1S0:8229.
bReference [8].

helium we can see that CI with screened hydrogenic spin
orbitals yielded the best results. Note that using the H-like
basis with Z = 8 the original CI approach needed 1235 of
CSF to yield the value 24.47 eV for helium ionization energy.
This level of accuracy was reached by our approach with
only 16 of selected CSF included in the basis set. We can
see great advantage of using screened-hydrogenic orbitals in
comparison with other H-like bases.

The results of present calculations [RCI(SH)] obtained for
two- and three-electron systems are presented in Tables II
and III respectively and compared with other theoretical and
experimental data available. System and levels have been
chosen for consideration because of availability of other data
that could be used for comparison. All tables presented here
contain also information concerning the basis set expansion
and number of configuration state functions (CSF) used in
given calculations.

As can be seen from Table II the relative agreement of
ground-state 1s2 1S0 correlation energy with experiment is
for He and U+90 better than 0.002%. Our results agree very
well also with other available theoretical data. For 1s2p 3P0

ionization energy in Ne+8 there is no experimental value
available but the agreement of our and other theoretical data for
both Dirac-Coulomb and Dirac-Coulomb-Breit (frequency-
independent) approximations is also very good. The slight
differences could be due to neglecting of the higher l states
in the basis set of our calculations, which were taken into
account in RCI [9] and MBPT [10]. We have also calculated
in DCB(0) + QED approximation first (vs 1s2 2s 2S1/2 ground
state) and second (vs 1s2 1S0 ground state of Li+) ionization
potential for neutral lithium. The basis set expansion of
45s45p45d45f 45g45h orbitals included 220038 selected
CSF. The obtained results: 5.39085 eV and 75.6397 eV agree
very well with the corresponding experimental data: 5.391715
eV [12] and 75.6400 eV [13], respectively.

Table III presents excitation energies of some levels of
neutral helium computed in the present study in Dirac-
Coulomb approximation with available experimental data. The
relative agreement in all (except one) cases is better than
0.01%. Slightly worse accuracy here is caused by the greater
difficulty in precise theoretical determination of excited states.

TABLE IV. Transition energies (in eV) for 1s22s 2S1/2 −
1s22p 2P1/2,3/2 transitions in neutral lithium (Li), lithiumlike neon
(Ne+7), and uranium (U+89) calculated in Dirac-Coulomb (DC),
Dirac-Coulomb-Breit (frequency-independent) [DCB(0)], Dirac-
Coulomb-Breit (frequency-dependent) [DCB(ω)] approximations
with and without QED corrections.

Transition energy

Method 2S1/2 − 2P1/2
2S1/2 − 2P3/2

Li
RCI(SH)a, DC 1.848129 1.848187
RCI(SH), DCB(0) 1.848070 1.848112
Experimentd 1.847818 1.847860

Ne+7

RCI(SH)b, DC 15.8935 16.1193
RCI(SH), DCB(0) 15.9111 16.1145
RCI(SH), DCB(0) + QED 15.8888 16.0933
RCIe 15.8888 16.0933
MBPTf 15.8885 16.0931
Experimente 15.8887(2) 16.0932(2)

U+89

RCI(SH)c, DC 286.145 4514.41
RCI(SH), DCB(0) 322.52 4505.16
RCI(SH), DCB(ω) 322.15 4498.06
RCI(SH), DCB(0) + QED 280.86 4465.70
RCI(SH), DCB(ω) + QED 280.49 4458.60
RCIg, DC − 4514.79
RCIg, DCB − 4498.87
MBPTf, DC 286.145 4514.81
MBPTf, DCB(0) 322.75 4505.62
MBPTf, DCB(ω) 322.38 4498.56
Experimenth 280.59(10) 4459.37(21)

aBasis set expansion: 15s15p15d15f , number of selected CSF for
2P3/2,

2P1/2,
2S1/2: 33750, 20865, and 19345 respectively.

bBasis set expansions for 2S1/2 − 2P3/2 calculations: 13s13p13d13f ,
number of selected CSF: 4062, 5849 respectively and for 2S1/2-2P1/2

calculations: 15s15p15d15f , number of selected CSF: 5045, 4781
respectively.
cBasis set expansion: 17s17p17d17f , number of selected CSF for
2P3/2,2P1/2,2S1/2: 6655, 4768, and 4645 respectively.
dReference [15].
eReference [16].
fReference [17].
gReference [18].
hReferences [19,20].

Table IV shows 1s22s 2S1/2–1s22p 2P1/2,3/2 transition en-
ergies computed here for three-electron systems (Li, Ne+7,
U+89) compared with other theoretical and experimental data
available. The RCI(SH) calculations were performed with
the basis set expansions included single, double, and triple
excitations from the ground-state configuration. In the case
of neutral lithium the CSF were selected to those with
mixing coefficients greater than 10−8. Our Dirac-Coulomb-
Breit results for neutral lithium after subtraction of corrections
from reduced mass and mass polarization (0.000245 eV taken
from Ref. [14]) yield 1.847825 eV and 1.847867 eV for
2S1/2-2P1/2 and 2S1/2-2P3/2 transitions respectively, and are in
excellent agreement with experimental data. The agreement
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TABLE V. Comparison of frequency-independent [B(0)] and
frequency-dependent B(ω) Breit contribution as well as the Lamb
shift computed for some transition energies in lithiumlike uranium
with results of other theoretical methods (in eV).

Transition

Method 2S1/2 − 2P1/2
2S1/2 − 2P3/2

Breit contribution
RCI(SH), DCB(0) 36.37 −9.25
RCI(SH), DCB(ω) −0.37 −7.10
MBPTa, DCB(0) 36.60 −9.16
MBPT, DCB(ω) −0.37 −7.06

Lamb shift
RCI(SH) −39.46 −41.66
other theory −39.13(5)b −41.68(5)c −41.77d

aReference [17].
bExtrapolated from Blundell’s results of [21] for Z = 60, 70, 80, 90.
cReference [21].
dReference [22].

with experiment of our other theoretical results is very good,
particularly if, at least, the Breit frequency-independent term
[B(0)] and QED corrections are included in calculations. One
can note clear importance of QED corrections whereas the
Breit frequency-dependent term [B(ω)] plays visible role only
for 2S1/2–2P3/2 transition.

Table V presents contributions of the Breit interaction
[both B(0) and B(ω)] and of the Lamb shift to 1s22s 2S1/2–
1s22p 2P1/2,3/2 transition energies in Li-like U computed in
this study and compared with other theoretical results. As can
be seen, the contribution of the frequency-independent Breit
interaction [B(0)] is for 2S1/2–2P1/2 transition two orders larger
than the contribution of the frequency-dependent part [B(ω)]
whereas for 2S1/2–2P3/2 transition, they are of the same order.
The comparison of the results of Breit energies with those
obtained by MBPT calculations [17] show small differences
probably due to higher-order Breit contributions which are
included in our calculations but not in MBPT.

Our calculations demonstrate the obvious need to in-
clude at least the frequency-independent Breit contribution
together with the QED corrections in order to achieve good
agreement with experiment in energy calculations for two-
and three-electron systems. For not highly ionized systems
like Ne+7 inclusion of only the Breit correction to the DC
Hamiltonian may lead to worse transition energies as can

be seen from Table IV. It could only improve the value of
2P3/2–2P1/2 fine structure. For highly ionized systems like U+89

frequency-dependent Breit corrections are significant. Both
the Breit interaction contributions and Lamb shift computed
in this study agree favorably with those evaluated using other
theoretical methods by different authors.

IV. SUMMARY AND CONCLUSIONS

In this work we have presented the scheme to generate
of hydrogenic spin orbitals for the relativistic configuration
interaction calculations. We have carried out a series of
calculations of the correlation as well as relativistic effects
in order to test the accuracy of this approach in comparison
with other well-established methods.

The relativistic configuration interaction method using
screened hydrogenic spin orbitals [RCI(SH)] yields for some
two- and three-electron systems results comparable in accu-
racy to other accurate theoretical approaches. Particularly, the
results allowing for Breit and QED corrections seem to be
promising. The technique of construction of CSF space allows
us to take correlation effects into account by using a relatively
not very large basis set expansion. However, one can note
that very high excited spin orbitals should be included in the
basis set to calculate excited states (Table III). On the other
hand, we can take advantage of the unique set of spin orbitals
that can be used for all the states of the system studied. The
obtained multiconfiguration wave functions are orthogonal,
which is important if one assumes calculation of transition
probabilities in the future.

The calculations presented here show that screened hy-
drogenic wave functions can be successfully used as spin
orbitals in relativistic configuration interaction calculations.
There are many advantages of using screened hydrogenic
spin orbitals. They can be easily generated numerically or
represented analytically. For the sake of convenience in this
study we have used numerically generated wave functions, but
many applications use analytical wave functions. They can be
applied to the DCB Hamiltonian approach without any need
of projection operators because such spin orbitals guarantee
clean separation of negative and positive spectra.
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