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The inelastic Raman scattering of light by hydrogenlike ions has been studied by means of second-order
perturbation theory and the relativistic Coulomb Green’s-function approach. In particular, we investigate the total
and angle-differential Raman cross sections as well as the magnetic sublevel population of the residual (excited)
ions. Detailed calculations are performed for the inelastic scattering of photons by neutral hydrogen as well as
hydrogenlike xenon and uranium ions, accompanied by the 1s1/2 → 2s1/2, 1s1/2 → 2p1/2, and 1s1/2 → 2p3/2

transitions. Moreover, we discuss how the Raman scattering is affected by relativistic and resonance effects as
well as the higher-multipole contributions to the electron-photon interaction.
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I. INTRODUCTION

The inelastic scattering of photons on atoms, ions, or
molecules often leads to an excitation of the target. Since the
1920s, this so-called Raman scattering [1,2] has been explored
intensively by both experiments and theoretical studies. In
atomic physics, most of the investigations have dealt with
hydrogen and neutral atoms (see [3]). For these systems,
nonrelativistic calculations were performed especially for the
total as well as angle-differential Raman cross sections [4–8]
and were found to be in good agreement with experimental
data [9,10]. The computations also helped to improve our
understanding of the spectra of double stars [11,12]. Further-
more, in recent years it was found that the Raman process is
a relevant factor in understanding the incoherent and coherent
x-ray scattering by neutral atoms [13–15].

In contrast to neutral atoms, less attention has been paid so
far to the inelastic photon scattering by highly charged ions.
Owing to the recent advances in storage ring and trapping
techniques as well as in developing coherent light sources, the
scattering of light by ionic targets has become feasible today.
When performed with medium- and high-Z targets, these ex-
periments can provide valuable information about the electron-
photon interaction and the structure of simple atomic systems
in the presence of strong Coulomb fields [16]. Therefore, in
order to support the present (as well as future) measurements
on the inelastic scattering of light by highly charged ions,
theoretical investigations are needed beyond the previously
applied nonrelativistic dipole approximation [4–8]. The first
steps in this direction were made by Manakov et al. [17].
In this work we present a more detailed fully relativistic
analysis of the Raman process for hydrogenlike systems. We
here restrict our investigation to one-electron ions since they
allow us to focus on the major relativistic and nondipole
phenomena, leaving the many-electron effects for future case
studies.
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In the present work we describe inelastic scattering of
photons by hydrogenlike ions within the framework of second-
order perturbation theory and Dirac’s relativistic equation.
In this framework, all properties of the Raman process
can be readily expressed in terms of two-photon transition
amplitudes, as discussed in Sec. II below. These relativistic
amplitudes are used to build the total and angle-differential
scattering cross sections as well as the alignment parameters
of residual (excited) ions and contain also the higher-order
multipoles of the radiation field. For all numerical computa-
tions of these properties, we use the Coulomb Green’s-function
method discussed in Sec. III. It is applied to the inelastic
Raman scattering of light by neutral hydrogen as well as by
hydrogenlike xenon (Xe53+) and uranium (U91+) ions (see
Sec. IV). Particular attention is paid to the excitation of the
target atoms (and ions) from their ground state to the 2s1/2,
2p1/2, and 2p3/2 levels by photons with energies below the
1s ionization threshold. For these photon energies, we here
analyze the relativistic and nondipole corrections to the Raman
cross sections and the ionic alignment parameters and focus
especially on the (resonance) effects arising for the scattering
via the resonant excitation and subsequent decay of a real
intermediate state. Finally, a brief summary of our findings
and an outlook are given in Sec. V.

Hartree atomic units (� = e = me = 1) are used throughout
the paper unless stated otherwise.

II. THEORY

A. Evaluation of the transition amplitude

The scattering of photons by atoms and ions is usually
described in terms of second-order perturbation theory [4,5,8].
In this approach, all properties of the scattered light and
the residual (atomic) target can be traced back to the
two-photon transition amplitude. For Raman scattering in-
volving the excitation of hydrogenlike ions from an initial
state |nijiμi〉 to some final state |nf jf μf 〉, this amplitude
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reads

Mif (μi,μf ) =
∑

nνjνμν

〈nf jf μf |R̂†
2(k2,ε2)|nνjνμν〉〈nνjνμν |R̂1(k1,ε1)|nijiμi〉

Ei + ω1 − Eν

+
∑

nνjνμν

〈nf jf μf |R̂1(k1,ε1)|nνjνμν〉〈nνjνμν |R̂†
2(k2,ε2)|nijiμi〉

Ei − ω2 − Eν

. (1)

Here k1,2 and ε1,2 are the wave and polarization vectors of the
incident and scattered photons, respectively. The energies of
these photons ω1,2 = k1,2/α are of course linked to the energies
of the initial and final ionic states

ω2 = ω1 − Ef + Ei (2)

due to the conservation of energy.
The operator R̂1(k1,ε1) in Eq. (1) describes the absorption

of the first (incoming) photon and R̂
†
2(k2,ε2) describes the

emission of the second (scattered or outgoing) photon. As
usual in atomic theory, the transition amplitude Mif (μi,μf )
can be further evaluated by a decomposition of the operators
R̂

(†)
1,2 into their partial wave components, which, within the

Coulomb gauge, can be written as

R̂i(ki ,εi) = 4π
∑

piLiMi

iLi−pi
[
εiY

(pi )∗
LiMi

(k̂i)
]
α âpi

LiMi
(ki), (3)

where Y (p)
LM (k̂) denotes a vector spherical harmonic [18],

âp

LM is the multipole field component of the multipole
(p,L,M) [19,20], and α = (αx,αy,αz) refers to the vector of
the Dirac matrices. In Eq. (3), moreover, the index L specifies
the order of the multipoles, while p distinguishes between the
electric (p = 1) and magnetic (p = 0) transitions. Using this
notation, the pair (p = 1,L = 1) refers to the electric dipole
E1 component of the electron-photon interaction, the pair
(p = 0,L = 1) to the magnetic dipole M1 component, and
so on.

If we insert the expansion (3) into Eq. (1) and perform some
simple Racah algebra, the two-photon transition amplitude can
be put into the form [19,21–23]

Mif (μi,μf ) =
∑
kq

√
2k + 1〈kqjf μf |jiμi〉

×Ukq(nf jf ; niji), (4)

where the irreducible tensor Ukq(nf jf ; niji) of rank k is
given by

Ukq(nf jf ; niji)

=
∑

p1L1p2L2

(4π )2

√
2ji + 1

(−1)jf +ji iL1+p1−L2−p2T
L1p1L2p2
kq (k̂1,k̂2)

×
∑
jν

( {
L1 L2 k

jf ji jν

}
S21

jν
(ω1)

+ (−1)L1+L2+k

{
L1 L2 k

ji jf jν

}
S12

jν
(−ω2)

)
. (5)

This expression allows for the factorization of the matrix
element Mif (μi,μf ) into (i) a radial part and (ii) a term

that depends on the propagation directions k1,2 as well as
the polarization vectors ε1,2 of the photons. The latter term
is usually represented by the so-called angular polarization
tensor

T
L1p1L2p2
kq (k̂1,k̂2) =

∑
M1M2

〈L1M1L2M2|kq〉

× [
ε1Y (p1)

L1M1
(k̂1)

][
ε2

∗Y (p2)
L2M2

(k̂2)
]
, (6)

whose evaluation in terms of the spherical harmonics was
discussed in detail in previous works [19,22,23]. In contrast,
the radial integrals enter the amplitude (4) via the reduced
matrix elements

S12
jν

(−ω2) ≡ S12
jν

(−ω2; L1p1,L2p2)

=
∑
nν

〈nf jf ||αâp1
L1

||nνjν〉〈nνjν ||αâp2
L2

||niji〉
Ei − ω2 − Eν

, (7)

S21
jν

(ω1) ≡ S21
jν

(ω1; L1p1,L2p2)

=
∑
nν

〈nf jf ||αâp2
L2

||nνjν〉〈nνjν ||αâp1
L1

||niji〉
Ei + ω1 − Eν

, (8)

which are the standard building blocks for describing different
atomic two-photon processes [24]. The computation of these
matrix elements is a complicated task since it requires the
summation over the complete Dirac spectrum of the ion. In
Sec. III we will explain how this summation can be carried out
with the aid of the Green’s-function approach.

B. Differential and total cross sections

Making use of the second-order amplitude Mif (μi,μf )
and its radial-angular representation, we can now calculate
various properties for the inelastic scattering of photons by
hydrogenlike ions. For example, the angle-differential cross
section for |niji〉 + γ → |nf jf 〉 + γ ′ Raman scattering can
be obtained from Eqs. (4)–(8) as

dσ

d�
(θ,ω1) = 1

2

ω2

ω1

1

2ji + 1

∑
ε1ε2

∑
μi,μf

|Mif (μi,μf )|2

= 1

2

ω2

ω1

∑
kq

∑
ε1,ε2

|Ukq(nf jf ; niji)|2, (9)

if we assume that the incident light is unpolarized and
that the polarization of scattered photons and the magnetic
sublevel population of the residual ion remain unobserved.
For such a setup of the experiment, the wave vector ki of the
incident photon is the only preferred direction of the overall
system. Therefore, the emission of the scattered light can be
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characterized by the (single) polar angle θ as defined with
regard to this direction.

One can also calculate the total Raman scattering cross
section if Eq. (9) is integrated over all directions of the outgoing
photon:

σ (ω1) = 1

2

ω2

ω1

∫ ∑
kq

∑
ε1,ε2

|Ukq(nf jf ; niji)|2d�. (10)

The dependence of this cross section on the incoming photon
energy arises from the reduced matrix elements (7) and (8).
In Sec. IV A we study this energy dependence for selected
hydrogenlike ions.

C. Alignment of a final ionic state

Until now, we have considered the total cross section and
angular distribution of the photons of the Raman scattering
process. We can also use the transition amplitude Mif (μi,μf )
to investigate the (magnetic sublevel) population |nf jf μf 〉
of the residual excited ion as often described in terms of so-
called alignment parameters Akq . In atomic collision studies,
information about these parameters is typically obtained by
analyzing the angular distribution and/or polarization of the
subsequent decay photons. For example, the (angular and
polarization) properties of the radiation emitted in the decay of
states with jf = 3/2 is governed by just a single (nontrivial)
alignment parameter

A20 = σ (μf = ±3/2) − σ (μf = ±1/2)

σ (μf = ±3/2) + σ (μf = ±1/2)
. (11)

In this expression, the σ (μf ) ≡ σ (nf jf μf ) is the cross section
for the formation of a particular excited sublevel. To calculate
these partial cross sections, we assume the quantization axis
and hence the alignment parameter A20 to be defined along
the incoming photon beam and that the scattered photons
remain unobserved. For the excited state |nf jf = 3/2〉 and
for unpolarized incoming light then, the partial cross section
reads

σ (nf ,jf ,μf ) = 1

2

1

2ji + 1

ω2

ω1

×
∑

μi,ε1,ε2

∫
|Mf i(μi,μf )|2d�. (12)

Inserting this expression into Eq. (11), we find after some
angular momentum algebra

A20 =
√

5(2jf + 1)
∑
k′k′′q ′

(−1)k
′+ji+jf

√
2k′ + 1

×〈k′q ′20|k′′q ′〉
{
jf ji k′

k′′ 2 jf

}

×
∑
KQ

∫
Uk′q ′U

†
k′′q ′d�∫

UKQU
†
KQd�

, (13)

where, for the sake of brevity, we just use the notation Ukq ≡
Ukq(nf jf ; niji) for the irreducible tensor (5).

III. COMPUTATIONS

As seen from Eqs. (9), (10), and (13), the computation of
the Raman scattering cross sections as well as the alignment
of the residual ion requires knowledge about the reduced
matrix elements S12

jν
(ω) and S21

jν
(ω). To compute these matrix

elements, a summation over the intermediate states |nνjν〉
needs to be performed, which includes not only the bound but
also the (positive- and negative-energy) continuum solutions
of the Dirac equation. In the present work we perform
this infinite summation by means of the relativistic Green’s
function [24,25]. By expanding the Green’s function in terms
of Laguerre polynomials, as suggested by Hylton and Snyder-
man [26], we were able to evaluate the amplitudes (7) and (8)
analytically for all pairs of allowed multipoles (L1p1,L2p2).
Numerical approximations of these amplitudes for all (electric
and magnetic) fields up to octupole order L = 3 are used in our
calculations in Sec. IV and were found sufficient to guarantee
the convergence of the reported results.

IV. RESULTS AND DISCUSSION

A. Total cross section

Total cross sections of the inelastic scattering of light on
atoms and ions have been studied mainly for light systems in
the past [5,6]. In this low-Z regime, the theoretical description
of the Raman process was based on Schrödinger’s equation and
the electric dipole approximation for the coupling of the elec-
trons to the radiation field. To better understand how the cross
section σ (ω1) is affected by relativity and the contributions of
the higher multipoles, we applied Eqs. (5)–(10) and calculated
the 1s1/2 + γ1 → nf jf + γ2 Raman scattering of light on
selected hydrogenlike ions with nuclear charge in the range
1 � Z � 92. In Fig. 1, for example, we display the total cross
sections for neutral hydrogen as well as for hydrogenlike xenon
and uranium ions, if they are excited to the 2s1/2 (black solid
line), 2p1/2 (red dash-dotted line), and 2p3/2 (green dashed
line) states. In all these computations, the σ1s→2s , σ1s→2p1/2 ,
and σ1s→2p3/2 cross sections were determined for incident
photon energies ω1 between the 1s → 2lj (excitation) and the
1s ionization threshold. For these energies of the incoming
photons, moreover, our fully relativistic calculations are
compared with the nonrelativistic predictions by Sadeghpour
and Dalgarno [5] and Zon et al. [6] for the 1s1/2 → 2s1/2

transition.
As seen from the figure, the cross section for the Raman

scattering of light, if displayed as a function of the incident
photon energy, exhibits a pronounced resonance structure.
Resonances in the cross sections generally arise whenever the
photon energy allows the excitation of a (real) intermediate
state |nνjν〉 with energy Eν = E1s + ω1, though with different
strength and widths. From a simplified point of view, the
Raman scattering then proceeds as a sequential excitation-
and-decay process: 1s1/2 + γ1 → nνjν → nf jf + γ2. For the
1s1/2 → 2s1/2 Raman scattering on neutral hydrogen, for
instance, we predict three peaks for incident photons with
energies 0.75|E1s | < ω1 < 0.97|E1s |, i.e., well below the |E1s |
ionization threshold. In the leading electric dipole E1E1
approximation, these peaks are simply attributed to the 3p, 4p,
and 5p intermediate states whose energies are given by Bohr’s
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FIG. 1. (Color online) Total cross section (10) for the inelastic Raman scattering of photons on neutral hydrogen as well as hydrogenlike
xenon and uranium ions. Results are shown as a function of the incident photon energy ω1 in units of the |E1s | ionization threshold of the
ions. Relativistic calculations were performed for the excitation of the targets from their ground state to the 2s1/2 (black solid line), 2p1/2

(red dash-dotted line), and 2p3/2 (green dashed line) levels. Moreover, the nonrelativistic predictions by Sadeghpour and Dalgarno [5] and
Zon et al. [6], obtained for the 1s → 2s scattering, are also displayed by closed circles and orange dotted lines, respectively. Positions of the
intermediate-state resonances are marked by the vertical dotted lines.

formula En = −1/2n2. However, this formula is no longer
valid if the nuclear charge increases and hence relativistic
effects become more and more important. For medium- and
high-Z ions, the nνp1/2-nνp3/2 fine-structure splitting of the
ionic levels becomes visible in the peak structure of the
Raman cross section (see the middle and bottom panels of
Fig. 1). A similar splitting in the resonances of the total cross
sections is observed also for the 1s → 2p1/2 and 1s → 2p3/2

Raman scattering due to the interference of the direct scattering
amplitudes with the excitation and decay via the |nνs〉, |nνp〉,
and |nνd〉 (real) intermediate states.

To better understand the influence of the relativistic and
higher multipole corrections to the total cross section (10),
one should consider not only the resonances but also the
nonresonant region with 0.8 � ω1/|E1s | � 0.87, in which
σ (ω1) is a smooth function of the photon energy. In this region,
the cross sections for an excitation to the 2s1/2, 2p1/2, and 2p3/2

ionic states behave rather different as the nuclear charges Z

increases. For example, the Raman cross section σ1s→2s(ω1)
for the simultaneous excitation of the electron to the 2s level
changes only very little and is well reproduced by the
nonrelativistic computations of Zon et al. [6], even for heavy
ions. This behavior can be readily understood by the dominant
E1 multipole components of the incident and outgoing photons
in the scattering process 1s1/2 + γ1 → 2s1/2 + γ2, for which
the E1E1 second-order transition amplitude ME1E1

if (μi,μf ),
i.e., if the summation in Eq. (5) is restricted to just one
term with p1 = p2 = 1 and L1 = L2 = 1, depends weakly

on Z [22,27,28]. This leads to a total cross section σ1s→2s(ω1)
that varies very moderately along the hydrogen isoelectronic
sequence. In contrast both the σ1s→2p1/2 (ω1) and σ1s→2p3/2 (ω1)
cross sections for the excitation of the electron into the
2p1/2,3/2 shells increase by 3–4 orders of magnitude if
the nuclear charge is raised from Z = 1 to Z = 92. This
reflects again the behavior of the leading ME1M1

if (μi,μf ) and
ME1E2

if (μi,μf ) scattering amplitudes that couple the 1s ground
level to the excited 2p1/2,3/2 levels. These two amplitudes
are approximately ∼Z, which results in the observed ∼Z2

behavior of the cross section.

B. Angle-differential cross section

Besides the total cross sections (10), modern detectors also
allow us to observe the angular distribution of inelastically
scattered photons. In this section, therefore, we shall explore
how the angular properties of the Raman scattered photons
depend on both the nuclear charge Z and the energy ω1 of
the incident radiation. We here start with the energy ω1 =
0.825|E1s | of the incident photons for which the scattering
process is not affected by the resonances. For this photon
energy, Fig. 2 displays the angle-differential cross section
for neutral hydrogen as well as hydrogenlike xenon and
uranium ions. As before, computations have been performed
for scattering with 1s1/2 → 2s1/2 (left panels), 1s1/2 → 2p1/2

(middle panels), and 1s1/2 → 2p3/2 (right panels) simulta-
neous excitations of the ions. In this figure, moreover, we
compare the results of the exact relativistic theory, including all
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FIG. 2. (Color online) Angle-differential cross section (9) for the inelastic Raman scattering of unpolarized photons by neutral hydrogen (top
panels), hydrogenlike xenon (middle panels), and hydrogenlike uranium (bottom panels) ions. Results are displayed for the 1s1/2 → 2s1/2 (left
column), 1s1/2 → 2p1/2 (middle column), and 1s1/2 → 2p3/2 (right column) transitions of the ions and for the photon energy ω1 = 0.825|E1s |,
well below the ionization threshold. Calculations within the leading E1E1 approximation for excitations into the 2s1/2 level and the E1M1-E1E2
approximation for the 2p1/2,3/2 levels (dashed line) are compared with those including all of the allowed multipoles (solid line).

the multipole components (L1p1,L2p2) in the amplitude (5),
with leading-order results, in which the summation over the
multipole components is restricted to the single E1E1 term
for dσ/d�1s→2s and to the E1M1 and E1E2 terms for
dσ/d�1s→2p1/2,3/2 , respectively.

As seen from the left panels of Fig. 2, the higher multipoles
play almost no role in the inelastic Raman scattering that
leads to the formation of the 2s1/2 excited state. In this
particular case, both the rigorous relativistic theory (solid
line) and the (leading) E1E1 approximation (dashed line)
predict a proportional to 1 + cos2 θ angular distribution of
the outgoing photons even for the heaviest ions. This shape
also corresponds to the classical dipole radiation pattern and
was predicted already by the nonrelativistic analysis by Zon
et al. [6]. For the 1s1/2 → 2p1/2 and 1s1/2 → 2p3/2 Raman
scattering, in contrast, the angular emission of the photons
is much more sensitive to Z. For neutral hydrogen, for
example, the dσ/d�1s→2p1/2 and dσ/d�1s→2p3/2 differential
cross sections just differ by a factor of 2 from each other,
owing to the statistical weights of the 2p1/2 and 2p3/2 levels,
and both display a dominant emission of the scattered photons
in the forward direction (see the middle and right columns of
Fig. 2). Such an angular distribution is determined already
by the leading E1M1 and E1E2 two-photon amplitudes,
while the effects of higher multipoles remain negligible. As
the nuclear charge Z increases, however, the higher-multipole
contributions to the electron-photon interaction (3) become
more important and give rise to an enhance scattering at
angles θ ≈ 100◦ of the outgoing photons in the 1s1/2 + γ1 →
2p1/2 + γ2 Raman process. For the excitation to the 2p3/2 state
of high-Z ions, in contrast, the Raman light is dominantly
emitted under small angles θ � 60◦, well in line with the
leading-order (E1M1-E1E2) approximation.

Until now, we have discussed the Z behavior of the Raman
angle-differential cross section for the nonresonant energy
ω1 = 0.825|E1s | of the incident photons. In order to analyze
how the 1s → nlj → nf ljf

resonances affect the angular
emission of the scattered photons, Fig. 3 presents calculations
for the 1s1/2 → 2s1/2 (left panels) and 1s1/2 → 2p1/2 (right
panels) Raman scattering in hydrogenlike uranium U91+
and for the three energies ω1 = 0.888|E1s |, 0.890|E1s |, and
0.895|E1s |, respectively. While the first of these energies
lies below the 1s1/2 → 3s1/2 and 3p1/2 → nf ljf

resonance
energies of �0.8891|E1s |, the other two energies are slightly
above the resonance. As seen from Fig. 3, the shape of both the
dσ/d�1s→2s1/2 and dσ/d�1s→2p1/2 differential cross sections
changes drastically in this (energy) region. For example, in the
1s1/2 → 2s1/2 process, the photons are scattered dominantly
in the forward and backward directions with regard to
the incoming light (beam) below the resonance for ω1 =
0.888|E1s |, but have the highest scattering cross section in
the perpendicular direction (θ = 90◦) for ω1 = 0.890|E1s |.
If the energy of the incident photon is even higher at ω1 =
0.895, the nonresonant behavior starts to reappear. In order
to understand this behavior, we note that, within the vicinity
of the 1s → 3p1/2 → 2s resonance and the leading E1E1
approximation, the sum over the multipole components in
the transition amplitude (4) and (5) is dominated by the
reduced matrix element S21

jν=1/2(ω1; E1,E1). At this resonance,
moreover, the amplitude can be approximated by the single
term

S21
jν=1/2(ω1; E1,E1)

∼ 〈2s1/2||αâ(E1)||3p1/2〉〈3p1/2||αâ(E1)||1s1/2〉
E1s1/2 − E3p1/2 + ω1

, (14)
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FIG. 3. (Color online) Angle-differential cross section (9) for the
inelastic Raman scattering of unpolarized photons by hydrogenlike
uranium U91+ ions. Results are shown for the 1s1/2 → 2s1/2 (left
column) and 1s1/2 → 2p1/2 (right column) transitions of the ions
and for the photon energies just below and above the 3s1/2, 3p1/2

resonances at ω1/E1s � 0.8891, the threshold for the 1s1/2 + γ1 →
3s1/2/3p1/2 → nf jf + γ2 scattering.

which changes its sign at the energy ω1 = E1s1/2 − E3p1/2 of
the incident photons. Since all the other reduced amplitudes
S12 and S21 remain basically constant around this (resonance)
energy, the sign change strongly affects the angular distribution
of the photons in the 1s1/2 → 2s1/2 Raman scattering process.
For photons near the 1s1/2 → 3p1/2 resonant excitation, this
distribution can be written in the form

dσ

d�

∣∣∣∣
ω1≈E3p1/2 −E1s1/2

∼ C + S21
jν=1/2(ω1; E1,E1) cos2 θ, (15)

where the parameter C is a smooth function of ω1. This
modified shape of the angle-differential cross sections near
the 1s1/2 → 3p1/2 → 2s1/2 resonance only appears for mid- or
high-Z ions. For low-Z ions, the peak in the angle-differential
cross sections at the 3p3/2 resonance is very close to the peak at
the 3p1/2 resonance and small changes in the incident photon
energy change the sign of both the S21

jν=1/2 and the S21
jν=3/2

reduced matrix elements. The interplay of these different
contributions stabilizes the angular shape in the resonant
energy region.

The qualitative change in the angular emission of the
inelastically scattered photons, caused by the 1s1/2 → 3p1/2

resonance, can be observed experimentally in particular for
heavy hydrogenlike ions. For the two scenarios displayed in
Fig. 3, namely, the 1s1/2 → 2s1/2 and 1s1/2 → 2p1/2 Raman
scattering on hydrogenlike ions, such experiments require
x rays with photon energies ∼120 keV and with a spectral
width of about 100 eV. X-ray radiation with these properties
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FIG. 4. (Color online) Alignment A20 of the 2p3/2 state of neutral
hydrogen as well as hydrogenlike xenon and uranium ions following
the inelastic Raman scattering of unpolarized photons. Calculations,
performed within the leading-order approximation E1M1 and E1E2,
are displayed by dashed lines and are compared with those including
all of the allowed multipoles (solid lines).

is available today from modern synchrotron facilities, for
instance, at PETRA III in Hamburg.

C. Alignment of the 2 p3/2 state

As discussed before, the probability of exciting the ion into
the 2p3/2 level by inelastic photon scattering increases rapidly
as the nuclear charge is enlarged and this Raman scattering
becomes pronounced especially for medium- and high-Z ions.
Of course, the inelastic scattering of photons may also result
in an alignment of the ion in the excited state, i.e., in an
unequal population of the magnetic sublevels |2p3/2μf 〉 with
different moduli of the magnetic quantum number. Figure 4
displays the alignment parameter A20, which characterizes the
sublevel population of the ion in the |2p3/2〉 state, for neutral
hydrogen as well as Xe53+ and U91+ ions. Calculations, based
on Eq. (13), have been performed for the incident photon
energies below 0.9|E1s |, i.e., in an (energy) region in which
the cascade feeding of the 2p3/2 level due to excitations of the
ions into high-lying states can be neglected. For this region,
a moderate negative alignment −0.3 � A20 � 0 is predicted
for all three (ionic) targets. The alignment of the |2p3/2〉
level is mainly determined by the leading E1M1 and E1E2
amplitudes, even though, especially for medium- and high-Z
ions, the higher multipoles do reduce the (absolute value of)
A20.
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V. SUMMARY AND OUTLOOK

In summary, a theoretical study has been performed for
the inelastic (Raman) scattering of light on hydrogenlike
ions. Special emphasis was placed on the total cross section,
the angular distribution of the scattered photons, and the
magnetic sublevel population of the residual ions. In order to
evaluate these properties, we made use of Dirac’s relativistic
equation and second-order perturbation theory. Moreover,
the summation over the complete (Dirac) spectrum, the
intermediate ionic states, was performed by means of the
Coulomb Green’s function. Detailed computations are carried
out for the 1s1/2 → 2s1/2, 1s1/2 → 2p1/2, and 1s1/2 → 2p3/2

Raman scattering on neutral hydrogen as well as hydrogenlike
xenon (Xe53+) and uranium (U91+) ions. The results of these
calculations indicate that the 1s1/2 → 2p1/2 and 1s1/2 →
2p3/2 Raman scattering is negligible for low-Z systems but
increases significantly for larger nuclear charge Z, an effect
that can be attributed to the enhanced role of nondipole
contributions to the electron-photon interaction.

Apart from the Z dependence, the total cross section for
Raman scattering of light and for a particular excitation of
the ion appears also to be quite sensitive to the energy of
the incident light, showing pronounced enhancements at the
resonant transitions of the ion to higher-lying states. These
resonances can be interpreted of course as two-step process, in
which the scattering proceeds via a well-defined intermediate
state of the ions, together with the subsequent decay of the state
of consideration. The positions of the resonances therefore

reflect the fine structure and especially the level splitting of
high-Z hydrogenlike ions. When compared with the total cross
sections, similar or even larger effects of the resonance are
found for the angle-differential cross sections. For the Raman
scattering into the 2s1/2 state, for example, a remarkable shift
in the angular distribution of the scattered photons was found,
ranging from a dipolelike 1 + cos2 θ shape for nonresonant
photon energies to an emission almost perpendicular to the
direction of the incoming beam, if the (incoming) photon
energy crosses the 1s1/2 → 3p1/2 excitation energy.

Furthermore, we have investigated also the alignment of
the residual ions, i.e., their magnetic sublevel population. A
moderate alignment was found for a wide range of photon
energies and can be attributed mainly to the E1M1 and E1E2
amplitudes. Information about the alignment of the ions can be
derived, for instance, from angular- and polarization-resolved
measurements of their subsequent Lyman-α1 (2p3/2 → 1s1/2)
decay. A theoretical analysis of this characteristic photon
emission following the inelastic Raman scattering is left for
future research.
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