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Measurement-device-independent quantum key distribution (MDI-QKD), leaving the detection procedure
to the third partner and thus being immune to all detector side-channel attacks, is very promising for the
construction of high-security quantum information networks. We propose a scheme to implement MDI-QKD,
but with continuous variables instead of discrete ones, i.e., with the source of Gaussian-modulated coherent states,
based on the principle of continuous-variable entanglement swapping. This protocol not only can be implemented
with current telecom components but also has high key rates compared to its discrete counterpart; thus it will be
highly compatible with quantum networks.
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I. INTRODUCTION

Quantum key distribution (QKD), allowing a secret key
between two legitimate parties (Alice and Bob) to be
established [1], has been applied to quantum information
networks based on the trusted node or relay [2,3]. However, in
order to construct high-security and -performance networks,
measurement-device-independent (MDI) QKD would be a
very promising alternative since it not only removes all detector
side-channel attacks, the most important security loophole of
QKD implementations, by leaving the detection procedure to
the untrusted relay but also supplies excellent performance
with current technology [4–10].

Measurement-device-independent QKD, which is a
time-reversed Einstein-Podolsky-Rosen (EPR)-based QKD
scheme [11], consists of Alice and Bob respectively sending
single-photon states to the third partner, Charlie, who makes
a Bell-state measurement (BSM) and broadcasts his measure-
ment results, and it has been a big step forward to bridge the
gap between the theory and the real-world implementation
of QKD [4]. Based on the idea of discrete-variable entangle-
ment swapping and two-photon interference, the BSM can
postselect the entanglement states between Alice and Bob and
does not disclose the information about encodings, so this
protocol allows the legitimate parties to establish the secure
keys, which are independent of the measurement device, and
all detection side-channel attacks are removed by leaving the
detection procedure to the third partner.

As a counterpart, motivated by continuous-variable en-
tanglement swapping [12,13], here, we propose a scheme to
implement the MDI-QKD with continuous variables instead
of discrete ones, i.e., with the source of Gaussian-modulated
coherent states; thus we can confirm the security of this
protocol by the optimality of Gaussian attacks [14–17].
We show that with respect to this protocol two different
reconciliation strategies, direct reconciliation (DR) and reverse
reconciliation (RR), can be used to extract the secure keys
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even though this protocol seems symmetric for Alice and
Bob compared to Charlie, and both exhibit high performance.
The detection side-channel attacks against continuous-variable
QKD, such as the wavelength attack [18], the calibration
attack [19], the local oscillator (LO) intensity attack [20], and
the saturation attack [21], also have been excluded, and the
expensive and low-detection-efficiency single-photon detec-
tors used by discrete-variable MDI-QKD are also replaced by
the lower-cost and higher-detection-efficiency balanced homo-
dyne detectors (BHDs). Hence this protocol for continuous-
variable MDI-QKD not only can be implemented with current
technology but also has high key rates, like the conventional
one-way continuous-variable (CV) QKD protocol [e.g., the
Grosshans-Grangier protocol (GG02 protocol) [22,23]; see
details in Ref. [24] and the references therein).

This paper is structured as follows. In Sec. II, we describe
the protocol of continuous-variable MDI-QKD. In Sec. III,
we give the security bounds of this protocol in DR and RR
against one-mode attack. In Sec. IV, we extend the results
of Sec. III to the asymmetric channel case and discuss the
imperfect detections. Finally, Sec. V is used for the conclusion
of this paper.

II. PROTOCOL DESCRIPTION

This continuous-variable MDI-QKD, whose schematic
setup is shown in Fig. 1, consists of the following four steps.

(1) Preparation. Alice and Bob each prepare coherent states
in the phase space and send them to the third partner, Charlie,
simultaneously, as shown in Fig. 1. Here the input modes
can be described as X̂A/B = XS

A/B + X̂N
A/B for Alice and Bob,

respectively, where XS
A/B are classical encoding variables with

centered Gaussian distribution of zero mean and variance VS

and X̂N
A/B are vacuum modes. For all quadratures Q̂ and P̂ of

coherent states, they are defined as X̂ ∈ {Q̂,P̂ }. The overall
variance V := V (X̂A) of Alice’s initial mode is given by V =
VS + 1 in shot-noise units, where VS is the modulation variance
mentioned before, and here we assume that Bob’s variance of
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FIG. 1. (Color online) Schematic setup of the continuous-
variable MDI-QKD protocol. BHD: balanced homodyne detector;
BS: balanced beam splitter.

his mode is the same as Alice’s, which they can agree on before
key distribution without loss of generality [25].

(2) Measurement. Charlie combines these two input modes
with a balanced beam splitter (BS) and makes a continuous-
variable BSM [12,13] on the two modes with two BHDs
shown in Fig. 1, i.e., one port detecting Q̂ quadrature and
the other P̂ quadrature. Thus he will get the measurements,
for example, Q̂A − Q̂B and P̂A + P̂B over the lossless and
noiseless channels, up to a multiplier of 1/

√
2 introduced

by the BS [12,13]. Then, he broadcasts these measurement
results to Alice and Bob. Note that the LO used by Charlie
is sent by either Alice or Bob, and before that, both Alice
and Bob have defined the same signal-modulation reference
frame by manipulating their respective LO beams (see details
in Appendix A).

(3) Parameter estimation and security extraction. Alice and
Bob reveal part of their encodings, and based on Charlie’s
measurement results, they estimate the channel transmissions
and excess noises. To establish the correlated data and secure
keys, either Alice or Bob subtracts her or his encodings
from Charlie’s measurement results. For convenience, we
assume that Bob implements this subtraction procedure since
the protocol is symmetric; that is, Bob will take the data
(Q̂ + √

T2Q
S
B) and (P̂ − √

T2P
S
B ), denoted as Q̂B

′ and P̂B
′ ,

as estimations of Alice’s encodings to establish the secure
keys, where T2 is the estimated channel transmission between
Bob and Charlie. Since Eve does not know Bob’s encodings,
she does not know Alice’s encodings accurately either from
just the publication of quadratures Q̂ and P̂ . Of course, she
can learn part of the information from Q̂ and P̂ .

(4) Data postprocessing. Alice and Bob extract the secret
keys from their raw data using the current error correction and
privacy amplification techniques [26] after they calculate the
secret key rate between them.

III. ESTIMATION OF SECURITY BOUNDS

To estimate the security bounds of our protocol, we consider
the entangling cloner shown in Fig. 2 to bound Eve’s informa-
tion. In the security analysis of conventional one-way CVQKD
protocols, the collective Gaussian attacks up to an appropriate
symmetrization of the protocols are considered to be the
optimal general attacks [16,17]. The entangling cloner is the

FIG. 2. (Color online) Entangling cloner attack corresponding to
two Markovian memoryless Gaussian channels with no interactions.
Eve interacts Alice’s and Bob’s modes with her half of each EPR
pair, respectively, and stores her ancillary modes Ê

′
1,Ê

′′
1 ,Ê

′
2,Ê

′′
2 in her

quantum memory to acquire information by collective measurements
at any time of the data-processing procedure. N1 (N2) denotes the
variance of each mode of the first EPR pair (the second EPR pair). The
mode Ê3 ∈ {Q̂,P̂ } is the virtual mode disclosed to Eve by Charlie’s
BSM, and it can be taken as a classical variable.

most powerful and practical example of a collective Gaussian
attack [27,28] and is shown to be optimal for a single or
one-mode channel [20]. But in two-way protocols, the optimal
attack is not clear with respect to two interaction channels,
and the entangling cloner attack has only been demonstrated
to be optimal in the hybrid two-way protocol [28]. In this
work, we restrict our analysis to two Markovian memoryless
Gaussian channels, which do not interact with each other and
thus can be reduced to a one-mode channel [29]. Hence, in
this sense, the two independent entangling cloner attacks, one
in each of the untrusted channels of our protocol, are reduced
to one-mode attacks and thus can be taken as the optimal
one-mode collective Gaussian attack (the most powerful attack
corresponding to two memory Gaussian channels that interact
with each other is analyzed in another work and is not analyzed
in this paper; see the Note). This attack consists of Eve
interacting on Alice’s and Bob’s modes with her half of
each EPR pair, respectively, and the quantum channels are
replaced by two beam splitters with transmissions T1 and T2,
respectively. Then, she collects all the modes to store them
in her quantum memory and makes collective measurements
on these modes to acquire information at any time during the
classical data-postprocessing procedure implemented by Alice
and Bob.

As mentioned before, Bob’s recast data are obtained by
subtracting his own encodings from Charlie’s publications.
Before describing them, we first give the expressions for the
BSM results Q̂ and P̂ under the entangling cloner attack shown
in Fig. 2. They can be written as

Q̂ = (
√

T1Q̂A +
√

1 − T1Q̂E1 ) − (
√

T2Q̂B +
√

1 − T2Q̂E2 ),

P̂ = (
√

T1P̂A +
√

1 − T1P̂E1 ) + (
√

T2P̂B +
√

1 − T2P̂E2 ),

(1)
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up to the multiplier of 1/
√

2 mentioned before, which can be
incorporated with the left-hand sides of the above equations.
Here, E1 and E2 are Eve’s EPR modes, whose variances are
N1 and N2, respectively. N1 and N2 are used to simulate the
variances of the practical channel excess noises εA and εB ,
respectively; that is, εA = (1 − T1)(N1 − 1)/T1 for the channel
between Alice and Charlie, εB = (1 − T2)(N2 − 1)/T2 for the
channel between Bob and Charlie, and both are referred to
their respective channel inputs. T1 and T2 are the respective
channel transmissions of the channel between Alice or Bob and
Charlie, and both can be estimated in the parameter-estimation
procedure. Then, we can recast Bob’s data as

Q̂B
′ = (

√
T1Q̂A +

√
1 − T1Q̂E1 )−(√

T2Q̂
N
B +

√
1 − T2Q̂E2

)
,

P̂B
′ = (

√
T1P̂A +

√
1 − T1P̂E1 ) + (√

T2P̂
N
B +

√
1 − T2P̂E2

)
.

(2)

Since the set of data in Eqs. (2) is a noisy version of
Alice’s encodings, restricted to one-mode attack, this protocol
is equivalent to the conventional one-way CVQKD protocol
with heterodyne detection [30]. In this sense, we can use
the conventional standard methods to analyze its security
bounds. Like for one-way CVQKD, two different strategies
of reconciliation, DR and RR, can be used to extract secure
keys. In DR, Alice’s encodings are taken as the referential
raw keys; thus Bob tries to guess them and reconcile his data
to be identical to them by virtue of the additional classical
side information sent by Alice. In RR, Bob’s recast data
are taken as the raw keys; therefore Alice tries to make
her encodings identical to them, requiring Bob to send side
information. Note that Eve’s entangling cloner attacks for
these two reconciliation procedures are different. In DR, Eve
just guesses Alice’s encodings, and Bob’s encodings have
no contributions for her, so restricted to a one-mode attack,
the entangling cloner attack on Bob’s mode is no use to her
except for reducing the mutual information between Alice and
Bob. However, in RR, Eve tries to guess Bob’s recast data,
including not only Alice’s encoding component but also the
noise component, so she can acquire information with the
help of entangling cloner attacks on both channels, as shown
in Fig. 2.

Before calculating the secret key rates of this protocol in DR
and RR, we first compute the Shannon information between
Alice and Bob, and then in the following sections we bound
Eve’s information using the standard method (see [28,31])
since this protocol is equivalent to the conventional one-way
CVQKD protocol with heterodyne detection [30].

Assuming the symmetry of both quadratures, the mutual
information between Alice and Bob can be given by

IAB
′ = log2

VB
′

VB
′ |A

. (3)

Note that they are identical in DR and RR and there is no
multiplier of 1/2 out the front since two quadratures are used
to generate the secure keys, which is the same case as in
conventional one-way CVQKD with heterodyne detection.
The terms VB

′ and VB
′ |A are the variance and conditional

variance of Bob’s recast data Q̂B
′ and P̂B

′ in Eqs. (2). Since the
terms on the right-hand sides of Eqs. (2) are mutually linearly

independent, the variance VB
′ := 〈Q̂2

B
′ 〉 = 〈P̂ 2

B
′ 〉 (〈Q̂B

′ 〉 =
〈P̂B

′ 〉 = 0) is obtained by

VB
′ = T1V + (1 − T1)N1 + T2 + (1 − T2)N2 := bv, (4)

and the conditional variance on Alice’s encodings XS
A is given

by

VB
′ |A = T1 + (1 − T1)N1 + T2 + (1 − T2)N2 := b0, (5)

using the formula of conditional variance defined as [32,33]

VX|Y = V (X) − |〈XY 〉|2
V (Y )

. (6)

All the variances are in units of shot-noise level. Next, we
calculate the secret key rates between Alice and Bob in DR
and RR, respectively, by bounding Eve’s information.

A. Direct reconciliation

In DR, Charlie’s publication results will disclose some
information, which is equal to giving Eve the virtual mode
Ê3 shown in Fig. 2. Hence, Eve’s information about Alice’s
encodings consists of the Shannon information IAE3 since XE3

(∈ {Q,P }) is a classical variable and the Holevo information
χAEA

. The two kinds of information may partly contain each
other, but we take the superposition as zero for simplicity.
Therefore, the secret key rate can be given by

KDR = βIAB
′ − IAE3 − χAEA

, (7)

where β is the efficiency of reconciliation. The Shannon
information IAB

′ is given by Eq. (3). IAE3 bounds Eve’s
knowledge about Alice’s encodings directly learned from
Charlie’s publication results Q and P , and it can be taken
as the classical information since Charlie’s measurement for
each pulse is individual (e.g., Alice and Bob can wait to send
the next signal pulse until they receive the measurement result
of the last pulse). The Holevo bound χAEA

describes Eve’s
information obtained from the entangling cloner shown in
Fig. 2.

We first compute IAE3 . Since Eve’s modes E
′′
1, E

′′
2 can

reduce the uncertainty of modes E
′
1 and E

′
2, respectively [34],

she can reduce the uncertainty of publication results Q and P ;
i.e., the variance of mode E3 ∈ {Q,P } conditioned on E

′′
1, E

′′
2

can be obtained by

VE3|E′′
1 ,E

′′
2

= T1V + (1 − T1)/N1 + T2V + (1 − T2)/N2, (8)

using VE1|E′′
1

= 1/N1 and VE2|E′′
2

= 1/N2 [34], and the condi-
tional variance VE3|A,E

′′
1 ,E

′′
2

can also be given by

VE3|A,E
′′
1 ,E

′′
2

= T1 + (1 − T1)/N1 + T2V + (1 − T2)/N2. (9)

So, assuming symmetry of both quadratures, the Shannon
information IAE3 can be calculated as

IAE3 = log2

VE3|E′′
1 ,E

′′
2

VE3|A,E
′′
1 ,E

′′
2

. (10)

The Holevo information χAEA
can be written as

χAEA
= S(EA) − S(EA|A), (11)
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where EA denotes Eve’s modes E
′
1,E

′′
1, and S(EA) can be

computed with the symplectic eigenvalues of the covariance
matrix,

γEA
(V,V ) =

(
ev1I ϕ1σz

ϕ1σz N1I

)
, (12)

where ϕ1 =
√

T1(N2
1 − 1) and ev1 = (1 − T1)V + T1N1. Here

ev1 is the variance of mode E
′
1, and the conditional variance

on Alice’s encodings is given by e0 = (1 − T1) + T1N1. I
and σz are Pauli matrices. The symplectic eigenvalues of this
covariance matrix are given by

λ1,2 =
√

	 ∓ √
	2 − 4D

2
, (13)

where 	 = e2
v1 + N2

1 − 2ϕ2
1 and D = (ev1N1 − ϕ2

1)2. Hence,
the von Neumann entropy of Eve’s state is given by

S(EA) = G

(
λ1 − 1

2

)
+ G

(
λ2 − 1

2

)
, (14)

where G(x) = (x + 1) log2(x + 1) − x log2 x. S(EA|A) can
be obtained by the conditional covariance matrix γEA|A =
γEA

(1,1), and its symplectic eigenvalues are given by

λ3,4 =
√

A ∓ √
A2 − 4B

2
, (15)

where A = e2
0 + N2

1 − 2ϕ2
1 ,B = (e0N1 − ϕ2

1)2. Thus the con-
ditional entropy is

S(EA|A) = G

(
λ3 − 1

2

)
+ G

(
λ4 − 1

2

)
. (16)

With Eqs. (10) and (11), we can bound Eve’s information
for DR and then compute the secret key rate KDR in Eq. (7).
We plot it in Fig. 3 for a symmetric channel case where T1 = T2

and excess noises in each channel are also identical.
From Fig. 3, we can see that this protocol is very sensitive to

channel loss and excess noise in DR for the symmetric channel
case, and transmission distances are limited to 15 km (3-dB
limit), the same as for the one-way CVQKD protocol with
DR, or shorter due to the fact that Bob’s data contain some
modulation vacuum noise, which is detrimental to him, and
Charlie’s BSM discloses some information to Eve.

B. Reverse reconciliation

In RR, the secret key rate can be written as

KRR = βIAB
′ − IB

′
E3

− χB
′
E, (17)

where IAB
′ is also given by Eq. (3), IB

′
E3

describes the
information disclosed by Charlie, and χB

′
E quantifies Eve’s

Holevo information about Bob’s recast data (Q̂B
′ or P̂B

′ )
by entangling cloner attack. The latter two quantities are
calculated as follows.

The information IB
′
E3

about Bob’s recast data Q̂B
′ and P̂B

′

disclosed by Charlie’s BSM can be written as

IB
′
E3

= log2
VE3

VE3|B ′
, (18)
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FIG. 3. (Color online) Secret key rates vs transmission distances
between Alice, Charlie, and Bob for DR with symmetric channels.
From top to bottom, excess noise is selected as 0, 0.005, 0.01, and
0.015, which are typical values in experiments [35]. Alice and Bob’s
modulation variance is set to be optimal, and the reconciliation
efficiency is 0.95, which is an appropriate value (see [26]). Here,
fiber loss is 0.2 dB/km.

where there is no factor of 1
2 , as the previous section

mentioned. To compute the variance of mode E3 ∈ {Q,P } and
the conditional variance VE3|B ′ , we recast the measurement
quadrature Q̂ (P̂ ) in Eqs. (1) as Q̂ = Q̂B

′ − √
T2QB (P̂ =

P̂B
′ + √

T2PB), so these variances can be given, respectively,
by

VE3 = 〈(Q̂)2〉 = 〈(P̂ )2〉
= T1V + (1 − T1)N1 + T2V + (1 − T2)N2, (19)

VE3|B ′ = T2VS = T2(V − 1). (20)

Then, using the above equations, Eq. (18) can be obtained.
The Holevo information χB

′
E can be obtained by

χB
′
E = S(E) − S(E|B ′

), (21)

where E denotes Eve’s modes E
′
1,E

′′
1,E

′
2,E

′′
2. S(E) can be

computed with the symplectic eigenvalues of the covariance
matrix,

γE =

⎛
⎜⎜⎜⎝

ev1I ϕ1σz 0 0

ϕ1σz N1I 0 0

0 0 ev2I ϕ2σz

0 0 ϕ2σz N2I

⎞
⎟⎟⎟⎠

8×8

, (22)

where ev2 = (1 − T2)V + T2N2 and ϕ2 =
√

T2(N2
2 − 1). This

covariance matrix can be written as γEA

⊕
γEB

, so S(E) =
S(EA) + S(EB), where S(EA) is given by Eq. (14) and
S(EB) is obtained by replacing T1 and N1 with T2 and
N2 in Eq. (14). Likewise, S(E|B ′

) can be calculated by
symplectic eigenvalues of the conditional covariance matrix
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γ
Q

B
′ ,P

B
′

E , which can be obtained by [31]

γ
Q

B
′ ,P

B
′

E = γE − σEB
′ (XγB

′ X)MP σT

EB
′ , (23)

where

σEB
′ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

〈Q̂E
′
1
Q̂B

′ 〉 0

0 〈P̂E
′
1
P̂B

′ 〉
〈Q̂E

′′
1
Q̂B

′ 〉 0

0 〈P̂E
′′
1
P̂B

′ 〉
〈Q̂E

′
2
Q̂B

′ 〉 0

0 〈P̂E
′
2
P̂B

′ 〉
〈Q̂E

′′
2
Q̂B

′ 〉 0

0 〈P̂E
′′
2
P̂B

′ 〉

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎝

ξ1I

φ1σz

−ξ2σz

−φ2I

⎞
⎟⎟⎟⎠, (24)

with

ξ1 =
√

T1(1 − T1)(N1 − V ), φ1 =
√

(1 − T1)
(
N2

1 − 1
)
, ξ2 =

√
T2(1 − T2)(N2 − 1), φ2 =

√
(1 − T2)

(
N2

2 − 1
)
, (25)

and γB
′ = (bv 0

0 bv ), X = (1 0
0 1). MP stands for the Moore-Penrose inverse of a matrix. For a straightforward calculation, the

conditional covariance matrix can be recast as

γ
Q

B
′ ,P

B
′

E =

⎛
⎜⎜⎜⎜⎜⎝

(ev1 − ξ 2
1

bv
)I (ϕ1 − ξ1φ1

bv
)σz

ξ1ξ2

bv
σz

ξ1φ2

bv
I

(ϕ1 − ξ1φ1

bv
)σz (N1 − φ2

1
bv

)I ξ2φ1

bv
I φ1φ2

bv
σz

ξ1ξ2

bv
σz

ξ2φ1

bv
I (ev2 − ξ 2

2
bv

)I (ϕ2 − ξ2φ2

bv
)σz

ξ1φ2

bv
I φ1φ2

bv
σz (ϕ2 − ξ2φ2

bv
)σz (N2 − φ2

2
bv

)I

⎞
⎟⎟⎟⎟⎟⎠. (26)

Calculating the symplectic eigenvalues of a four-mode co-
variance matrix is very challenging, and the standard method
is as follows [31,36]: first, we denote the four symplectic
eigenvalues as ν1, ν2, ν3, and ν4, which satisfy

	4
1 = ν2

1 + ν2
2 + ν2

3 + ν2
4 ,

	4
2 = ν2

1ν
2
2 + ν2

1ν2
3 + ν2

1ν2
4 + ν2

2ν2
3 + ν2

2ν
2
4 + ν2

3ν2
4 ,

	4
3 = ν2

1ν
2
2ν2

3 + ν2
1ν2

2ν
2
4 + ν2

1ν
2
3ν2

4 + ν2
2ν2

3ν
2
4 ,

	4
4 = ν2

1ν
2
2ν2

3ν2
4 , (27)

where 	4
j (j = 1,2,3,4) is the 2j th-order principal minor of

γ
Q

B
′ ,P

B
′

E , which is defined as the sum of the determinants of
all the 2j × 2j submatrices of the n × n covariance matrix
obtained by deleting n − 2j rows and the corresponding
n − 2j columns [36]. Second, after calculating the principal
minors of the conditional covariance matrix, we can solve
Eqs. (27) to get the symplectic eigenvalues of the four-mode
conditional covariance matrix. However, it is very difficult. But
we can compute S(E|B ′

) asymptotically. Note that G( ν−1
2 ) →

log2
eν
2 + O(ν−1) for ν 	 1 [28]. This means that for a

large variance V of Alice’s and Bob’s modulated modes and
T 
= 0,1, we can use the above formula to compute the Holevo
information. For a large modulation variance, the asymptotic

eigenvalues of γ
Q

B
′ ,P

B
′

E can be given by

ν1 = N1,ν2 = N2,ν
2
3ν2

4 = 	4
4

ν2
1ν2

2

. (28)

Then, S(E|B ′
) can be obtained by

S(E|B ′
) = G

(
N1 − 1

2

)
+ G

(
N2 − 1

2

)
+ log2

e2ν3ν4

4
.

(29)

Then, the Holevo information χB
′
E in Eq. (21) can be attained

with above equations.
Hence, we can obtain the secret key rate in RR in Eq. (17) by

substituting Eqs. (3), (18), and (21) into it. We plot the secure
key rate KRR as a function of transmission distances between
Alice, Charlie, and Bob in Fig. 4 for the symmetric channel
case. The performance in RR is higher than that in DR, which
is analogous to the case of conventional one-way CVQKD,
but in conventional one-way CVQKD the RR protocol has no
loss limit when the channel excess noise is zero. Since the
vacuum noise of Bob’s mode reduces the mutual information
between Alice and Bob and Charlie’s BSM discloses some
information, the transmission distances are also very limited,
with typical experimental parameters used in current CVQKD
implementations [35], except for the modulation variance of
Alice and Bob, which is set to be optimal. Note that the
calculation of the Holevo information χB

′
E in Eq. (21) is

for the case of large modulation variance of Alice and Bob.
However, in Appendix B, we show that even for infinitely
strong modulation and perfect reconciliation efficiency the
transmission distances are still short, and also the improvement
is limited.
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FIG. 4. (Color online) Secret key rates vs transmission distances
between Alice, Charlie, and Bob for RR with symmetric channels.
From top to bottom, excess noise is selected as 0, 0.005, 0.01, and
0.015. Alice and Bob’s modulation variance is also set to be optimal.
Fiber loss is 0.2 dB/km, and the reconciliation efficiency is 0.95.

IV. DISCUSSION

As shown in the previous sections, we set Bob to recast
his data by subtracting his encodings from Charlie’s BSM
results; however, if Alice recasts her data as Bob does and
Bob keeps his encodings, the same results as above will
be obtained. Although the performance is not very good
for symmetric channels, we show that this protocol will
exhibit high performance for asymmetric channels (T1 
= T2),
as shown in Fig. 5.
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FIG. 5. (Color online) Secret key rates vs transmission distances
between Alice, Charlie, and Bob for (a) RR and (b) DR in the
asymmetric channel case with the optimal modulation variance.
Excess noises are selected as 0 (solid lines), 0.005 (dashed lines),
and 0.01 (dotted lines) for both channels referred to their respective
channel transmissions T1 and T2. Both BSM relays are close to Alice’s
station, and the distance is set to be 10 m. Fiber loss is 0.2 dB/km,
and the reconciliation efficiency is 0.95.

In Fig. 5, we set Charlie’s BSM relay close to Alice’s station,
for example, 10 m, and find that both DR and RR have excellent
performances over long distances between Alice, Charlie, and
Bob with experimental realistic conditions. Moreover, if we
set Charlie’s BSM relay close to Bob’s station, the cases are
a little more complicated due to the respective channel excess
noises. However, in this setting, this protocol is very close to
the conventional one-way CVQKD protocol except Charlie’s
BSM discloses part of the information to Eve. Therefore, in
this sense, for this protocol DR has 3-dB limit, and RR has
no loss limit if there is no channel excess noise and T2 → 1.
We do not show these results in the figure. Of course, we can
reverse the above cases in Fig. 5 to get high performance with
Charlie’s BSM relay close to Bob’s station just by having Alice
recast her data if channels have excess noise.

Finally, we point out that the imperfections of Charlie’s
homodyne detections, such as detection efficiency and elec-
tronic noise, can be included in the channel transmission and
excess noise, respectively; thus we cannot necessarily consider
the imperfections of Charlie’s detections when computing the
secure key rates. However, these imperfections will reduce
the performance of this protocol rapidly if the BHD has low
detection efficiency and high electronic noise. Hence using
highly efficient BHDs in BSM is necessary to improve the
performance of this continuous-variable MDI-QKD.

V. CONCLUSION

In conclusion, we proposed a scheme to realize the idea
of MDI-QKD, with a source of Gaussian-modulated coherent
states. We showed that this protocol has higher performance
in RR against a one-mode optimal attack than DR for the
symmetric channel case, but both are limited to short distances;
however, for asymmetric channels both have excellent perfor-
mances and can be extended to current distances realized by the
conventional one-way CVQKD. Moreover, the protocol almost
exploits each pulse to generate keys and thus has high key rates
compared to the discrete-variable MDI-QKD. Actually, this
protocol has no basis choice or comparison, and each pulse
except the ones used for parameter estimation contributes to
the establishment of secure keys. In addition, the source can be
easily generated with coherent light, and the whole protocol
can be implemented experimentally with current technology,
although the LO interference will be a little complicated. We
hope to seek other methods to solve the problem of pulse
synchronization and the reference frame calibration in future
research.

Note added. We noted that the same protocol was also
simultaneously proposed independently by other two groups
(see [37,38]). In Ref. [37], the protocol is analyzed with the
noise-correlated non-Markovian memory channels, but against
two-mode attack, which is demonstrated to be the optimal
attack. While, Ref. [38] gives security bounds only in RR
using Gaussian purification methods and also against one-
mode attack.
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APPENDIX A: DEFINING THE REFERENCE FRAME

In this Appendix, we discuss how to synchronize the pulses
and define the reference frame between Alice, Bob, and Charlie
by the manipulation of LO. The basic idea is that, if we can
measure the phase difference of two LO beams sent by Alice
and Bob, respectively, we can add this phase difference in one
party’s modulation of his or her signal beam, and thus the two
signal modulations of Alice and Bob are implemented in the
same reference frame. Since LO is a strong classical beam, we
can combine two LO beams in a balanced beam splitter so that
they interfere with each other; then we can measure one port’s
interference output to get the phase difference of the two LO
beams. The schematic setup is shown in Fig. 6.

In this protocol, we have Alice send the LO beam to
Charlie, who then splits it into two beams with a balanced
beam splitter for his two balanced homodyne detectors and
uses them to measure the quadratures Q̂ and P̂ . First, Alice
splits her LO beam into two beams, one sent to Charlie and
the other to Bob. Then, Bob splits the received LO beam from
Alice and his own LO beam into two beams, respectively, and
combines them with BS1 and BS2 so they interfere with each
other, as shown in Fig. 6. Then, we use each photodetector
on one port of both BS1 and BS2 to detect the intensity of
interfered beams. Note that, we add a π/2 phase on Bob’s
one split LO beam in order to accurately measure the phase
difference. We denote the amplitude of Alice’s LO beam that
interferes with Bob’s as αeiθA and denote Bob’s LO beam as
αeiθB , provided that both of them have identical intensities.
Relative to the LO beams, Alice’s and Bob’s classical signal
beams are phase modulated into αA

S ei(θA+φA) and αB
S ei(θB+φB ),

respectively, before attenuating the quantum level. αA
S and αB

S

are their respective signal beam intensities, and φA, φB are
modulated phases. Then, when two LO beams interfere with

FIG. 6. (Color online) Schematic setup for measuring phase dif-
ference between two classical LO beams. PD: photodetector; BS1,
BS2: beam splitters; all beam splitters in the figure are balanced, or
50:50.

BS1, the amplitude of one port can be written as

β1 = αeiθA + αeiθB

√
2

=
√

2αe
i(θA+θB )

2 cos

(
θA − θB

2

)
. (A1)

The PD output of BS1 is obtained by

|β1|2 = 2|α|2 cos2

(
θA − θB

2

)
= |α|2[1 + cos(θA − θB)].

(A2)

Likewise, the PD output of BS2 can be attained as

|β2|2 = |α|2{1 + cos[θA − (θB + π/2)]}
= |α|2[1 + sin(θA − θB)]. (A3)

With Eqs. (A2) and (A3), we can accurately compute the
phase difference 	θ := θA − θB of Alice’s and Bob’s LO
beams. When Bob modulates his signal beam, he adds the
phase difference 	θ and the initial phase φB together as the
modulated phase. Thus the amplitude of Bob’s signal beam
can be written as αB

S ei(θB+φB+	θ) = αB
S ei(θA+φB ), which has

been defined in the same reference frame as Alice’s.
However, realizing the above strategy experimentally may

be complicated, and we just give a simple theoretical method
and demonstrate the possibility of implementing this whole
protocol of continuous-variable MDI-QKD. Other strategies to
solve the problem of pulse synchronization and the reference
frame calibration might exist. We note that in Refs. [39–41],
homodyne detectors and LO beams are not needed to make
the BSM in continuous-variable entanglement swapping;
however, we are not sure whether their method of BSM is
suitable for this protocol. Finally, we point out that, to relieve
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FIG. 7. (Color online) Asymptotic key rates vs transmission dis-
tances between Alice, Charlie, and Bob for RR in the symmetric
channel case with infinitely large modulation variance and perfect
reconciliation efficiency, i.e., V → ∞ and β = 1. From top to
bottom, excess noise is selected as 0, 0.005, 0.01, and 0.015. Fiber
loss is 0.2 dB/km.
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the emitters’ burden and preserve the symmetry of Alice and
Bob, this procedure of synchronization and the reference frame
calibration can be implemented by Charlie without affecting
the security of this protocol. That means Alice and Bob both
send their LO beams to Charlie, who measures the phase
difference of the two beams and then adds it to the signal
beam of either Alice or Bob by modulation.

APPENDIX B: ASYMPTOTIC KEY RATE FOR RR WITH
INFINITELY STRONG MODULATION

In Sec. III B, we obtained the Holevo information χB
′
E in

Eq. (21) for RR for the case of large modulation variance
of Alice and Bob. Using appropriate experimental parameters,
e.g., a finite reconciliation efficiency β = 0.95, and optimizing
the modulation variance, we show that the transmission
distances in the symmetric channel case for RR are also
limited like in DR due to the vacuum noise of Bob’s mode,
which is different from the conventional one-way CVQKD,
as mentioned before. However, in this Appendix, we point

out that even for infinitely strong modulation and perfect
reconciliation efficiency, the transmission distances are still
limited, as shown in Fig. 7.

Figure 7 depicts the asymptotic key rate with infinitely large
modulation variance for RR in the symmetric channel case,
and we can see that the improvement in the achievable key
rate is limited with respect to the modulation variance of Alice
and Bob. In addition, we can easily check that the maximum
transmission distance in the asymptotic case is extended by
only about 2 km compared to the one in the case with V = 40
and β = 1. This means that the asymptotic calculation of the
eigenvalues and Holevo information χB

′
E in Eqs. (28) and (21),

respectively, is also applicable to the case of experimental
realization with an appropriately large modulation variance.
Finally, we point out that the asymptotic key rates for other
cases in DR and RR with symmetric or asymmetric channels
can also be easily obtained using the above method, i.e., by
setting V → ∞ and β = 1 in the calculation for the key
rates. For the purpose of experimental realization, i.e., using
experimentally realistic parameters, we do not give their results
here.
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