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Breakdown of surface-code error correction due to coupling to a bosonic bath
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We consider a surface code suffering decoherence due to coupling to a bath of bosonic modes at finite
temperature and study the time available before the unavoidable breakdown of error correction occurs as a
function of coupling and bath parameters. We derive an exact expression for the error rate on each individual
qubit of the code, taking spatial and temporal correlations between the errors into account. We investigate
numerically how different kinds of spatial correlations between errors in the surface code affect its threshold
error rate. This allows us to derive the maximal duration of each quantum error-correction period by studying
when the single-qubit error rate reaches the corresponding threshold. At the time when error correction breaks
down, the error rate in the code can be dominated by the direct coupling of each qubit to the bath, by mediated
subluminal interactions, or by mediated superluminal interactions. For a two-dimensional Ohmic bath, the time
available per quantum error-correction period vanishes in the thermodynamic limit of a large code size L due
to induced superluminal interactions, although it does so only like 1/

√
ln L. For all other bath types considered,

this time remains finite as L → ∞.
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I. INTRODUCTION

Due to its high error threshold and since it requires only
nearest-neighbor gates to be performed, the surface code [1,2]
is the most promising platform for scalable, fault-tolerant,
and universal quantum computation [3]. In order to test its
resilience and benchmark the performance of classical algo-
rithms for quantum error correction (QEC), the surface code
is often studied with simplistic stochastic error models, where
an error is an unphysical event that happens instantaneously
at a specified point in space-time. Furthermore, it is usually
assumed that these errors are not spatially correlated (see,
e.g., Refs. [4–10]). It is thus of importance to study to what
degree these assumptions are satisfied for realistic models of
a physical environment, and in case they are not, what the
resilience of the surface code against the resulting effective
error model is.

In this work, we will consider a surface code coupled to a
thermal bath of freely propagating modes. A pair of recent
articles [11,12] studied the fidelity of the surface code in
this setup (at zero temperature). They showed that, under the
assumption of a trivial error syndrome (all stabilizer operators
of the code still yield a +1 eigenvalue), there is a sharp
transition between maximal and minimal surface-code fidelity
as the coupling strength to the bath is increased. This transition
provides an upper bound to the resilience of the surface code
since a logical error with a trivial error syndrome certainly can
not be corrected.

By contrast, our goal here is to find the actual time
when QEC in the surface code breaks down as a function
of coupling and bath parameters. This is the time at which
an error-correction algorithm is no longer able to pair the
surface-code defects in a way that leads to a trivial operation
performed on the code subspace.

In order to find these times, we follow a three-step strategy.
First, calculate the error rate on each individual qubit as a
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function of time and physical parameters. There are three
different physical mechanisms contributing to this error rate:
the direct interaction of each qubit with the bath, subluminal
interactions mediated by the bath, as well as superluminal ones.
Second, study numerically how spatial correlations between
such errors affect the threshold error rate of the surface code.
Third, solve for the times for which the single-qubit error rate
reaches the modified threshold error rates.

When deriving actual threshold estimates, Refs. [11,12]
resort to the case of nearest-neighbor correlations only.
However, we show that both subluminal and superluminal
mediated long-range interactions can actually be the dominant
error mechanism at the time for which the error rate reaches
critical values.

II. PROBLEM AND OVERVIEW

We consider a surface code, each qubit of which is coupled
to a bosonic bath at thermal equilibrium. In accordance with
Refs. [11,12], we only consider bit-flip errors here (σx) and
make the simplifying assumption that the bath is in thermal
equilibrium at the beginning of each QEC cycle, i.e., that
bath correlations between different QEC cycles are negligible.
Physically, this can be thought of as the bath thermalizing
with an even larger bath during one QEC period. However, we
generalize the discussion in Refs. [11,12] to the case of finite
temperature.

Sums and products with a tilde on top run over all surface-
code qubit indices i, while sums without a tilde are over bath
modes k. Let H = H0 + V with

H0 = Hbos =
∑

k

ωka
†
kak (1)

and

V =
∑̃

i

σ x
i ⊗ λ√

N

∑
k

|k|r (eik·Ri ak + e−ik·Ri a
†
k), (2)
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where a
†
k (ak) are the standard creation (annihilation) operators

obeying bosonic commutation relations. Here, Ri is the
spatial location of qubit i and N = ∑

k 1 is the number
of bosonic modes of the bath. Physically interesting are
the cases r = 0, ± 1

2 [12]. We consider a linear dispersion
of the bath modes ωk = v|k|, as is accurate for acoustic
phonons, spin waves in an antiferromagnet, or electro-
magnetic waves. Here, v is the corresponding velocity of
the modes.

Let the initial qubit density matrix be given by ρq

and the thermal state of the bath by ρB ∝ exp(−βHbos),
where T = 1/β is the bath temperature. The surface code
requires a set of commuting many-qubit Pauli operators,
called stabilizer operators, to yield a +1 eigenvalue. All of
these operators are measured at the end of each QEC cycle.
Stabilizer measurements can be performed either by applying
entangling gates between code and auxiliary qubits [1,3] or by
direct measurement of the corresponding many-qubit parity
operators [13,14]. Eigenvalues −1 signal that an error has
occurred and are interpreted as the presence of an anyon.
Quantum information is stored in the subspace for which all
stabilizers yield a +1 eigenvalue. Correspondingly, the state
ρq is restricted to this subspace, i.e., ρq is an anyon-free state.
QEC is successful if the anyons are paired in a way which is
homologically equivalent to the way they have been created.

Finding such a pairing is the task of a classical error-
correction algorithm [4–10], one of which we will encounter
in Sec. VI. For more details about the surface code, see
Ref. [3].

The decoherent evolution of the qubits is given by

ρq �→ �d (ρq) = trB{e−iH t (ρq ⊗ ρB)e+iH t }. (3)

At the end of each QEC cycle, after some time t , we perform
a measurement of all surface-code stabilizer operators, which
is described by the quantum channel

�m(σ ) =
∑

a

PaσPa. (4)

Here, Pa projects onto the space with anyon configuration a

and the sum runs over all possible anyon configurations a.
Finally, we study the state ρi(t) = trī ◦�m ◦ �d (ρq) of

one particular qubit. Here, trī denotes a partial trace over all
qubits except qubit i. Since ρq is an anyon-free state and
the stabilizer measurement projects the density matrix of the
qubits to the spaces with well-defined anyon numbers, ρi(t)
has no contributions of terms σx

i ρi or ρiσ
x
i (here, ρi = trī ρq).

We can thus write ρi(t) = [1 − px(t)]ρi + px(t)σx
i ρiσ

x
i :

ρq
decoherence−−−−−−−−→

�d

syndrome
measurement−−−−−−−−−→

�m

restrict to
ith qubit−−−−−−−−−→

trī

ρi(t) = trī ◦�m ◦ �d (ρq)
= [1 − px(t)]ρi + px(t)σx

i ρiσ
x
i .

Our first goal is to calculate px(t) as a function of the time
t , the parameters in H , and the bath temperature T = 1/β,
which is what we carry out in Sec. III. Using the results from
Sec. III, we calculate in Sec. IV the exact evolution of the
density matrix of two qubits coupled to the bath and discuss
the use of this bath coupling as an entangling gate.

Second, we discuss what implications such an error rate
has for surface-code error correction. Error correction will
inevitably break down once the error rate px on each qubit
surpasses a certain critical value pc. This critical value depends
on the spatial correlations between errors in the code, on the
classical algorithm that is employed in order to find a pairing of
the anyons, and on the probability pm with which a syndrome
measurement fails. In the symmetric case of px = pm and
for uncorrelated errors, efficient error-correction algorithms
are able to perform successful error correction up to a critical
value of 1.9%–2.9% [10,15]. In a more involved, circuit-based
modeling of syndrome extraction, critical error rates are around
1% [2,5,6].

The higher pm, the lower the probability of error
px for which successful correction is possible. Following
Refs. [11,12], we consider in the following the perfect
measurement case pm = 0 for definiteness and simplicity.
Generalization to the more realistic case of pm > 0 is straight-
forward; it merely corresponds to replacing pc (or p̃c, see
below) by a lower value.

If the errors on different qubits are independent from each
other and stabilizer measurements are flawless (pm = 0), error

correction inevitably breaks down if px(t) > pc = 10.9% [1].
For px(t) < pc, the probability of an error is exponentially
small in L, the linear size of the code, if quantum error
correction is performed optimally. The problem of performing
error correction in the surface code with perfect syndrome
measurements can be mapped to the classical Ising model
with erroneous qubits corresponding to antiferromagnetic
bonds. The critical value pc corresponds to an order-disorder
transition in this model [1].

For uncorrelated errors, the maximal duration τ of one QEC
cycle can thus be obtained by simply inverting px(τ ) = pc,
which we exemplify for an Ohmic bath in Sec. V. Alternative
bath types are discussed in Appendix A. When the errors
on different qubits are not independent, the breakdown of
error correction will in general occur at a single-qubit error
probability p̃c different from pc. If the correlations between the
errors on different qubits are ignored, p̃c may be lower than pc.
On the other hand, taking knowledge about such correlations
properly into account can even increase p̃c beyond pc. We
present an efficient algorithm that is capable of doing this
for a specific kind of correlations in Appendix B. However,
we do not know the value of p̃c for the kind of correlations
between errors that arise from coupling to the bosonic bath.
Still, solving px(τ ) = p̃c for τ will provide us with the correct
scaling of τ as a function of physical parameters like the bath
temperature.

Furthermore, in Sec. VI we numerically find values for p̃c

for different kinds of spatial correlations between errors and
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provide heuristic evidence that the value of p̃c for the errors
arising due to the bath coupling does not differ drastically
from pc. We also show that for correlated two-qubit errors
the surface code can, due to being a degenerate code, be used
to perform error correction in regimes where the entropy in
the noise exceeds the information obtained from stabilizer
measurements, which is in contrast to the uncorrelated case.

The resulting maximal QEC cycle times τ for the more
general case of correlated errors are derived in Sec. VII.
The obtained expressions for τ for a variety of different
parameter regimes are summarized in Sec. VII A. We conclude
in Sec. VIII.

III. SINGLE-QUBIT ERROR RATE px(t)

In this section, we calculate exactly the joint unitary
dynamics of the qubits in the surface code and the modes
in the bosonic bath. From this, we derive the probability of
an error on each qubit px(t) as a function of time, taking into
account all correlations with errors affecting other qubits.

We have

�d (ρq) = trB{e−iH t (ρq ⊗ ρB)e+iH t }
= trB{eiH0t e−iH t (ρq ⊗ ρB)e+iH t e−iH0t }
= trB{U (t)(ρq ⊗ ρB)U (t)†}, (5)

where U (t) = eiH0t e−iH t = T e−i
∫ t

0 dt ′ V (t ′) denotes the evolu-
tion operator in the interaction picture. It follows directly from
the Magnus expansion (cf. Ref. [12], Appendix A) and the fact
that [V (t1),[V (t2),V (t3)]] = 0 that

U (t)

= exp

{
−i

∫ t

0
dt1 V (t1) − 1

2

∫ t

0
dt1

∫ t1

0
dt2 [V (t1),V (t2)]

}

=: exp

{∑̃
i

σ x
i ⊗ Xi(t)

}
exp

⎧⎨
⎩− i

2

∑̃
ij

Jij (t)σx
i ⊗ σx

j

⎫⎬
⎭ .

(6)

We have defined

Xi(t) = λ√
N

∑
k

|k|r
ωk

(eik·Ri (e−iωkt − 1)ak

− e−ik·Ri (eiωkt − 1)a†
k) (7)

and

Jij (t) = −i
λ2

N

∑
k

|k|2r

∫ t

0
dt1

∫ t1

0
dt2

×{eik·(Ri−Rj )e−iωk(t1−t2) − c.c.}

= 2λ2
∫

dk
|k|2r

ω2
k

cos[k · (Ri − Rj )][sin(ωkt) − ωkt].

(8)

In Appendix A1, we provide the functions Jij (t) for different
bath types (i.e., different combinations of spatial dimension
D = 2,3, and bath coupling r = 0,± 1

2 ).

It is straightforward to show that [Xi(t),Xj (t)] = 0 and thus
we can also write

U (t) =
∏̃

i

exp
{
σx

i ⊗ Xi(t)
} ∏̃

{i,j}
exp

{−iJij (t)σx
i ⊗ σx

j

}

=
∏̃

i

{
cosh[Xi(t)] + σx

i ⊗ sinh[Xi(t)]
} ∏̃

{i,j}

× {
cos[Jij (t)] − i sin[Jij (t)]σx

i ⊗ σx
i

}
. (9)

The product
∏̃

{i,j} is over all pairs {i,j}, i.e., without double
counting.

We will refer to the first factor in Eqs. (6) and (9) as the
decoherent part of the evolution, and to the second part as
the coherent part. Note that only the decoherent part of the
evolution will lead to a dependence of the evolution of the
code on the state of the bath (in particular its temperature).
The coherent part is, in principle, reversible and does not lead
to a transfer of quantum information from the code qubits into
the bath.

Inserting Eq. (9) into (5) and expanding the products can
only be done if the number of qubits coupled to the bath is
small. In Sec. IV, we consider the case of two qubits coupled to
the same bath and calculate the exact evolution of the two-qubit
density matrix. However, if the number of qubits coupled to
the bath is large, we need to follow a different route. Note
that we are only interested in whether a net error (i.e., an odd
number of σx errors) occurs on qubit i after application of
�d and �m. This probability can be found with an inductive
argument over Nq , the number of qubits in the code.

Since ρq is a state with no anyons, the syndrome measure-
ment �m eliminates all terms in �d (ρq) that apply a different
tensor product of Pauli errors “to the left” and “to the right” of
ρq . Formally, let 	 label the 2Nq possible configurations of σx

errors on the code and let ξ	 denote the 	th error configuration.
Then,

�m

(
ξ	1ρqξ

†
	2

) = δ	1	2ξ	1ρqξ
†
	1

. (10)

Let us call terms which have the same tensor products of
Pauli operators on the left and on the right and hence survive
application of �m “valid” terms.

Consider first the case Nq = 1. Then, we simply have

�d (ρq) = 〈cosh2[Xi(t)]〉ρq − 〈sinh2[Xi(t)]〉σxρqσ
x. (11)

(Note that Xi(t) is anti-Hermitian, so {sinh[Xi(t)]}† =
− sinh[Xi(t)].) We have introduced the notation 〈O〉 =
trB{OρB}. Let us thus define the single-qubit decoherence rate
by pd (t) = −〈sinh2[Xi(t)]〉.

Let px(t) denote the error probability on qubit 1. In the case
of the surface code, this is then up to boundary effects the error
probability on all other qubits as well. The error probability
px(t) is the total probabilistic weight of all valid terms that
apply an odd number of errors to qubit 1. Let px(t)Nq

denote
the probability of an error on qubit 1 if there is a total number
of Nq qubits in the code. Clearly, we have px(t)1 = pd (t).
When increasing Nq �→ Nq + 1, the parity of errors on qubit
1 is only changed if a pair of errors is applied to qubit 1 and
qubit Nq + 1. The weight of this happening is sin2[J1,Nq+1(t)],

042334-3



ADRIAN HUTTER AND DANIEL LOSS PHYSICAL REVIEW A 89, 042334 (2014)

while the weight of it not happening is cos2[J1,Nq+1(t)]. This leads to the recursive formula

px(t)Nq+1 = cos2
[
J1,Nq+1(t)

]
px(t)Nq

+ sin2
[
J1,Nq+1(t)

][
1 − px(t)Nq

]
. (12)

Let sums and products with a prime run over all qubits except qubit 1, i.e., from 2 to Nq . The solution is then evidently given by

px(t)Nq
=
∏

i

′
cos2[J1i(t)]

⎧⎪⎪⎪⎨
⎪⎪⎪⎩pd (t)

∑
mi ∈ {0,1}∑′

i mi ≡ 0 (mod 2)

∏
i

′ {tan2[J1i(t)]}mi + [1 − pd (t)]
∑

mi ∈ {0,1}∑′
i mi ≡ 1 (mod 2)

∏
i

′ {tan2[J1i(t)]}mi

⎫⎪⎪⎪⎬
⎪⎪⎪⎭ .

(13)

IV. EVOLUTION OF A TWO-QUBIT DENSITY MATRIX COUPLED TO THE BATH

Consider two qubits i and j at locations Ri and Rj , respectively, that are coupled to a bosonic bath. We assume them to be
uncorrelated with the bath at t = 0, ρ(0) = ρij ⊗ ρB . The evolution of the two-qubit density matrix can be found using Eqs. (5)
and (9). We keep the technicalities in Appendix C and present here the final result for the state of the two-qubit density matrix
after some time t . We have

ρij (t) = (
1
4 {1 + e−4�(t) cosh[4Cij (t)]} + 1

2e−2�(t) cos[2Jij (t)]
)
ρij

+ (
1
4 {1 − e−4�(t) cosh[4Cij (t)]})(σx

i ρijσ
x
i + σx

j ρijσ
x
j

)
+ (

1
4 {1 + e−4�(t) cosh[4Cij (t)]} − 1

2e−2�(t) cos[2Jij (t)]
)
σx

i σ x
j ρijσ

x
i σ x

j

+ (− i
2e−2�(t) sin[2Jij (t)]

)(
σx

i σ x
j ρij − ρijσ

x
i σ x

j

)
+ (

1
4e−4�(t) sinh[4Cij (t)]

)(
σx

i σ x
j ρij + ρijσ

x
i σ x

j − σx
i ρij σ

x
j − σx

j ρijσ
x
i

)
. (14)

Here, Jij (t) is as defined in Eq. (8) and

Cij (t) = 〈Xi(t)Xj (t)〉 = −λ2

N

∑
k

|k|2r cos[k · (Ri − Rj )] coth(βωk/2)
sin2(ωkt/2)

(ωk/2)2
. (15)

Furthermore, we introduced the non-negative function

�(t) = −Cii(t) � 0. (16)

It characterizes the decoherence of each individual qubit due
to its coupling to the bath and will be discussed in more detail
in the next section.

Unlike the functions Jij (t), the functions Cij (t) depend on
temperature. For i �= j , they are in general hard to evaluate
at finite temperature. At zero temperature, they have been
calculated for two-dimensional (2D) baths in Ref. [12]. In
the rest of this work, we will follow Ref. [11] and focus on a
bath with r = 0, D = 2, corresponding to an Ohmic bath. For
this case, the correlator Cij (t) evaluates at zero temperature to

Cij (t) = − λ2

πv2
θ (vt − R)arccosh(vt/R). (17)

As it turns out, however, the single-qubit error rate px(t)
depends only on the functions �(t) and Jij (t), but not on Cij (t)
for i �= j . For example, one easily verifies that the partial trace
ρi(t) of Eq. (14) is independent of Cij (t) and, using Eq. (21)
below, that the probability for a σx error agrees with Eq. (13)
for Nq = 2. This allows us in the following sections to evaluate
px(t) without knowing the functions Cij (t) for i �= j .

A. Bath coupling as an entangling gate

Recently, the idea of performing entangling gates between
two qubits by coupling them to an ordered ferromagnet (which
can be seen as a “magnon bath”) and exploiting the mediated
interaction has been studied in Ref. [16]. The availability of
entangling gates between nearest-neighbor qubits is crucial for
the circuit-based implementation of the surface code [1,3,5].
Using the above result, it is straightforward to evaluate the
fidelity of such a gate. For concreteness, let us study the fidelity
of maximally entangled two-qubit states (ebits) obtained using
such a gate.

Consider the initial state ρij = |0〉〈0|i ⊗ |0〉〈0|j and the
maximally entangled states |ψ±〉 = 1√

2
(|0〉i |0〉j ± i|1〉i |1〉j ).

Then,

〈ψ±|ρij (t)|ψ±〉 = 1
4 {1 + e−4�(t) cosh[4Cij (t)]}
∓ 1

2e−2�(t) sin[2Jij (t)]. (18)

At times for which Jij (t) is an odd multiple of π/4, we obtain
ebits with fidelity 1

4 {1 + e−4�(t) cosh[4Cij (t)]} + 1
2e−2�(t). For

nearby qubits, Cij (t) � −�(t), such that the fidelity simplifies
to 3

8 + 1
8e−8�(t) + 1

2e−2�(t). High-fidelity ebits can thus only
be obtained for times t such that �(t) � 1. The gate is only
useful if Jij (t) reaches π/4 in such times.

Note that the magnon bath considered in Ref. [16] has a
dispersion which is parabolic rather than linear, as assumed in

042334-4



BREAKDOWN OF SURFACE-CODE ERROR CORRECTION . . . PHYSICAL REVIEW A 89, 042334 (2014)

this work. For a 2D Ohmic bath (r = 0, D = 2), the function
Jij (t) can be calculated as described in Ref. [12, Appendix C]
and evaluates to

Jij (t) = λ2

2π2v2

(
θ (R − vt) arcsin(vt/R) + θ (vt − R)

π

2

)
,

(19)

where we have defined R := |Ri − Rj |. Note that Jij (t)
reaches a stationary value of λ2

4πv2 for times t such that vt >

|Ri − Rj |. Choosing λ = πv thus produces ebits with fidelity
�1 − 2�(t) for times such that vt > |Ri − Rj |. High-fidelity
ebits are obtained in the time interval for which vt > |Ri − Rj |
and �(t) � 1, if this interval exists.

Baths in 3D behave very differently in this respect: for all
values of r = 0,± 1

2 , Jij (t) grows linearly with t for t > R/v

in 3D (see Appendix A1). Similarly, Jij (t) grows linearly with
t for large enough t (see Sec. A1b). In these cases, ebits can be
obtained by maintaining the bath coupling for a certain amount
of time.

V. MAXIMAL QEC CYCLE TIME FOR
UNCORRELATED ERRORS

Let us now first consider the simple case where the noise
on the different qubits is uncorrelated, which is relevant if the
qubits are sufficiently far apart from each other such that each
qubit effectively couples to its “private bath.” Note that for the
noise to be uncorrelated, it is not enough to require that Jij (t)
vanish for all i and j . The decoherent part of the evolution,
too, leads to correlations between the errors on different qubits,
which can be quantified by correlators 〈Xi(t)Xj (t) . . . Xm(t)〉.
Uncorrelated noise requires that both Jij (t) ≈ 0 and Cij (t) =
〈Xi(t)Xj (t)〉 ≈ 0 for all i �= j . In this case, we simply have
px(t) = pd (t) for each qubit.

Since Xi(t) is linear in the creation and annihilation
operators of the bath, we can apply Wick’s theorem to calculate
thermal expectation values of products of the operators Xi(t),
i.e.,

〈Xi(t)
2k〉 = (2k)!

2kk!
〈Xi(t)

2〉k, (20)

where (2k − 1) × (2k − 3) × · · · × 3 × 1 = (2k)!
2kk! is the num-

ber of possible contractions. We thus find

pd (t) := −〈sinh2[Xi(t)]〉

= −
∞∑

n,m=0

1

(2n + 1)!

1

(2m + 1)!
〈Xi(t)

2n+2m+2〉

= −
∞∑

n,m=0

1

(2n + 1)!

1

(2m + 1)!

(2n + 2m + 2)!

2n+m+1(n + m + 1)!
〈Xi(t)

2〉n+m+1

= −
∞∑

k=0

〈Xi(t)
2〉k+1 (2k + 2)!

2k+1(k + 1)!
×

k∑
n=0

1

(2n + 1)!

1

(2k − 2n + 1)!︸ ︷︷ ︸
22k+1/(2k+2)!

= 1

2
(1 − exp{2〈Xi(t)

2〉})

= 1

2
(1 − exp{−2�(t)}), (21)

where we have defined k = n + m and �(t) = −〈Xi(t)2〉 � 0 .
Different baths are characterized by their spectral density

function

J (ω) = λ2

N

∑
k

|k|2r δ(ω − ωk) = αωsω1−s
0 e−ω/ωc . (22)

Here, α is a dimensionless bath strength, ω0 is a characteristic
frequency of the bath, and ωc is a high-frequency cutoff. A
bath with s < 1 is called sub-Ohmic, one with s = 1 is called
Ohmic, and one with s > 1 is called super-Ohmic.

The function �(t) depends only on the spectral density
function of the bath and its temperature, namely, we have

�(t) =
∫ ∞

0
dω J (ω) coth(βω/2)

sin2 (ωt/2)

(ω/2)2
. (23)

We see that for s � 1, a finite ωc is necessary to ensure the
convergence of Eq. (23). With a linear dispersion, ωk = v|k|,
and a D-dimensional bath, we have s = D + 2r − 1.

For uncorrelated errors, surface-code error correction
breaks down if px(t) > pc = 10.9% [1]. Inverting Eq. (21),
we thus find the maximal time τ of one error correction cycle
from

�(τ ) = 1

2
ln

1

1 − 2pc

� 0.123. (24)

This solves the problem up to evaluation of the integral in
Eq. (23) and inversion of Eq. (24).

Following Ref. [11], we restrict in the main text to the
case D = 2 and r = 0, corresponding to an Ohmic bath. The
dimensionless bath strength parameter evaluates in this case to
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α = λ2

2πv2 . The functions �(t) for the remaining combinations
of D = 2,3 and r = 0,± 1

2 are presented in Appendix A2.
For the integral in Eq. (23), we find with s = 1 and βωc �

1, using coth(x) = 1 + 2
∑∞

n=1 e−2nx ,

�(t) =
∫ ∞

0
dω αωe−ω/ωc coth(βω/2)

sin2(ωt/2)

(ω/2)2

=
∫ ∞

0
dω αωe−ω/ωc

sin2(ωt/2)

(ω/2)2

+ 2
∞∑

n=1

∫ ∞

0
dω αωe−ω/ωce−2nβω/2 sin2(ωt/2)

(ω/2)2

= α ln
[
1 + ω2

c t
2
] + 2α

∞∑
n=1

ln

[
1 + ω2

c t
2

(1 + nβωc)2

]

� α ln
[
1 + ω2

c t
2] + 2α

∞∑
n=1

ln

[
1 + t2

n2β2

]

= α ln
[
1 + ω2

c t
2] + 2α ln

[
β

πt
sinh

(
πt

β

)]
. (25)

Inserting this into Eq. (21) yields

pd (t) = 1

2
− 1

2

[(
1 + ω2

c t
2) sinh2(πt/β)

(πt/β)2

]−2α

, (26)

which for nonvanishing times (t � 1
ωc

) is well approximated
by

pd (t) = 1

2
− 1

2

[
βωc

π
sinh

(
πt

β

)]−4α

. (27)

Inverting pd (τ ) = pc leads to our final solution

τ = β

π
arcsinh

[
π

βωc

(1 − 2pc)−1/4α

]
. (28)

VI. SURFACE-CODE ERROR CORRECTION FOR
SPATIALLY CORRELATED ERRORS

The form of the evolution operator derived in Eq. (9)
reveals that the state �m ◦ �d (ρq) contains correlations
between the errors on arbitrary numbers of qubits. The
coherent part of the evolution affects each pair {i,j} of
qubits by a two-qubit error with probability sin2[Jij (t)],
while any set {1,2, . . . ,m} of m qubits suffers an m-qubit
error with probability (−1)m〈sinh2[X1(t)] . . . sinh2[Xm(t)]〉
due to the decoherent evolution. If the decoherent evo-
lution were uncorrelated, this probability would be given
by (−1)m〈sinh2[X1(t)]〉 . . . 〈sinh2[Xm(t)]〉. The difference be-
tween the two terms implies the presence of correlations: if a
qubit suffers an error, nearby qubits have a higher chance of
also being affected by an error than one would expect from the
single-qubit error rate (13) alone.

The threshold error rate of pc = 10.9% derived in Ref. [1]
applies in the case of uncorrelated errors. The correlations
mentioned above will change this value to an unknown
threshold p̃c. A recent work studied the effect of clusters
of errors on surface-code correction when the probability
of a certain cluster size is exponentially or polynomially

FIG. 1. Different kinds of spatial correlations between errors in
the surface code and how they affect its threshold error rate.

suppressed [9]. Thresholds were not studied in terms of
the single-qubit error rate px but in terms of an overall
probability p for single-qubit errors and clusters of errors.
If the probability of a large cluster decays sufficiently slowly,
any p > 0 will lead to px → 1

2 for large enough L. This makes
a direct application of the results of Ref. [9] to our problem
impossible.

In the following, we thus want to investigate how different
kinds of spatial correlations between errors affect the threshold
error rate for the single-qubit error rate px . The modified
threshold error rate p̃c strongly depends on the type of
correlations that are present between the errors.

Figure 1 summarizes our results. A worst case is given
by ballistically propagating anyons, leaving a linear trail of
errors behind. In this case, p̃c can be smaller than pc by an
order of magnitude or more. To understand this, note that the
task of error correction is to pair the anyons in a way that is
homologically equivalent to the way they have been created.
Error correction breaks down if choosing the right homology
class becomes ambiguous. This is achieved with the smallest
number of errors if the anyons in each pair propagate into
opposite directions.

If anyons perform a diffusive random walk in the toric code,
the modified threshold error rate p̃c can also be significantly
smaller than pc. This scenario is physically relevant if there is
a nontrivial surface (or toric) code Hamiltonian that energeti-
cally penalizes the creation, but not the propagation of anyons.
The error model of diffusive errors and its effect on error
correction have been studied in this context in Refs. [17,18].

For both ballistic propagation and a diffusive random
walk of anyons, there is a tendency for errors to form
stringlike patterns. By contrast, the correlations discussed at
the beginning of this section favor a clustering of errors (i.e.,
it is more likely than in the uncorrelated case that errors are
spatially close to each other), but there is no mechanism that
favors stringlike error configurations.

We do not expect clustering of errors to strongly harm the
threshold error rate pc. Most clusters of nearby errors do not
form stringlike patterns and thus do not help to bring pairs
of anyons apart from each other and make a homologically
correct pairing ambiguous. For a fixed single-qubit error rate
px , the presence of regions with a high density of errors implies
the presence of regions with a low density of errors. The latter
help to avoid ambiguities.

In the following sections, we study the modified threshold
error rate p̃c for different kinds of spatial correlations between
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surface-code errors by use of Monte Carlo simulations. In
agreement with our expectations, we find that clustering of
errors leads to at most a mild decrease of the threshold error
rate, and can even be beneficial in the strongly correlated
regime.

We conclude that even in the presence of spatial correlations
between errors without a mechanism that prefers stringlike
arrangements, the modified threshold error rate p̃c does not
differ drastically from pc. Heuristically, we expect correlations
between errors arising from coupling the code to the bath not
to be of the stringlike type. We will thus in the following
section invert the equation px(τ ) = p̃c without knowing the
exact value of p̃c, and simply assume that it is of the same
order of magnitude as pc.

A. Ballistic propagation of anyons

In the following sections, we study the impact of correlated
errors on the correctability of the surface code by use of
Monte Carlo simulations. That is, we produce a large number
of error configurations using a certain error model, and see
whether we are able to find a pairing of the resulting anyon
configuration that is homologically equivalent to the actual
one. Finding such a paring is the task of a classical decoding
algorithm. Only if unrealistic computing power is available can
we hope to actually perform correction up to the theoretical
threshold of pc = 10.9% (in the uncorrelated case). Therefore,
an efficient approximate error-correction algorithm is needed
in practice. We will employ minimum-weight perfect matching
(MWPM) [19], which, for a graph with weighted edges and
an even number of vertices provides the matching of minimal
weight. Here, the vertices correspond to the anyons found as a
result of the stabilizer measurements, and the weight of an edge
connecting two anyons is simply given by the minimal number
of qubits that have to suffer an error in order to create that
pair from the anyonic vacuum (i.e., their Manhattan distance).
We employ the library BLOSSOM V [20] to perform MWPM.
Using MWPM for performing error correction in the surface
code reduces the threshold error rate to 10.2% [6,17].

For our first “worst-case” error model, we envision anyons
that after creation start to ballistically propagate into a certain
direction. More precisely, we specify the error model by two
parameters f and l. First, we draw a number n at random from
a Poisson distribution with mean 2f L2. Then, we perform n

times the following. Choose one of the L2 anyon locations
and an angle φ ∈ [0,2π ) at random. (Recall that we consider
one type of error only, so for a surface code of linear size
L with periodic boundary conditions, there are L2 anyon
locations of the relevant type.) Draw random numbers lh
and lv from Poisson distributions with mean l| cos(φ)| and
l| sin(φ)|, respectively (the expectation value for lh + lv is thus
4
π
l). Starting from the initial anyon location, apply lh errors

horizontally and lv errors vertically, with the directions given
by the sign of the trigonometric functions. After doing this n

times, perform error correction by means of MWPM.
For each value of l, there is a threshold value fc such that

for f < fc the logical error rate decreases exponentially with
L and for f > fc the logical error rate approaches 1

2 . For
each triple of l, f , and L, we generate a number N of error
configurations which is such that error correction fails 104

FIG. 2. (Color online) Single-qubit error rate p̃c for which error
correction breaks down for two error models that lead to stringlike
error patterns: ballistic and diffusive propagation of anyons.

times. The logical error rate can then be estimated as 104/N .
The threshold values fc are then determined for each value
of l by comparing the logical error rates for code sizes up to
L = 60. Finally, once we know the threshold value fc, we can
determine the threshold p̃c for the single-qubit error rate px

by determining the fraction of qubits that suffer an error for
the given pair of l and fc. An even number of errors on the
same qubit count as no error, and on odd number as one. If
the errors are sufficiently sparse such that the probability of
several errors happening on the same qubit is negligible, we
have px = 4

π
l × 2f L2/(2L2) = 4

π
lf , while otherwise it will

be smaller.
The single-qubit threshold error rates p̃c as a function of l

are illustrated by the purple squares in Fig. 2. While for l = 1
2

the threshold is still comparable with the value of 10.2% for
the uncorrelated case, it decreases strongly as l is increased.

B. Diffusive propagation of anyons

In the case where anyons perform a random walk, the
simulation works in much the same way as described in the
previous subsection. For each initial anyon location, we draw
a random number from a Poisson distribution with mean l,
and then perform a random walk whose length is given by
this number. The resulting thresholds are displayed by the
blue circles in Fig. 2. Threshold error values are, for a given
value of l, significantly higher than in the ballistic case though
significantly lower than in the uncorrelated case.

C. Clustered errors

Here, we study a family of error models that describe
clustering of errors in the surface code. For l � m2, we define
the error model m-l cluster as follows: from each square of
m × m qubits in the surface code, pick l qubits at random and
apply an error to all of them with probability f . The resulting
single-qubit error rate is px � f l. (Note that the same qubit
can suffer several errors and an even number corresponds to
no error at all, leading to px < f l.) The modified critical error
rates p̃c are again determined as described in Sec. VI A.
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FIG. 3. (Color online) Single-qubit error rate p̃c for which error
correction breaks down in the m-l cluster error models.

Figure 3 shows our results. If l � m, errors are essentially
uncorrelated and the threshold values for p̃c are close to
10.2%, the threshold for MWPM-based error correction in
the uncorrelated case. For l � m, p̃c falls slightly below 10%,
although the decrease is not dramatic. This decrease is due
to the possibility of forming stringlike patterns of length l,
which leads to a smaller number of errors being necessary
for correction to become ambiguous. Finally, for l > m the
threshold increases significantly beyond pc. Additional errors
now make it easier to recognize the cluster and increase
the probability that several errors together form a (partial)
stabilizer operator and therefore do no harm to the code. For
instance, in the 2-4 cluster case, the threshold error rate is
as high as p̃c = 29.0% since half of all errors combine to a
stabilizer operator. In reality, we do of course not expect the
environment to apply exclusively 2 × 2 squares of errors, but
to find ourselves in the regime where the clustering of errors
leads to a slight reduction of the single-qubit threshold error
rate.

D. Correlated two-qubit errors

Let us now study the case where there are correlations
between errors on pairs of qubits only. Note that the coherent
part of the evolution is able to produce such correlations only.
The regime considered here is thus relevant if correlations
between error events on more than two qubits due to the
decoherent evolution are weak.

The study of correlated two-qubit errors is simplified by
the fact that there is a clear worst case, namely, a two-qubit
error on a pair of nearest-neighbor qubits. We assume that
each qubit in the code suffers an error with probability p1 and
that, furthermore, each pair of nearest neighbors in the code
suffers a pair of errors with probability p2. We expect and have
verified in numerical simulations (see below) that correlated
errors on pairs of qubits which are not nearest neighbors have,
for a fixed single-qubit error rate px , less of an effect on error
correction than correlated errors on nearest-neighbor qubits.
Studying this particular case thus allows us to find the maximal
impact of correlated two-qubit error events.

With the above parameters, and since each qubit in the code
has four nearest neighbors, the single-qubit error rate px can

be calculated in analogy to Eq. (13) as

px = p1

∑
k even

(
4

k

)
pk

2(1 − p2)4−k

+ (1 − p1)
∑
k odd

(
4

k

)
pk

2(1 − p2)4−k

= 1

2
− 1

2
(1 − 2p1)(1 − 2p2)4. (29)

We can make two estimates for where error correction will
break down in the above model. First, we can simply assume
that the correlations neither help nor derogate the correctability
of the code. In this case, the breakdown occurs for px = pc

(or, with MWPM correction, for px = 10.2%), independently
of p2. A second estimate is of entropic nature. It is obtained
by studying whether it is at all possible that the stabilizer
measurements provide us with enough information to infer
what errors have happened. Assume that there are n qubits
in the code. There are 2n pairs of nearest neighbors and n/2
plaquette stabilizers that can give us information about bit-flip
errors. For large n, the total information contained in the noise
can be compressed to nh(p1) + 2nh(p2) bits, where h(p) =
−p ln2(p) − (1 − p) ln2(1 − p) is the binary entropy function.
On the other hand, the plaquette stabilizers give us at most n/2
bits of information. Error correction will thus break down if

2h(p1) + 4h(p2) = 1. (30)

If we needed to know exactly which qubits have suffered a
bit flip, Eq. (30) would put a rigorous upper bound on the
correctability of the surface code. However, we only need
to know the error pattern modulo application of stabilizer
operators. For this reason, Eq. (30) should rather be seen as an
estimate of an upper bound. Such an entropic estimate predicts
the unavoidable breakdown of surface-code error correction
to high accuracy for both uncorrelated bit-flip errors [1]
[i.e., 2h(pc) � 1] and depolarizing noise [21]. Reference [22]
shows that variations of the surface code tailored for stability
against biased noise (px �= pz) give thresholds that fall only
a few percent short of the ones suggested by such entropic
arguments, even with error correction performed by an efficient
approximate algorithm.

We will use two different algorithms for performing error
correction for the above error model. Both of them are based
on MWPM, but they differ in the weights they assign to the
edges. The first one is the algorithm used in the previous
subsections. It ignores correlations and assigns the Manhattan
distance between two anyons to the edge connecting them. The
second algorithm, described in more detail in Appendix B, uses
a more sophisticated assignment of edge weights that allows
it to take spatial correlations between the errors into account.

Figure 4 compares the above estimates with the resulting
combinations (p1,p2) for which error correction breaks down
in actual numerical simulations, when the two algorithms
described above are used for performing error correction. If
the Manhattan distance between two anyons is used as the
edge weight and correlations between the errors are ignored,
error correction breaks down for px = 10.2% for p2 → 0,
slightly below the value of pc for perfect error correction. In the
maximally correlated regime p1 → 0, error correction already
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FIG. 4. (Color online) Each qubit is independently subjected to
an error with probability p1. Furthermore, each pair of nearest-
neighbor qubits is subjected to a a pair of errors with probability
p2. The blue lines correspond to a constant value of px , calculated
according to Eq. (29), while the red line shows the entropic bound
Eq. (30). Diamonds represent threshold error rates (p1,p2) when
error correction is performed with MWPM and correlations are
ignored. Squares represent threshold error rates for an algorithm
that takes correlations into account. Threshold error rates have been
determined to accuracy 10−3, by comparing logical error rates for
code sizes between 10 and 50 (periodic boundary conditions). For
each combination of error rates and code sizes, the logical error rates
were obtained from as many error configurations as were necessary
to obtain 104 logical errors.

breaks down for px = 9.6%, a pretty insignificant decrease.
We have obtained similar data to that displayed in Fig. 4 for
correlated errors that happen on pairs of qubits which are
further away from each other than nearest neighbors. In this
case, the deviations from the line px = 10.2% are smaller.
Already for pairs of qubits that are three lattice constants
away from each other, the obtained threshold error rates are
indistinguishable (to accuracy 10−3) from this line.

For the second, improved algorithm, error correction breaks
down for px = 10.6% in the uncorrelated case (p2 → 0), close
to the theoretical value of pc, and for px = 18.6% in the
maximally correlated case (p1 → 0). The threshold error rates
(p1,p2) approximately follow those of the two above estimates
which predict the higher threshold value and significantly beat
both estimates in some regimes. Beyond the red line in Fig. 4,
it is information theoretically impossible that we learn from
the stabilizer measurements what errors have happened. That
it is possible to error correct beyond that line shows that due
to its degenerate nature (i.e., different error configurations can
lead to the same syndrome), the surface code is able to take
care of some of the entropy in the noise itself.

In conclusion, ignoring during error correction that pairs
of qubits can be affected by correlated errors hardly affects
the single-qubit threshold error rate of the surface code.
If an algorithm takes these correlations into account, the
single-qubit threshold error rate can be significantly boosted
in the strongly correlated regime. Due to its degenerate nature,
the surface code is able to correct in regimes where it is
information theoretically impossible that we learn what errors
the code has suffered.

VII. MAXIMAL QEC CYCLE TIME FOR
CORRELATED ERRORS

Assuming that the form of spatial correlations between
errors that will be present in �m ◦ �d (ρq) does not lead to
a threshold error rate p̃c that differs drastically from pc, the
single-qubit error rate px(t) in Eq. (13) contains already all
the information we need in order to predict the maximal QEC
period τ . A great advantage of Eq. (13) is that it depends only
on pd (t) and the coherent interaction strengths Jij (t), but not
on the temperature-dependent correlators Cij (t) for i �= j .

Our goal is thus to solve the equation px(τ ) = p̃c for τ ,
where px(t) is given by Eq. (13). Since p̃c is an order of
magnitude smaller than 1, we can approximate px(t) by its
leading-order contributions

px(t) � pd (t) +
∑

i

′
sin2[J1i(t)]. (31)

We follow again Ref. [11] and study an Ohmic bath (r = 0,
D = 2). The function Jij (t) for this bath type has been
provided in Eq. (19). Note that Jij (t) decays inversely with
distance outside of the light cone. Therefore, the second
summand in Eq. (31) diverges logarithmically with the code
size L at any nonzero time [up to constant prefactors of order
1, we have

∑
i

′ 1
|R1−Ri |2 ∼ ∫ L/2

1
1
r2 r dr ∼ ln(L)]. Correspond-

ingly, the maximal QEC period vanishes in the thermodynamic
limit (although it does so very slowly, see below). For all
other combinations of D = 2,3 and r = 0, ± 1

2 , Jij (t) decays
stronger than |Ri − Rj |−1 outside of the light cone (see
Appendix A1). The maximal QEC period remains thus finite
in the thermodynamic limit for all other bath types.

Setting the lattice constant of the surface code to unity and
assuming a linear code size L, we can estimate

∑
i

′
sin2[J1i(t)]

� 2π

∫ L/2

0
dR R sin2

×
{

λ2

2π2v2

[
θ (R − vt) arcsin(vt/R) + θ (vt − R)

π

2

]}
.

(32)

Since we are interested in times where this sum is (still)
sufficiently smaller than 1, in particular, each summand has
to be much smaller than 1. Defining m(t) = min{L/2,vt}, we
find

∑
i

′
sin2[J1i(t)] � 2π

∫ L/2

m(t)
dR

1

R

(
λ2t

2π2v

)2

+ 2π

∫ m(t)

0
dR R

(
λ2

4πv2

)2

= λ4t2

2π3v2
ln

(
L/2

m(t)

)
+ λ4

16πv4
m2(t).

(33)
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FIG. 5. (Color online) The three summands A(t), B(t), and C(t) and their sum px(t) compared with pc for code sizes L = 102, 103, and
104. We have used paramters v = 1, λ = 0.1, T = 0.01, and ωc = 30. Note that the assumptions βωc � 1 and τd � 1/ωc made during the
derivation of A(t) are well satisfied.

Combining Eqs. (27), (31), and (33), we conclude that for
times t which are small enough such that px(t) � 1 we have

px(t) � 1

2
− 1

2

[
βωc

π
sinh

(
πt

β

)]−2λ2/πv2

︸ ︷︷ ︸
A(t)

+ λ4t2

2π3v2
ln

(
L/2

m(t)

)
︸ ︷︷ ︸

B(t)

+ λ4

16πv4
m2(t)︸ ︷︷ ︸

C(t)

. (34)

We can recognize three different mechanisms contributing
to the single-qubit error rate px(t). Summand A(t) describes
errors due to each qubit coupling individually to the bath.
Correspondingly, this term is independent of L. It is the only
term that depends on temperature and the only term that
contributes if the qubits do not interact via the bath. Summand
B(t) describes errors due to superluminal interactions between
the qubits mediated by the bath. It diverges logarithmically
with L for short enough times but vanishes once all qubits
are within their mutual light cones. Finally, summand C(t)
describes errors due to subluminal interactions between the
qubits. Once all qubits are within their mutual light cones,
this term reaches a time-independent constant which is
proportional to the number of qubits in the code.

We have already studied the times τd which are necessary
for summand A(t) to reach critical levels [A(τd ) � pc] in
Sec. V. The only question that remains is whether B(t) or C(t)

reach critical levels before A(t) and if so, on what time scales.
As shown in Fig. 5, each of the three summands can be the
dominant force leading to the breakdown of error correction.
A higher temperature increases the weight of summand A(t),
while a larger code size increases the weight of summands
B(t) and C(t).

In order to find the maximal QEC period τ , we make
the simplifying assumption that the breakdown is due to
the dominant mechanism alone, i.e., we approximate px(t) �
max{A(t),B(t),C(t)}. Note that for times much smaller than
L/v, we have B(t) > C(t), while for times of order L/v or
larger, we have B(t) < C(t). For times larger than L/2v, C(t)
reaches its maximal value λ4L2

64πv4 . Therefore, for L > 8
√

πp̃c
v2

λ2 ,
the term C(t) will reach critical values (p̃c) in a time

τsub = 4
√

πp̃cv

λ2
, (35)

while otherwise it will never do so. Elementary calculus
shows that the maximal value, which B(t) can achieve while

still being larger than C(t), is e−π2/4

64π
λ4

v4 L
2, and that B(t) is

monotonically increasing until it reaches this value. Therefore,
B(t) reaches p̃c before C(t) if and only if L > 8eπ2/8√πp̃c

v2

λ2 .
The (relevant) solution to B(τsuper) = p̃c is given by

τsuper = 2π
√

πp̃c

v

λ2
|W−1(−16π3p̃cv

4/λ4L2)|−1/2, (36)

where W−1 is the lower branch of the Lambert W function [23].
For z → 0−, we have W−1(z) � ln |z|, showing that the
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TABLE I. Maximal time before error correction in the surface code breaks down for a 2D Ohmic bath in different parameter regimes. The
times τd , τsub, and τsuper are summarized in Sec. VII A.

Code size Breakdown in a time Dominant mechanism

L < 4.7 v2

λ2 τd Direct bath coupling

4.7 v2

λ2 < L < 16.1 v2

λ2 min{τd,τsub} Direct bath coupling or subluminal interactions

L > 16.1 v2

λ2 min{τd,τsuper} Direct bath coupling or superluminal interactions

available QEC time vanishes in the thermodynamic limit
L → ∞ like τ ∼ 1/

√
ln(L), that is, very slowly.

A. Summary of results

Let us summarize our results for a 2D Ohmic bath. There are
three different mechanisms that contribute to the error rate on
each qubit and hence put limits on the maximal QEC period τ :
the individual coupling of each qubit to the bath, superluminal
interactions between the qubits mediated by the bath, as well
as subluminal ones.

The direct interaction of each qubit with the bath puts an
upper bound τd on the maximal time for which error correction
can succeed. This time is given by Eq. (28), for which we find
a high- and a low-temperature value

τd = 1

πT
arcsinh

[
πT

ωc

(1 − 2p̃c)−πv2/2λ2

]

�
{

1
ωc

exp(cv2/λ2) if T < ωc

π
exp(−cv2/λ2),

1
πT

(
cv2/λ2 − ln

[
ωc

2πT

])
if T > ωc

π
exp(−cv2/λ2).

(37)

Here, c = π
2 ln 1

1−2p̃c
. Assuming p̃c � pc, we find c � 0.4.

The interaction between the qubits mediated by the bath
is a further source of errors, both due to subluminal and
superluminal interactions. Errors due to mediated interactions
can only reach critical values if the linear code size L is
large enough; if L < 8

√
πp̃c

v2

λ2 , neither the error strength due
to subluminal nor due to superluminal interactions will ever
reach p̃c. For 8

√
πp̃c

v2

λ2 < L < 8eπ2/8√πp̃c
v2

λ2 , errors due to
subluminal interaction reach a critical strength in a time τsub ∼
v/λ2. If errors due to superluminal interactions also reach
criticality, they will do so on times larger than τsub for these
values of L. Finally, if L > 8eπ2/8√πp̃c

v2

λ2 , superluminally
mediated errors reach criticality before subluminal ones, and
they do so in a time τsuper ∼ v/λ2

√
ln L. This time vanishes

very slowly in the thermodynamic limit. These results are
summarized in Table I (assuming p̃c � pc).

VIII. CONCLUSIONS

Quantum information is fragile and can only be maintained
if the accumulation of entropy in the information-bearing
degrees of freedom of a storage device can be suppressed,
either by preventing entropy from entering or by removing
it at a sufficient pace. Any possible measure to achieve this
can only succeed for certain classes of system-environment
couplings. Correspondingly, a proposal that promises stability
of quantum information is only as valuable as the error source
against which it protects is realistic.

In this work, we have investigated how long the surface
code is able to protect a quantum state against noise emerging
from a physically relevant type of environment: a bath
of freely propagating bosonic modes. We have seen that
there are two very distinct kinds of error mechanisms: the
individual decoherence of each qubit, and induced interactions
between the code qubits. Both mechanisms lead to spatial
and temporal correlations between the errors happening in the
code. However, we have shown that a tendency of errors to
cluster without a tendency to form stringlike configurations
does not strongly derogate the correctability of the surface
code, even when these correlations are ignored during error
correction.

We have managed to express the time before the error rates
in the code reach critical values in terms of code size (L),
accidental coupling strength (λ), mode velocity (v), and bath
temperature (T ) across a wide range of different parameter
regimes. Two further parameters that determine the physical
character of the qubits’ decoherence mechanism are the spatial
dimension of the medium in which the modes propagate (D)
and the nature of the coupling to the bath (r). We have focused
our discussion on the specific combination (D = 2, r = 0)
investigated in Ref. [11], which corresponds to an Ohmic bath.
This combination is of particular interest since it is the only one
for which the maximal QEC time vanishes (very slowly) in the
thermodynamic limit. For all other combinations of D = 2,3
and r = 0,± 1

2 , this time remains finite.
Following Refs. [11,12], we have made several simplifying

assumptions to make the actual problem analytically tractable.
These are as follows: a trivial Hamiltonian for the qubits;
undamped and noninteracting bath modes; no residual bath
correlations between different QEC periods; one type of
errors only (bit flips); immediate and flawless syndrome
measurement and error correction (including no time cost for
efficient classical computations). Relaxing these assumptions
opens a wide field of additional challenges. For instance, fully
fault-tolerant syndrome extraction and error correction are
discussed in Refs. [5,10]. A finite probability of syndrome
measurement failure will lead to a lower value of p̃c and
hence necessitate shorter QEC periods. Moreover, we have
in this work been concerned exclusively with spatial and
temporal correlations between errors in the surface code. If
there are noncommuting error types on the same qubit (bit
flips and phase flips), a further type of correlation in the
noise emerges, namely, correlations between different error
types on the same qubit. Such correlations are present in the
often-used error model of depolarizing noise. How they can
be taken into account during error correction is studied in
Refs. [4,7–9]. Finally, adding an energy splitting −�

2

∑̃
iσ

z
i for

the code qubits would transform the problem into a many-spin
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generalization of the well-studied spin-boson problem. For a
single spin qubit coupled to an Ohmic bath, the spin-boson
problem has been solved within the Born approximation in
Ref. [24]. However, the generalization of this problem to the
many-qubit case may well be analytically intractable [25].
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APPENDIX A: DIFFERENT BATH TYPES

1. Induced interactions

a. Linear dispersion

The bath-induced pairwise interaction between code qubits is described by the function

Jij (t) = 2λ2
∫

dk e−v|k|/ωc
|k|2r

ω2
k

cos[k · (Ri − Rj )][sin(ωkt) − ωkt], (A1)

where we have introduced a cutoff factor e−v|k|/ωc into the expression given in Eq. (8). The cutoff factor is only necessary in
the case (3D, r = 1

2 ), while in all other cases we can let ωc → ∞. In 2D, the functions Jij (t) can be calculated as described in
Ref. [12, Appendix C]. With ωk = v|k| and R := |Ri − Rj |, the results are

Jij (t) =

⎧⎪⎪⎨
⎪⎪⎩

λ2

2π2v2 θ (vt − R)
[√

v2t2 − R2 − vt ln
(

vt+√
v2t2−R2

R

)]
for r = − 1

2 ,

λ2

2π2v2

[
θ (R − vt) arcsin(vt/R) + θ (vt − R)π

2

]
for r = 0,

λ2

2π2v2
θ(vt−R)√
v2t2−R2 for r = 1

2 ,

(A2)

while in 3D, we find

Jij (t) =

⎧⎪⎪⎨
⎪⎪⎩

− λ2

2πRv2 (vt − R)θ (vt − R) for r = − 1
2 ,

λ2

2π2Rv2

(
ln
∣∣R+vt
R−vt

∣∣ − 2vt
R

)
for r = 0,

2λ2

π2R4vωc

2R2−v2t2

(R2−v2t2)2 v
3t3 for r = 1

2 .

(A3)

Note that in three cases the interaction vanishes exactly
outside of the light cone. The combination (2D, r = 0) con-
sidered in the main text shows the longest-range superluminal
interactions. It is the only one for which the sum

∑
i

′
sin2[J1i(t)]

in Eq. (31) diverges for any nonzero time in the thermodynamic
limit. Correspondingly, it is the only one for which the maxmial
QEC period (theoretically) vanishes in this limit.

b. Ordered ferromagnet: Parabolic dispersion

Recently, the idea of performing entangling gates between
qubits by coupling them to an ordered Heisenberg ferromagnet
has attracted interest [16]. An ordered Heisenberg ferromagnet
can be seen as a 3D magnon bath (ωk = Dk2). If we couple
to a spin component which is orthogonal to the ordering, we
obtain a coupling of type r = 0. The ferrogmanet thus acts as
a sub-Ohmic bath (s = 1

2 ). Then,

Jij (t) = λ2

4π2D2R

{
−2πDt − π (R2 − 2Dt)C

(
R√

2πDt

)
+ π (R2 + 2Dt)S

(
R√

2πDt

)

+
√

2πDtR

[
cos

(
R2

4Dt

)
+ sin

(
R2

4Dt

)]}
, (A4)

where C(x) = ∫ x

0 cos(t2)dt and S(x) = ∫ x

0 sin(t2)dt are the
Fresnel integrals. For times such that R � √

Dt , the first
summand in the bracket dominates and we find

Jij (t) = − λ2t

2πDR
. (A5)

2. Decoherence

We have shown in Sec. V that the probability of an
error due to the coupling of a qubit to the bath is

given by

pd (t) = 1
2 (1 − exp{−2�(t)}), (A6)

where the function �(t) is given in Eq. (23). It depends only
on the spectral function J (ω) = αωsω1−s

0 e−ω/ωc of the bath
and its temperature. The cases s = 0,1,2,3 are relevant for the
kinds of couplings to a bath with linear dispersion in 2D or
3D considered in the main part of this work. The case s = 1

2 is
relevant for an ordered Heisenberg ferromagnet (see previous
subsection).
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For those values of s, we find

�(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

απω0t if s = 0 and β → ∞,

2α
√

2πω0t + 2α

√
βω0

π

[
4π Re ζ

(− 1
2 ,1 + it

β

) + ζ
(

3
2

)]
if s = 1

2 and βωc � 1,

α ln
(
1 + ω2

c t
2
) + 2α ln

[
β

πt
sinh

(
πt
β

)]
if s = 1 and βωc � 1,

α
ω0

[− 2ω2
c t

2

1+ω2
c t

2 − 4
β
ψ
(

1
βωc

) + 4
β

Re ψ
( 1+iωct

βωc

)]
if s = 2,

α

ω2
0

[− 2ω4
c t

2(3+ω2
c t

2)
(1+ω2

c t
2)2 + 4

β2 ψ
′( 1

βωc

) − 4
β2 Re ψ ′( 1+iωct

βωc

)]
if s = 3.

(A7)

Here, ζ (− 1
2 ,z) denotes a Hurwitz zeta function and ψ(z)

is the digamma function. The case s = 0 requires at finite
temperature an infrared cutoff for convergence. The result for
s = 1 has been derived in Eq. (25), the result for s = 1

2 can
be derived in a very analogous way. Note that a well-defined
ωc → ∞ limit exists only for sub-Ohmic baths.

The expressions in Eq. (A7) (for s > 0) are displayed
for a specific set of parameters α, ω0, ωc, and β in Fig. 6
and compared to the critical value of �(t) in the case of
uncorrelated errors given in Eq. (24). We see that for super-
Ohmic baths, this critical value is reached distinctively earlier
than for Ohmic and sub-Ohmic baths.

APPENDIX B: AN ALGORITHM THAT IS ABLE TO TAKE
CORRELATIONS BETWEEN ERRORS ON NEAREST

NEIGHBORS INTO ACCOUNT

We assume again a single-qubit error rate p1 and a rate
of two-qubit errors on nearest neighbors p2. To an edge con-
necting anyons i and j , we want to assign a weight − ln(pij ),
where pij is the sum of the probabilities of all error chains
connecting anyons i and j . The minimal-weight error chain is
then the most likely one. Taking the negative logarithm ensures
that the weights are additive for independent error chains. More
precisely, we will not consider the absolute probabilities, but
the probabilities relative to no errors happening. This leads to
a constant shift of all weights, which is irrelevant since the
number of edges involved in each matching is identical.

Using the Manhattan distance of the anyons as the weight,
as we did for the algorithm that ignores correlations between
errors, corresponds to approximating pij by the probability

FIG. 6. (Color online) The bold lines show the functions �(t)
given in Eq. (A7). We have used parameters α = 0.01, ωc/ω0 = 30,
and βω0 = 10. The dashed line shows the critical value 1

2 ln 1
1−2pc

�
0.123, when error correction breaks down in the uncorrelated case.

of the most likely single-qubit error path connecting anyons
i and j , without taking the degeneracy of this probability
into account. While calculating pij exactly is unfeasible, the
algorithm presented here is based on a better approximation
of pij , which, in particular, takes the possibility of two-qubit
errors into account. We will restrict to those error chains which
probabilistically dominate for either p1 � p2 or p1 � p2.

Assume that anyons i and j have horizontal distance a and
vertical distance b, or vice versa, with a � b. In Table II, we
list all contributions to pij which we consider. The probability-
independent prefactors are the number of possible paths of the
respective type. We denote with m1 the number of one-qubit
events and with m2 the number of two-qubit events in an error
path. We consider all error paths contributing to pij for which
m1 � 1 or m2 � 1, and which are such that there is no error
path with error numbers m′

1 and m′
2 connecting anyons i and

j such that m′
1 � m1, m′

2 � m2, and m′
1 + m′

2 < m1 + m2.

APPENDIX C: EXACT EVOLUTION OF TWO-QUBIT
DENSITY MATRIX

Let us assume that only two qubits, i and j , couple to the
bath and let us study their joint evolution, which according to
Eqs. (5) and (9) is given by

ρij (t) = exp
{−iJij (t)σx

i ⊗ σx
j

}
Et (ρij )

× exp
{+iJij (t)σx

i ⊗ σx
j

}
, (C1)

where

Et (ρq)= trB
{
eσx

i ⊗Xi (t)eσx
j ⊗Xj (t)(ρij ⊗ ρB)e−σx

i ⊗Xi (t)e−σx
j ⊗Xj (t)}

= ρij 〈cosh2[Xi(t)] cosh2[Xj (t)]〉
− σx

i ρij σ
x
i 〈sinh2[Xi(t)] cosh2[Xj (t)]〉

− σx
j ρijσ

x
j 〈cosh2[Xi(t)] sinh2[Xj (t)]〉

+ σx
i σ x

j ρijσ
x
i σ x

j 〈sinh2[Xi(t)] sinh2[Xj (t)]〉
+ (

σx
i σ x

j ρij + ρijσ
x
i σ x

j − σx
i ρijσ

x
j − σx

j ρijσ
x
i

)
×〈cosh[Xi(t)] sinh[Xi(t)] cosh[Xj (t)] sinh[Xj (t)]〉.

(C2)

Our goal is to express all appearing expectation values in
terms of the correlators

Cij (t) = 〈Xi(t)Xj (t)〉 = −λ2

N

∑
k

|k|2r cos[k · (Ri − Rj )]

× coth(βωk/2)
sin2(ωkt/2)

(ωk/2)2
. (C3)

The functions �(t) = −Cii(t) are discussed in detail in Sec. V.

042334-13



ADRIAN HUTTER AND DANIEL LOSS PHYSICAL REVIEW A 89, 042334 (2014)

TABLE II. Contributions to pij we consider if anyons i and j have horizontal distance a and vertical distance b, or vice versa, with a � b.

Condition Type Contribution to pij

m2 = 0
(
a+b

a

) (
p1

1−p1

)a+b

a + b ≡ 0 (mod 2) m1 = 0
(

b

(b−a)/2

) (
p2

1−p2

)b

a + b ≡ 1 (mod 2) ∧ a + b � 3 m1 = 1 ∧ m2 � 1 a+b+1
2

(
b

(b−a−1)/2

)
p1

1−p1

(
p2

1−p2

)b−1

a � 1 ∧ a + b � 4 m1 � 2 ∧ m2 = 1 (a + b − 1)
(
a+b−2
a−1

) (
p1

1−p1

)a+b−2
p2

1−p2

Recall that sinh2(x) = 1
2 [cosh(2x) − 1] and cosh2(x) = 1

2 [cosh(2x) + 1]. The first four expectation values (those correspond-
ing to diagonal terms) can thus be reduced to 〈cosh[2Xi(t)]〉 and 〈cosh[2Xi(t)] cosh[2Xj (t)]〉. We already know that

〈cosh[2Xi(t)]〉 = 2〈sinh2[Xi(t)]〉 + 1 = exp{−2�(t)} (C4)

[see Eq. (21)]. Let us thus calculate

〈cosh[2Xi(t)] cosh[2Xj (t)]〉 =
∞∑

m,n=0

22m+2n

(2m)!(2n)!
〈Xi(t)

2mXj (t)2n〉

=
∞∑

m,n=0

min(m,n)∑
k

22m+2n

(2m)!(2n)!

(
2m

2k

)
(2k)!

(
2n

2k

)
〈Xi(t)

2m−2k〉〈Xi(t)Xj (t)〉2k〈Xj (t)2n−2k〉

=
∞∑

m,n=0

min(m,n)∑
k

(−1)m+n 22m+2n

(2m)!(2n)!

(
2m

2k

)
(2k)!

(
2n

2k

)
(2m − 2k)!

2m−k(m − k)!

(2n − 2k)!

2n−k(n − k)!
�(t)m+n−2kCij (t)2k

=
∞∑

m,n=0

min(m,n)∑
k

(−2)m+n+2k�(t)m+n−2kCij (t)2k

(m − k)!(n − k)!(2k)!
. (C5)

To simplify this expression, we define u := m − k and v := n − k. Then,

〈cosh[2Xi(t)] cosh[2Xj (t)]〉 =
∞∑

u,v,k=0

(−2)u+v+4k�(t)u+vCij (t)2k

u!v!(2k)!
= e−4�(t) cosh[4Cij (t)]. (C6)

We conclude that

〈cosh2[Xi(t)] cosh2[Xj (t)]〉 = 1
4 + 1

2e−2�(t) + 1
4e−4�(t) cosh[4Cij (t)],

〈sinh2[Xi(t)] cosh2[Xj (t)]〉 = 〈cosh2[Xi(t)] sinh2[Xj (t)]〉 = 1
4e−4�(t) cosh[4Cij (t)] − 1

4 , and (C7)

〈cosh2[Xi(t)] sinh2[Xj (t)]〉 = 1
4 − 1

2e−2�(t) + 1
4e−4�(t) cosh[4Cij (t)].

Let us now also calculate the remaining expectation value in Eq. (C2). We find

〈cosh[Xi(t)] sinh[Xi(t)] cosh[Xj (t)] sinh[Xj (t)]〉

= 1

4
〈sinh[2Xi(t)] sinh[2Xj (t)]〉

= 1

4

∞∑
m,n=0

22m+1

(2m + 1)!

22n+1

(2n + 1)!
〈Xi(t)

2m+1Xj (t)2n+1〉

= 1

4

∞∑
m,n=0

min(m,n)∑
k=0

22m+1

(2m + 1)!

22n+1

(2n + 1)!

(
2m + 1

2k + 1

)
(2k + 1)!

(
2n + 1

2k + 1

)
〈Xi(t)

2m−2k〉〈Xi(t)Xl(t)〉2k+1〈Xj (t)2n−2k〉

= 1

4

∞∑
m,n=0

min(m,n)∑
k=0

(−1)m+n 22m+1

(2m + 1)!

22n+1

(2n + 1)!

(
2m + 1

2k + 1

)
(2k + 1)!

(
2n + 1

2k + 1

)
(2m − 2k)!

2m−k(m − k)!

(2n − 2k)!

2n−k(n − k)!

× �(t)m+n−2kCij (t)2k+1
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=
∞∑

m,n=0

min(m,n)∑
k=0

(−2)m+n+2k

(m − k)!(n − k)!(2k + 1)!
�(t)m+n−2kCij (t)2k+1

=
∞∑

u,v,k=0

(−2)u+v+4k

u!v!(2k + 1)!
�(t)u+vCij (t)2k+1

= 1

4
e−4�(t) sinh[4Cij (t)]. (C8)

Therefore,

ρij (t) = exp
{−iJij (t)σx

i ⊗ σx
j

}[(
1
4 + 1

2e−2�(t) + 1
4e−4�(t) cosh[4Cij (t)]

)
ρij

+ (
1
4 − 1

4e−4�(t) cosh[4Cij (t)]
)(

σx
i ρijσ

x
i + σx

j ρijσ
x
j

)
+ (

1
4 − 1

2e−2�(t) + 1
4e−4�(t) cosh[4Cij (t)]

)
σx

i σ x
j ρijσ

x
i σ x

j

+ 1
4e−4�(t) sinh[4Cij (t)]

(
σx

i σ x
j ρij + ρijσ

x
i σ x

j − σx
i ρijσ

x
j − σx

j ρijσ
x
i

)]
exp

{ + iJij (t)σx
i ⊗ σx

j

}
. (C9)

Using now exp{±iJij (t)σx
i ⊗ σx

j } = cos[Jij (t)] ± i sin[Jij (t)]σx
i ⊗ σx

j , we arrive at Eq. (14).

[1] E. Dennis, A. Y. Kitaev, A. Landahl, and J. Preskill, J. Math.
Phys. 43, 4452 (2002).

[2] R. Raussendorf and J. Harrington, Phys. Rev. Lett. 98, 190504
(2007).

[3] A. G. Fowler, M. Mariantoni, J. M. Martinis, and A. N. Cleland,
Phys. Rev. A 86, 032324 (2012).

[4] G. Duclos-Cianci and D. Poulin, Phys. Rev. Lett. 104, 050504
(2010).

[5] D. S. Wang, A. G. Fowler, and L. C. L. Hollenberg, Phys. Rev.
A 83, 020302(R) (2011).

[6] A. G. Fowler, A. C. Whiteside, and L. C. L. Hollenberg, Phys.
Rev. Lett. 108, 180501 (2012).

[7] J. R. Wootton and D. Loss, Phys. Rev. Lett. 109, 160503
(2012).

[8] A. Hutter, J. R. Wootton, and D. Loss, Phys. Rev. A 89, 022326
(2014).

[9] A. G. Fowler and J. M. Martinis, Phys. Rev. A 89, 032316
(2014).

[10] G. Duclos-Cianci and D. Poulin, Quant. Inf. Comput. 14, 0721
(2014).

[11] E. Novais and E. R. Mucciolo, Phys. Rev. Lett. 110, 010502
(2013).

[12] P. Jouzdani, E. Novais, and E. R. Mucciolo, Phys. Rev. A 88,
012336 (2013).

[13] D. P. DiVincenzo and F. Solgun, arXiv:1205.1910.

[14] S. E. Nigg and S. M. Girvin, Phys. Rev. Lett. 110, 243604
(2013).

[15] J. W. Harrington, Ph.D. thesis, California Institute of Technol-
ogy, 2004.

[16] L. Trifunovic, F. L. Pedrocchi, and D. Loss, Phys. Rev. X 3,
041023 (2013).

[17] S. Chesi, B. Röthlisberger, and D. Loss, Phys. Rev. A 82, 022305
(2010).

[18] A. Hutter, J. R. Wootton, B. Röthlisberger, and D. Loss, Phys.
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