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Nonreversal and nonrepeating quantum walks
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We introduce a variation of the discrete-time quantum walk, the nonreversal quantum walk, which does not
step back onto a position that it has just occupied. This allows us to simulate a dimer and we achieve it by
introducing a different type of coin operator. The nonrepeating walk, which never moves in the same direction
in consecutive time steps, arises by a permutation of this coin operator. We describe the basic properties of both
walks and prove that the even-order joint moments of the nonrepeating walker are independent of the initial
condition, being determined by five parameters derived from the coin instead. Numerical evidence suggests that
the same is the case for the nonreversal walk. This contrasts strongly with previously studied coins, such as the
Grover operator, where the initial condition can be used to control the standard deviation of the walker.
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I. INTRODUCTION

Quantum walks have been extensively studied since their
introduction [1–3]. Initial interest in cellular automata [3]
led to more general algorithmic applications [4–6], precipi-
tating a rapid development of the theory of computation by
quantum walks. Quantum walks can provide quadratically
enhanced searching [7,8] with generalizations to related
computational tasks such as element distinctness [9] and subset
finding [10,11]. Quantum walks have been shown to have
interesting transport properties in a variety of scenarios. On the
line they achieve ballistic transport [6] and they were shown to
have an exponential speedup over the classical random walk on
the hypercube by Kempe [12,13] for the discrete-time walk and
by Childs et al. for the continuous-time walk [14], followed
by an algorithm with a proven exponential speed-up [15].

The quantum walks introduced thus far model idealized
walkers with no spatial extension. While these have many
uses in modeling physical and biological processes (see,
e.g., [16]), we may also want to consider walkers that do
have spatial extension and hence can only move into positions
that they are not already occupying. In a classical setting,
self-avoiding random walks were developed to model precisely
such processes, initially, the folding of polymers. The simplest
case of self-avoidance is a dimer occupying two adjacent
lattice sites. For a dimer with distinguishable halves, a head
followed by a tail, self-avoidance means that the head cannot
step back onto the previously occupied position, since that is
now occupied by the tail (see Fig. 1). This is thus known as
the nonreversal walk. In this paper we introduce a quantum
version of such a walk. The motivation for studying the
nonreversal quantum walk is much the same as that for
studying the classical version: more realistic simulation of
physical systems.

In both the classical and quantum cases, the self-avoiding
or nonreversal walk on the line is trivial. This is because there
are only two degrees of freedom in the movement, so if one of
those is prohibited by the model, then unidirectional ballistic
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transport is obtained. The walks studied in this paper take
place over a square lattice, in which case the dynamics are
highly nontrivial. The paper proceeds as follows. In Sec. I A
classical self-avoiding and nonreversal walks are described in
more detail to provide background and context. Then, for the
sake of comparison, the properties of the quantum walk on the
square lattice are briefly outlined in Sec. I B. The nonreversal
and the closely related nonrepeating quantum walks are then
defined in Sec. II. The properties of the nonrepeating walk
are explored analytically in Sec. III. With the aid of numerical
simulations, the nonreversal walk is investigated in Sec. IV.
We finish in Sec. V with some concluding remarks.

A. Classical self-avoiding random walks

The classical self-avoiding walk has proven difficult to treat
analytically, hence the results concerning it have so far been
numerical [17] and there remain many open questions. Even
enumerating the number of self-avoiding walks has proven
very difficult, despite them being so rare that coming upon
one by mistake when examining a random walk is highly
improbable. If we denote by cn the number of self-avoiding
walks of precisely n steps, then the total number of self-
avoiding walks up to length n is

∑
n�2 cn. Some facts are clear,

for example, that cn+m � cn + cm. The set of self-avoiding
walks of length n concatenated with those of length m contains
not only the self-avoiding walks of length n + m but some
that overlap, hence the inequality. While determining the
precise number of walks is difficult, some bounds have been
established. On a square lattice, the number of nonreversal
walks of length exactly n steps is 3n, since there are three
choices of direction at each step. The number of self-avoiding
walks must be less than 3n, as the nonreversal walks include
the self-avoiding walks as a subset. Additionally, it is possible
to construct subsets of self-avoiding walks that grow as 2n,
hence we know that there are between 2n and 3n self-avoiding
random walks. The best evidence so far suggests that the
number of self-avoiding walks of length n is proportional to
2.638n and this is provided as a nonrigorous estimate in [18].
The evidence for this value was obtained by enumerating each
such walk of length up to 51 and required a 1024 processor
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FIG. 1. The head and tail of a dimer on a square lattice, the
diamond marking the head and the triangle marking the tail. As the
tail prevents the head from moving left, the head can move up, down,
or right, resulting in a nonreversal walk.

supercomputer [19]. Without new algorithms it is unlikely that
we will be able to enumerate much further than this.

As even counting the walks has proved difficult, it is
unsurprising that little is known regarding other properties.
Interesting quantities with which to compare different walks
include the average distance from the origin, denoted 〈r〉, the
average of the square of this distance 〈r2〉, and the standard
deviation of r . For the self-avoiding walk, 〈r2〉 is conjectured
to be proportional to n3/2, though so far even a proof that the
exponent must be between 1 and 2 is elusive [17]. Another
interesting property of self-avoiding walks demonstrates a key
difference between the self-avoiding walk and its standard
and nonreversal counterparts. The self-avoiding walk does not
necessarily continue to evolve indefinitely. This is because it
is possible to reach a lattice site whose only adjacent lattice
sites have previously been visited, hence the walker becomes
stuck.

The nonreversal walk is in some ways more tractable. As
already noted, on the square lattice there are 3n such walks of
exactly n steps. Its mean-square displacement is 〈r2〉 = 2n, so
it spreads twice as fast as the standard random walk. There is
very little literature on the nonreversal walk and what there is
tends to examine specific characteristics of the walk relevant
to the study of polymer chains [20], rather than its general
features.

B. Quantum walks on a square lattice

We first define the formalism for the discrete-time quantum
walk on a square lattice before discussing previous results for
such quantum walks. The walk is defined on Z2 = {(x,y) :
x,y ∈ Z}, where Z denotes the set of integers. The state of
the system � is then described by a four-dimensional vector
at each lattice site, corresponding to four possible coin states
that are internal degrees of freedom of the walker. We denote
this by

�(x,y,t) =

⎛
⎜⎜⎝

ψx+(x,y,t)
ψy+(x,y,t)
ψy−(x,y,t)
ψx−(x,y,t)

⎞
⎟⎟⎠, (1)

where each component is a complex function of the dis-
crete position of the walker (x,y) and discrete time t and
where

∑
x,y,j |ψj (x,y,t)|2 = 1 with j taking the symbols

x+,y+,y−,x−. These four coin states are associated with

the walker moving in the positive-x, positive-y, negative-y,
and negative-x directions, respectively.

The evolution is then defined by a coin operator, which acts
only on the coin subspace of the walker, and a shift operator,
which acts on the entire Hilbert space. The coin operator at
a particular site is therefore an operator in SU(4). Different
coin operators can in general be chosen for different lattice
sites and they may vary in (discrete) time. In what follows the
same coin operator is chosen at all lattice sites and it does not
vary in time. We denote the coin operator that acts on the state
of the walker (and so is constructed from the individual coin
operators at each site) by Cc, where c labels a particular choice
of coin operator. The shift operator S is defined by

S�(x,y,t) =

⎛
⎜⎜⎝

ψx+(x − 1,y,t)
ψy+(x,y − 1,t)
ψy−(x,y + 1,t)
ψx−(x + 1,y,t)

⎞
⎟⎟⎠. (2)

Therefore, the action of the shift operator is to move the ψx+
coin state at a particular vertex (x,y) one step in the positive-
x direction to the vertex (x + 1,y) and analogously for the
three other coin states. This can be seen from the definition
of the shift operator as the ψx+ coin state at (x,y) depends
on the preshift ψx+ coin state at (x − 1,y). We then define
the operator that evolves the walk by one time step Uc, by the
action of the coin operator Cc, followed by the shift operator
S, that is,

�(x,y,t + 1) = Uc�(x,y,t) = S · Cc�(x,y,t). (3)

The choice of coin operator and the initial state of the walker
then completely define the walk as we may write

�(x,y,t) = Ut
c�(x,y,0) = (S · Cc)t�(x,y,0). (4)

The properties of the discrete-time quantum walk on the
square lattice were extensively explored in [21] following
initial investigations in [22]. In particular they examined the
mean distance from the origin at time t :

〈r〉t =
∑
x,y

p(x,y,t)
√

x2 + y2, (5)

where r is the radial distance from the origin and p(x,y,t) is
the probability of finding the walker at position (x,y) at time
t . They also characterized the walks in terms of the standard
deviation of r ,

σ =
√

〈r2〉 − 〈r〉2, (6)

which characterizes how spread out the walker is over the
lattice. Larger σ indicates greater spreading or variation in r ,
while small σ indicates that the walker is moving out radially
in a well-defined ring. The authors of [21,22] carried out a
comparison between three different coin operators. Their first
choice is a tensor product of two Hadamard operators for the
walk on a line

H ⊗ H = 1

2

⎛
⎜⎝

1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

⎞
⎟⎠. (7)
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This creates a separable unitary evolution in the x + y and
x − y directions [23] and so a two-dimensional version of the
distribution of the walk on the line is obtained. This is shown
in Fig. 2(a), where the initial state is taken as the walker at the
origin with the separable coin state

�(0,0,0) = 1

2

⎛
⎜⎝

1
i

i

−1

⎞
⎟⎠. (8)

More interestingly, they consider the Grover coin

G4 = 1

2

⎛
⎜⎝

−1 1 1 1
1 −1 1 1
1 1 −1 1
1 1 1 −1

⎞
⎟⎠ (9)

and the discrete Fourier transform (DFT) coin

D4 = 1

2

⎛
⎜⎝

1 1 1 1
1 i −1 −i

1 −1 1 −1
1 −i −1 i

⎞
⎟⎠. (10)

These operators were tested for a number of initial conditions.
These coins are both unbiased, in that they distribute amplitude
equally between each coin state. As for the walk on the line,
they find that the dynamics for a specific coin depend strongly
on the choice of initial state. However, the dynamics differ
markedly depending on the coin used. The lowest and highest
standard deviations obtained for the position of the walker

were found using the Grover operator. It was observed that
the reason for this is that regardless of the initial state, the
distribution forms a central spike, with a ring around it that
propagates outward. The choice of initial condition controls
the amount of amplitude that is situated in the central spike
and the amount of amplitude that is situated in the ring. The
distribution for the DFT coin, given the initial state of Eq. (8),
is shown in Fig. 2(b). The distribution for the Grover coin,
where the initial state is taken to be the walker at the origin,
with the coin state

�(0,0,0) = 1

2

⎛
⎜⎝

1
−1
−1
1

⎞
⎟⎠, (11)

is shown in Fig. 2(c). Additionally, the authors of [21]
studied the set of unbiased four-dimensional unitary operators
with entries equal to either ±1/2 or ±i/2 that, when the
leading diagonal entry is selected to be 1/2, gives 640 unitary
operators. These operators were found to produce ten different
spreading rates, with the DFT, Hadamard, and Grover all being
different.

II. DEFINITION

We now define the nonrepeating and nonreversal walks in
terms of particular choices for the coin operator. The first coin
we will consider will generate the nonrepeating quantum walk
and hence will be called the nonrepeating coin, denoted by
C!rep. This coin is defined by

C!rep =

⎛
⎜⎜⎝

0 λeiα γ eiβ f (λ,γ )eiθ

λe−i(φ+δ+α) 0 −f (λ,γ )ei(ψ−θ+β) γ eiψ

−γ e−i(δ+α+ψ) −f (λ,γ )ei(φ−θ+α) 0 λeiφ

f (λ,γ )ei(θ−α−ψ−φ−β) −γ ei(δ+α−β) λeiδ 0

⎞
⎟⎟⎠ , (12)

where all of the variables are real, 0 � γ 2 + λ2 � 1, and
f (λ,γ ) =

√
1 − (λ2 + γ 2). This is the most general SU(4)

operator with zeros on the diagonal. It is clear, with reference to
the shift operator defined in Eq. (2), that the coin never permits
amplitude to move in the same direction in two consecutive
steps and so it is natural to refer to this as a nonrepeating walk.
We now define the nonreversal coin operator, in terms of a
permutation of the nonrepeating coin operator, by

C!rev = C!rep ·

⎛
⎜⎝

0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

⎞
⎟⎠ . (13)

In analogy to the nonrepeating walk, the walk defined by this
coin never permits amplitude to move back to the vertex where
it was at the previous time step and so is a nonreversal quantum
walk. It is important to note that the interpretations of each of
these walks are strongly linked to the definition of the shift
operator. If an alternative definition is used, such as that in [24],
then the interpretations of the walks created by these coins are
changed. While the nonreversal walker is a single particle,
when interpreted as a dimer it is presumed that the two parts

of the nonreversal walker are distinguishable, so one leads the
other, as shown in Fig. 1.

As the walk dynamics that are obtained from the nonre-
versal and the nonrepeating coins have many properties in
common we discuss both together. A simple example of a
nonreversal coin, used to produce the probability distribution
shown in Fig. 3, takes θ = φ = 3π

4 , α = β = δ = ψ = −π
4 ,

and λ = γ = f (λ,γ ) = 1√
3

in C!rev. This leads to the follow-
ing coin:

C1 = e−i(π/4)

√
3

⎛
⎜⎝

−1 1 1 0
1 1 0 1

−1 0 −1 1
0 1 −1 −1

⎞
⎟⎠ , (14)

where the global phase factor can be dropped. Figure 3
shows examples of a typical probability distribution arising
from a nonreversal and a nonrepeating quantum walk. The
nonreversal walk displays a greater average radial distance
from the origin than the nonrepeating walk. This is quantified
in Sec. IV. In both cases, the dynamics are similar for all initial
conditions, tracing out roughly a diamond shape, larger for
the nonreversal walk, with peaks at each corner. The initial
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(a)

(b)

(c)

FIG. 2. (Color online) Probability distributions arising from (a)
the Hadamard coin and (b) the DFT coin for the initial state of Eq. (8)
and (c) the Grover coin for initial state of Eq. (11).

condition determines the height and number of distinctive
peaks. In the case of the nonreversal walk, it is possible to
see a smaller square insider the larger outer diamond that is
characteristic of this walk. In the case of the nonrepeating
walk, the outline of the possible sites that the walk can have
reached after t steps is given by a square with sides of length
t (t + 1) if t is even (odd) centered on the origin with the

(a)

(b)

FIG. 3. (Color online) Probability distributions arising after
100 steps of (a) a typical nonreversal quantum walk and (b) a typical
nonrepeating quantum walk, with the initial conditions given by
Eqs. (8) and (11), respectively.

sides parallel to the x and y axes. However, it can be seen
from Fig. 3(b) that the characteristic shape of the peaks of the
probability amplitude for this walk is also a diamond, as in the
nonreversal case, and with dimensions much smaller than t .

III. FOURIER ANALYSIS

In order to analytically study the large-t behavior of the
quantum walks defined above, we use Fourier analysis. The
Fourier transform from position space to momentum space is

�̂(kx,ky,t) =
∑
x,y

�(x,y,t)ei(kxx+kyy), (15)

with the inverse transform given by

�(x,y,t) =
∫ π

−π

∫ π

−π

dkxdky

(2π )2
�̂(kx,ky,t)e

−i(kxx+kyy). (16)

In momentum space the shift operator is given by

S(kx,ky) =

⎛
⎜⎜⎝

eikx 0 0 0
0 eiky 0 0
0 0 e−iky 0
0 0 0 e−ikx

⎞
⎟⎟⎠ . (17)
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The walk then evolves by the recurrence relation

�̂(kx,ky,t + 1) = Uc(kx,ky)�̂(kx,ky,t), (18)

where Uc(kx,ky) = S(kx,ky)Cc and Cc is the chosen coin oper-
ator. Using the notation �̂t = �̂(kx,ky,t) and �t = �(x,y,t),
we can rewrite this as

�̂t = Uc(kx,ky)t �̂0. (19)

As the walker is initially at the origin �̂0 is constant in both
kx and ky . For analytical purposes, instead of considering
moments in terms of the radial distance from the origin we
consider the joint moments of the position operators in the
x and y directions, denoted by X and Y , respectively. For a
two-dimensional quantum walk these are given by〈

X
ξ
t Y

χ
t

〉
�

=
∑

x,y∈Z
�

†
t x

ξ yχ�t

=
∫ π

−π

∫ π

−π

dkxdky

(2π )2
�̂

†
t

(
i

∂

∂kx

)ξ (
i

∂

∂ky

)χ

�̂t ,

(20)

where i ∂
∂kx

and i ∂
∂ky

are the momentum space representations
of the position operators X and Y , respectively. In order to
calculate the state of the walker at time t for a particular

Cc we need to calculate the eigensystem of Uc. We will
first of all take U!rep and show that in this case the even
moments, i.e., when ξ + χ is even, are independent of the
initial state of the walker for large t . In Appendix A it is shown
that the eigenvalues of U!rep(kx,ky), denoted by pj , can be
expressed as

p1 = −p2 = p∗
3 = −p∗

4 = eiω(kx ,ky ), (21)

where ω is a function of kx , ky , and all eight coin parameters.
This is because the characteristic equation of U!rep(kx,ky) is of
the form

p4 + Ap2 + B = 0, (22)

where A and B are real. We label a corresponding set of
orthonormal eigenvectors by |vj (kx,ky)〉, j = 1,2,3,4. We will
drop the kx and ky dependence from the notation. We may
represent the state in terms of the eigensystem by

�̂t = U (kx,ky)t �̂0 =
4∑

j=1

pt
j 〈vj |�0〉 |vj 〉. (23)

We will now show that the joint moments, as defined in
Eq. (20), are asymptotically independent of �0 using the
method of Grimmett et al. [25,26] to calculate the large-t
expression for the moments. First consider

(
i

∂

∂kx

)ξ (
i

∂

∂ky

)χ

�̂t =
(

i
∂

∂kx

)ξ (
i

∂

∂ky

)χ 2∑
j=1

(−1)(j−1)t (eiωt 〈vj |�0〉 |vj 〉 + e−iωt 〈vj+2|�0〉 |vj+2〉)

=
⎛
⎝(−1)ξ+χeiωt

2∑
j=1

(−1)(j−1)t 〈vj |�0〉 |vj 〉 + e−iωt

4∑
j=3

(−1)(j−3)t 〈vj |�0〉 |vj 〉
⎞
⎠ t ξ+χ

(
∂ω

∂kx

)ξ (
∂ω

∂ky

)χ

+O(t ξ+χ−1). (24)

Considering the whole of the integrand in Eq. (20), we then have that

�̂
†
t

(
i

∂

∂kx

)ξ (
i

∂

∂ky

)χ

�̂t =
⎧⎨
⎩(−1)ξ+χ

2∑
j=1

|〈vj |�0〉|2 +
4∑

j=3

|〈vj |�0〉|2

⎫⎬
⎭ t ξ+χ

(
∂ω

∂kx

)ξ (
∂ω

∂ky

)χ

+ O(t ξ+χ−1). (25)

Now as
∑4

j=1 |〈vj |�0〉|2 = 1 then if ξ + χ = 2n, n ∈ N, we
have

�̂
†
t X

ξY χ�̂t = t ξ+χ

(
∂ω

∂kx

)ξ (
∂ω

∂ky

)χ

+ O(t ξ+χ−1). (26)

Therefore, by substituting Eq. (26) into Eq. (20) we see that
under the condition ξ + χ = 2n and in the asymptotic limit of
large t the moments are independent of the initial state of the
walker and are a function of the coin parameters only. From
Appendix A it can be seen that the moments (asymptotically)
depend only on the five parameters m1 = α − β + δ + ψ ,
m2 = φ + δ, m3 = φ + α − 2θ + ψ + β, λ, and γ . This is
because ω(kx,ky) can be written as a function of kx , ky , m1, m2,
m3, λ, and γ . Although this is an asymptotic proof, numerical
results show that this is true for any t , suggesting that the
dependence on the initial states cancels in a similar way for all
orders, not just the leading order. A similar result also holds

for the Hadamard walk on a lattice, as defined by the coin of
Eq. (7) and the shift of Eq. (2). For this separable coin [23],
in the limit of large t , 〈(Xt + Yt )ξ ,(Xt − Yt )χ 〉 is independent
of the initial state when both ξ and χ are even. This follows
directly from the properties of a Hadamard walk on a line and
is shown briefly in Appendix C.

IV. NONREVERSAL WALK

The result derived above applies only to walks using the
operator U!rep. We conjecture that the same result holds for
the nonreversal walk. As its eigensystem is not tractable using
the same methods as for the nonrepeating walk, as shown
in Appendix B, the nonreversal walk is treated numerically
rather than analytically. These walks were investigated by
varying the parameters in the coin as well as the initial
condition. Independent uniformly random choices for each
variable were used to generate 500 coins and the walks arising
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from these operators were investigated using roughly 1000
initial conditions for the coin state of a walker at the origin,
parametrized using

�(0,0,0) =

⎛
⎜⎜⎝

cos θ3

eiφ3 sin θ3 cos θ2

eiφ2 sin θ3 sin θ2 cos θ1

eiφ1 sin θ3 sin θ2 sin θ1

⎞
⎟⎟⎠, (27)

i.e., uniformly according to the Haar measure [27,28]. This
means that we sample 0 < φi � 1 and 0 < cos θi � 1 for i =
1,2,3 uniformly. It was found numerically that, for all choices
of initial condition, the mean radial distance from the origin, as
given by Eq. (5), and the standard deviation, given by Eq. (6), of
the walker are constant at a given time t . Further investigations
suggest that all the joint moments of the distribution where the
x and y exponents sum to an even number are independent of
the initial condition.

To compare with the nonrepeating coin, we tested whether
the moments were constant if the five parameters m1 =
α − β + δ + ψ , m2 = φ + δ, m3 = φ + α − 2θ + ψ + β, λ,
and γ were held constant while varying their constituents.

(a)

(b)

FIG. 4. (Color online) Comparison of the nonreversal (blue right
triangles), nonrepeating (green left triangles), Hadamard (red
squares), Grover (open diamonds and circles), and DFT (black
diamonds and circles) coin operators in terms of (a) the average
radial distance from the origin, defined in Eq. (5), and (b) the standard
deviation of the radial distance, defined in Eq. (6). The diamonds are
the largest and the circles the smallest average radial distances for
different initial states for those two coins; the values are the same for
all initial states for the other three coins.

As in this case only 20 coins were tested, the results are
not conclusive, but it appears that these same five parameters
determine the moments in the case of the nonreversal coin.

The properties of both walks contrast strongly with those
arising from previously studied nonseparable coins. The mean
and standard deviations as a function of time are shown for a
variety of coins in Fig. 4. For the nonreversal, nonrepeating,
and Hadamard walks these are independent of the initial
condition. For the Grover and DFT walks this is not the case
and so the initial conditions that give the largest and smallest
values for 〈r〉 are plotted for both coins. Figure 4 shows that
both the average radial distance and the average radial spread
are greater for the nonreversal than for the nonrepeating walk.
The average radial distance for both of these walks lies within
the range of the possible values achievable with the Grover
coin with the use of specific initial coin states.

V. CONCLUSION

We have introduced two previously unstudied types of coin
operator for the discrete-time quantum walk, the nonrepeating
and nonreversal coins. We have shown that they have some
notable properties, namely, that the mean and standard de-
viations of the radial distance from the origin of the walker
are independent of the choice of initial condition, in contrast
to all the commonly used nonseparable coin operators. The
standard deviation still grows linearly with t for much the same
reason as it does for the walk on the line, as the coin operator
always ensures that some amplitude moves away from the
starting point with each step. We have shown, analytically for
the nonrepeating operator and numerically for the nonreversal
operator, that the even joint moments of the x and y positions
are independent of the initial condition of the walker; the odd
moments do depend on the initial condition. The even moments
of the nonrepeating walk depend on five parameters derived
from the nonrepeating coin. We have also provided numerical
evidence that the moments of the nonreversal walk depend on
the same five parameters.

For future work, it would be interesting to investigate the
properties of the nonrepeating and nonreversal walks on other
lattices besides the square lattice. The self-avoiding random
walk has been shown to have macroscopic properties that are
independent of the choice of lattice. In order to see if this
property carries over to the quantum case, analogous coins
of varying dimension are required, which can be constructed
by parametrizing a unitary matrix with the appropriate pattern
of zero entries. Further coins that exhibit the same analytical
properties as the nonrepeating coin, i.e., the even moments
are independent of the initial state, could be constructed by
creating coin operators with eigenvalues that are the solutions
to characteristic equations that have the form of Eq. (22).
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APPENDIX A

Here we calculate the eigenvalues of U!rep(kx,ky). Using
algebraic manipulation software it can be shown that the
characteristic equation for this matrix is given by

p4 + 2p2[γ 2 cos �1 − λ2 cos �2

− f (λ,γ )2 cos �3] + 1 = 0,

where �1 = m1 − kx + ky , �2 = m2 − kx − ky , and �3 =
m3 with m1 = α − β + δ + ψ , m2 = φ + δ, and m3 = φ +
α − 2θ + ψ + β. If we solve this equation for p we will obtain
the four eigenvalues. As there are no first- or third-order terms
in the characteristic equation, if p is a solution then so is
−p. As the coefficients are real, then if p is a solution then
so is p∗. As the coin is unitary we therefore have that the
eigenvalues can be written as p1 = eiω(kx ,ky ), p2 = −eiω(kx ,ky ),
p3 = e−iω(kx ,ky ), and p4 = −e−iω(kx ,ky ), where ω is a function
of λ, γ , �1, �2, and �3 and so is a function of kx , ky , and
the coin parameters λ, γ , m1, m2, and m3. By solving the
effective quadratic it can be shown that the solutions are given
by pi = ±s

√
ar ±t iai , where the subscripts denote that ±s

and ±t are independent and ar = −b, ai = |√b2 − 1| and
b = γ 2 cos �1 − λ2 cos �2 − f (λ,γ )2 cos �3.

APPENDIX B

The characteristic equation for U!rev can be shown to be

p4 + �p3 + �p2 + �∗p + 1 = 0,

where

� = f (λ,γ )(ei(b1−ky ) + ei(b2+ky ) − e−i(b1+b2+θ+kx ) − ei(θ+kx ))

and

� = 2[f (λ,γ )2 cos(b1 + b2) + (λ2 − 1) cos(kx + ky + b2 + θ )

+ (γ 2 − 1) cos(kx − ky + b1 + θ )],

with b1 = α + φ − θ and b2 = β + ψ − θ . This quartic does
not in general have the properties of that in Appendix A.

However, if b1 = −b2 then � = �∗ and so the characteristic
equation is quasisymmetric and has real parameters. As the
parameters are real, if p is a solution then so is p∗. We can
then write the solutions in terms of two parameters ω1 and ω2

such that p1 = p∗
2 = eiω1 and p3 = p∗

4 = eiω2 . It can be shown
that the solutions are of the form

p = −�

2
±s

√
�2 − 4(� − 2)

2

±t

√
2�2 − 4(� + 2) ∓s �

√
�2 − 4(� − 2)

4
. (B1)

We can therefore show that we cannot write the solutions
in the form derived in Appendix A, that is, we cannot write
p1 = p∗

2 = −p3 = −p∗
4 = eiω, and so the proof method for

U!rep does not follow for U!rev.

APPENDIX C

Here we show that the Hadamard walk has the property
that 〈(Xt + Yt )ξ (Xt − Yt )χ 〉 is independent of the initial state
of a walker at the origin if ξ and χ are even, in the limit of
large t . The Hadamard walk on the lattice is given by the coin
CH = H ⊗ H of Eq. (7). The walk then evolves in momentum
space via the unitary operator

UH = S(kx,ky)CH = Sk+H ⊗ Sk−H,

where k± = 1
2 (kx ± ky) and

Sk± =
(

eik± 0
0 e−ik±

)
.

It is straightforward to show that the eigenvalues of Sk±H

can be written as e1(k±) = −e∗
2(k±) = eiω(k±) and hence the

eigenvalues of UH can be written as p1 = p∗
4 = ei[ω(k+)+ω(k−)]

and p2 = p∗
3 = −ei[ω(k+)−ω(k−)]. We note that

i

(
∂

∂kx

± ∂

∂ky

)
[ω(k+) + ω(k−)] = i

dω(k±)

dk±
.

Hence, following the same method as used for proving the
initial-state independence of the moments for the nonrepeating
coin, it is possible to show that in the limit of large t and when
both χ and ξ are even, 〈(Xt + Yt )ξ (Xt − Yt )χ 〉 is independent
of the initial state of a walker at the origin for the UH quantum
walk.
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