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Based on results well known in the mathematics literature but not yet common knowledge in the physics
literature, we conduct a study on three-fermionic systems with six, seven, eight, and nine single-particle states.
Via introducing special polynomial invariants playing the role of entanglement measures the structure of the
stochastic local operations and classical communication (SLOCC) entanglement classes is investigated. The
SLOCC classes of the six- and seven-dimensional cases can elegantly be described by special subconfigurations
of the Fano plane. Some special embedded systems containing distinguishable constituents are arising naturally
in our formalism, namely, three-qubits and three-qutrits. In particular, the three fundamental invariants I6, I9,
and I12 of the three-qutrits system are shown to arise as special cases of the four fundamental invariants of
three-fermions with nine single-particle states.
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I. INTRODUCTION

Quantum entanglement is a key resource for implementing
tasks for processing quantum information [1]. It is well known
by now that this resource can be based on manipulating
composite quantum systems with both distinguishable and in-
distinguishable constituents. Although historically the study of
entanglement based on systems belonging to the former class
has received much greater scrutiny, investigations focusing on
the latter have gained considerable attention too [2–7]. Quite
recently, fermionic systems started to play a key role in studies
revisiting the so-called N representability [8] and quantum
marginal problem [9] centered around studies employing the
important notion of entanglement polytopes [10–12], an idea
having roots in the work of Klyachko [13]. The introduction
of this notion was partly motivated by the study of special
tripartite fermionic systems having six, seven, and eight
single-particle states [9]. These systems provide simple special
examples for multifermionic wave functions with physical
properties easy to investigate. On the other hand, they also
give rise to mathematical structures, namely, three-forms in
six-, seven-, eight-, and nine-dimensional vector spaces over
a field, well known to mathematicians [14–21]. Although
the results in these papers on the classification of trivectors
bear a relevance on the so-called stochastic local operations
and classical communication (SLOCC) classification of en-
tanglement classes [22,23] in quantum information, apart
from scattered remarks [24,25] and our recent paper on
Hitchin functionals [26], to our best knowledge these systems
have not made their full debut to the literature on quantum
entanglement.

The aim of this paper is to present a study on these
special entangled fermionic systems based on these findings.
In quantum information, one wishes to quantify and classify
different types of entanglement regarded as a resource. There
are different classification schemes. In the SLOCC classifica-
tion scheme of multipartite systems, the representative pure
states are equivalent if they can be mutually converted to
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each other with a finite probability of success using only local
operations and classical communication. It can be shown [23]
that for a system consisting of n distinguishable subsystems,
SLOCC equivalence mathematically means that the equivalent
pure states representing the system are on the same orbit
under the action of the local group GL(N1) × GL(N2) × . . . ×
GL(Nn), where (N1,N2, . . . ,Nn) are the local dimensions
of the Hilbert spaces associated to the subsystems. For
systems with indistinguishable constituents, the corresponding
orbit should be formed under the n-fold diagonal action
of GL(N ) where N is the number of single-particle states.
Although due to proliferation of entanglement classes solving
the SLOCC classification problem in its full generality is a
hopeless task, we still have a number of important special
cases for which the structure of the SLOCC classes is
known. These special entangled systems can provide a conve-
nient theoretical framework to see multipartite entanglement
in action.

Now, although these special systems have already been
studied by mathematicians, however, physicists are either not
aware of these results or they are reluctant to apply them, or
they are rediscovering them from time to time in different con-
texts. For example, the classification problem equivalent to the
classification of SLOCC entanglement types for three-qubits
has already been solved in 1881 by mathematicians [27] (see
also the paper of Schwartz [28] and the book of Gelfand [29]),
the result has later been independently rediscovered in the
influential paper by physicists [23]. As another example one
can consider, the case of three-fermions with six single-particle
states is a system used by Borland and Dennis in their seminal
paper [9]. Using results known from cubic Jordan algebras,
the SLOCC classes for this case have been rediscovered by
one of us [30]. We have learned later that the solution to
this problem dates back as early as 1907 via the work of
Reichel. Moreover, it also turns out that this case is also well
known from the theory of prehomogeneous vector spaces [31]
where in the full classification of these spaces as given by
Sato and Kimura, these types of fermionic systems show up
as an important special case [32]. As we already mentioned,
this case also constituted the archetypical example for further
studies on entanglement polytopes and the N -representability
problem [10–12]. Moreover, elevating a real three-fermionic
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state with six single-particle states to a three-form living on
a six-dimensional manifold renders the square root of the
magnitude of the quartic entanglement measure [30] to a
functional on the manifold [26]. As shown by Hitchin [33,34]
in an important special case the critical points of this functional
correspond to Calabi-Yau manifolds. On the other hand, the
evaluation of this functional at the critical point gives the
semiclassical Bekenstein-Hawking entropy of certain black
hole solutions in string theory [26,35].

This wide variety of physical applications justifies an
attempt to present a self-contained entanglement-based refor-
mulation of the results on the classification of three-forms in
six, seven, eight, and nine dimensions. Apart from shedding
new light on special fermionic systems and presenting some
of their invariants serving as measures of entanglement in a
unified manner, this approach also facilitates an embedding of
special entangled systems of distinguishable constituents such
as three-qubits and three-qutrits. In this philosophy, systems
with distinguishable constituents are just special cases of
systems with indistinguishable ones.

For clarity, we would like to note that the methods
presented here are not directly applicable when one considers
entanglement between modes [36–38] of indistinguishable
systems. Mode entanglement is particulary useful when one
wants to classify entanglement between different momenta
or different regions of space. However, entanglement in
this notion involves the splitting of fermionic mode oper-
ators f

†
i into subsets which are not invariant under local

unitary transformations of the form f
†
i �→ U

j

i f
†
j (e.g., the

Fourier transformation on a lattice) which is a key ingre-
dient in conventional entanglement classification between
particles.

This paper is organized as follows. In Sec. II, we give a
brief introduction to the language of multilinear algebra for
the reader unfamiliar with it. This language turns out to be a
particulary useful tool for generating SLOCC covariants and
invariants. In Sec. III, we introduce a family of linear maps or
covariants derived from the amplitudes of a fermionic state.
All the invariants considered in this paper are derived from this
construction. In Sec. IV, we present the SLOCC classification
for three-fermion systems in dimensions six, seven, eight, and
nine. For the six- and seven-dimensional cases, we present
the structure of the SLOCC classes in a new manner based
on the structure of the Fano plane. In addition to a discussion
of the SLOCC classes, we present all the algebraically inde-
pendent continuous invariants of these systems. Most of these
invariants are known and used in different fields of physics and
mathematics although except for the case of six dimensions,
they have not made their debut in quantum information theory
yet. We also discuss the embedding of three-qubits into the
system of three fermions with six single-particle states and
show how the measures of entanglement are related. There
is a similar possibility of embedding three-qutrits into the
system of three-fermions with nine single-particle states. We
consider this case in Sec. IV D 1, and relate the invariants of
three-qutrits to those of the corresponding fermionic system.
In Sec. V, we outline some of the connections of these results
with the entanglement polytopes of Klyachko in particular
with the pinning of fermionic occupation numbers, which

is a concept of huge interest recently [11]. Our conclusions
are left to Sec. VI. For the convenience of the reader, we
included two Appendices with some proofs and calculational
details.

II. MULTILINEAR ALGEBRA

In this section, we give a brief summary of the language
of multilinear algebra, which is a useful tool for attacking the
entanglement classification problem of multifermion systems.
The reader familiar with these concepts may skip to the next
section.

Let V ∼= CN be an N -dimensional complex vector space.
Denote the Cartesian product of V with itself by V × V . There
are two canonical ways of defining a vector space from V ×
V . The first is the direct product, the second is the direct
sum. The direct product of vectors is defined by the relations
(v + u) ⊗ w = v ⊗ w + u ⊗ w, v ⊗ (u + w) = v ⊗ u + v ⊗
w, (cv) ⊗ w = v ⊗ (cw) = c(v ⊗ w) where u,v,w ∈ V , c ∈
C. The vector space spanned by elements of the form v ⊗ w is
denoted by V ⊗ V or V ⊗2. If {ei}Ni=1 is a basis in V , then {ei ⊗
ej }Ni,j=1 is a basis of V ⊗ V . Obviously, V ⊗ V has dimension
N2. Similarly one can define the kth tensor power of V denoted
by V ⊗k spanned by elements of the form v1 ⊗ v2 ⊗ . . . ⊗ vk .
This has dimension Nk . The tensor product is now a map
⊗ : V ⊗k × V ⊗m → V ⊗(k+m).

The wedge product of k � N vectors is defined as

v1 ∧ . . . ∧ vk = 1

k!

∑
π∈Sk

σ (π )vπ(1) ⊗ . . . ⊗ vπ(k), (1)

where Sk is the symmetric (permutation) group and σ is
its alternating representation, namely, σ (π ) = 1 for even,
σ (π ) = −1 for odd permutations. The vector space spanned
by elements of the form v1 ∧ . . . ∧ vn is denoted by ∧kV and
has dimension (N

k
). Its elements are denoted with α,β,γ, . . .

and we will call them k vectors.
The direct sum is defined from V × V with the re-

lations (v + u) ⊕ (w + z) = v ⊕ w + u ⊕ z, (cv) ⊕ (cw) =
c(v ⊕ w). The vector space obtained in this way is denoted
by V ⊕ V . If {ei}Ni=1 is a basis of V , then {ei ⊕ 0,0 ⊕ ei}Ni=1 is
a basis in V ⊕ V (here, 0 denotes the zero vector in V ). Thus,
the dimension of V ⊕ V is simply 2N .

Define now the vector space

∧(V ) = C ⊕ V ⊕ ∧2V ⊕ . . . ⊕ ∧NV. (2)

Now, ∧(V ) can be elevated into an algebra via extending
linearly the exterior product

∧ : ∧(V ) × ∧(V ) → ∧(V ),

α,β �→ α ∧ β.
(3)

Endowed with this product ∧(V ) is called an exterior algebra
or Grassman algebra. The exterior product is a graded anticom-
mutative product, meaning that for α ∈ ∧kV and β ∈ ∧mV we
have

α ∧ β = (−1)kmβ ∧ α. (4)
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Fixing a basis {ei}Ni=1 in V allows one to write α ∈ ∧kV in the
form

α = 1

k!
αi1...ik ei1 ∧ . . . ∧ eik , (5)

where αi1...ik is totally antisymmetric in all of its indices and
summation for the indices is understood.

Let V ∗ be the dual space of V comprising the linear func-
tionals acting on V . If {ej }Nj=1 refers to a basis of V and {ei}Ni=1

a basis of V ∗, then we have 〈ei,ej 〉 = δi
j . One can also define

the exterior algebra of V ∗ denoted by ∧(V ∗). Its elements
P,Q,R, . . . will be called k forms. An element P of ∧kV ∗ ∼=
(∧kV )∗ is a multilinear functional P : V × . . . × V → C on
V satisfying P (v1, . . . ,vk) = σ (π )P (vπ(1), . . . ,vπ(k)) for all
π ∈ Sk . A general element P ∈ ∧kV ∗ can be written as

P = 1

k!
Pi1...ik e

i1 ∧ . . . ∧ eik . (6)

The pairing 〈. . . , . . .〉 between one-forms and vectors gives
rise to a natural pairing between k forms and k vectors. In
terms of basis vectors, it reads as

〈ei1 ∧ · · · eik ,ej1 ∧ · · · ejN
〉 = Det

⎛
⎜⎝

δ
i1
j1

. . . δ
i1
jN

...
. . .

...
δ

iN
j1

. . . δ
iN
jN

⎞
⎟⎠ .

(7)

There is a useful structure connecting the exterior algebra
and its dual, called the interior product or contraction. For a
vector v ∈ V , the interior product ιv is a ∧kV ∗ → ∧k−1V ∗
linear mapping given by the defining formula

ιve
i1 ∧ . . . ∧ eik

=
k∑

n=1

(−1)k−1〈ein ,v〉ei1 ∧ . . . ∧ ěin ∧ . . . ∧ eik , (8)

where the notation ěin means that ein has to be omitted from
the product. For a k form P having the form (6), we have the
explicit expression for the contraction:

ιvP = 1

(k − 1)!
vi1Pi1i2...ik e

i2 ∧ . . . ∧ eik . (9)

The definition of the contraction is a natural notion justified
by the important identity

〈ιea
ei1 ∧ ei2 . . . ∧ eik ,ej2 ∧ . . . ∧ ejk

〉
= 〈ei1 ∧ ei2 ∧ . . . ∧ eik ,ea ∧ ej2 ∧ . . . ∧ ejk

〉. (10)

This definition can be extended by linearity to one featuring a
contraction by an arbitrary m vector

ι : ∧mV × ∧kV ∗ → ∧k−mV ∗,

α = 1

m!
βi1...imei1 ∧ . . . ∧ eim,

P = 1

k!
Pi1...ik e

i1 ∧ . . . ∧ eik ,

α,P �→ ιαP = 1

(k − m)!
αi1...imPi1...imim+1...ik

× eim+1 ∧ . . . ∧ eik ∈ ∧k−mV ∗, (11)

where k � m. We have the useful properties

ια ◦ ιβ = (−1)kmιβ ◦ ια, α ∈ ∧kV , β ∈ ∧mV,

ια(P ∧ Q) = ια(P ) ∧ Q + (−1)kpP ∧ ια(Q),

α ∈ ∧kV , P ∈ ∧pV ∗, Q ∈ ∧qV ∗,

k � p,q. (12)

There is an important isomorphism relating m forms and N −
m vectors. It reads as

∧mV ∗ ∼= ∧N−mV ⊗ ∧NV ∗. (13)

This isomorphism is based on the definition of the 	 operation
defined as follows:

Q ∧ R = 〈Q, 	 R〉 Q ∈ ∧N−mV ∗,

R ∈ ∧mV ∗, 	 R ∈ ∧N−m ⊗ ∧NV ∗. (14)

Using the (7) identity, one can show that

	R = 1

(N − m)!
(	R)i1...iN−mei1 ∧ . . . ∧ eiN−m

⊗ E, (15)

where

(	R)i1...iN−m = 1

m!
εi1...iN−mj1...jmRj1...jm

, E = e1 ∧ . . . ∧ eN .

(16)

It should be emphasized that 	 is not the Hodge star; until this
point we did not equip V with any metric.

Let g = g
j

i e
i ⊗ ej ∈ GL(V ) be an invertible linear map

from V to itself acting on a v ∈ V as gv = g
j

i v
k〈ei,ek〉 ⊗ ej =

g
j

k v
kej . For this action on the basis vectors we write

gei = ejg
j

i , g ∈ GL(V ). (17)

Given this action on V , an action g∗ on V ∗ is induced via the
formula

〈g∗ei,gej 〉 = 〈ei,ej 〉 = δi
j . (18)

Explicitly, we have

g∗ei = ejg′ i
j , g′ i

k gk
j = δi

j , (19)

i.e., the matrix of g′ is just the inverse transpose of the matrix
of g:

g′ = (gt )−1. (20)

Now, this dual action induces an action �(g) on ∧kV ∗.
However, by an abuse of notation we use again g∗ for this
action

g∗ : ∧kV ∗ → ∧kV ∗, P �→ g∗P. (21)

For the components, this reads as

Pi1...ik �→ (g∗P )i1...ik = g′j1
i1
g′j2

i2
. . . g′jk

ik
Pj1...jk

. (22)

Similarly, the action on the components of a k vector α reads
as

αi1...ik �→ (gα)i1...ik = g
i1
j1
g

i2
j2

. . . g
ik
jk
αj1...jk . (23)

By virtue of Eq. (19) in the special case of the top form E we
have the transformation formula

g∗E = (Detg)−1E. (24)
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III. SLOCC INVARIANTS FOR FERMIONIC SYSTEMS

Now, let us identify V = CN with the finite-dimensional
single-particle Hilbert space. The full Hilbert space of a system
with an indefinite number of fermions is called the Fock space.
Let us denote the vacuum state of the Fock space as |0〉. Let
us moreover define the fermionic operators fi , f

†
j as the ones

satisfying the canonical anticommutation relations

{fi,f
†
j } = δij , {fi,fj } = {f †

i ,f
†
j } = 0, i,j = 1, . . . ,N.

(25)

Then, the Fock space is spanned by vectors of the form
f

†
i1
f

†
i2

. . . f
†
ik
|0〉 with k = 0,1,2, . . . ,N .

Now, this space can alternatively be represented [39] as
the exterior algebra ∧(V ) or ∧(V ∗). For later convenience, we
chose ∧(V ∗). In this picture, the operators fi and f

†
i acting on

the Fock space are mapped to the ones ei∧ and ιei
acting on

∧(V ∗). If we use P ∈ ∧kV ∗ of (6) as the representative of the
unnormalized k-fermion state

|P 〉 = Pi1i2...ik f
†
i1
f

†
i2

. . . f
†
ik
|0〉, (26)

then the action of the fermionic operators on the usual Fock
space can be represented as the

f
†
i |P 〉 �→ ei ∧ P, fi |P 〉 �→ ιei

P (27)

action on k forms. This map clearly gives a representation of
the (25) anticommutation relations. Indeed, from (12) one sees
that

ιei
(ej ∧ P ) = δ

j

i P − ej ∧ (ιei
P ), (28)

hence, {ιei
,ej∧} = δ

j

i .
Let then V be an N -dimensional complex vector space

representing the one-particle states of a fermionic system and
the unnormalized k-fermion states be represented as in Eq. (6).
The Pi1...ik in this formula are the (N

k
) complex amplitudes

characterizing the k-fermion state. Here, we are dealing with
a system of indistinguishable constituents, hence, SLOCC
transformations are acting via the same GL(V ) = GL(N,C)
map on each slot as defined in (22).

Two fermionic states P and P ′ are called SLOCC equivalent
if there exists an element of g ∈ GL(V ) such that P ′ =
g∗P . The abbreviation SLOCC refers to stochastic local
operations and classical communication [22,23], the type
of physical manipulations represented mathematically by
invertible linear transformations g ∈ GL(V ). Sometimes, the
unimodular subgroup SL(V ) = SL(N,C) is also used to define
new equivalence classes. The subgroup

Stab(P ) = {g ∈ GL(V )|g∗P = P } (29)

is called the stabilizer subgroup of the multifermion state.
Under the SLOCC equivalence relation, one can form the
corresponding equivalence classes. We will refer to these
classes as the SLOCC entanglement classes.

In order to distinguish between different types (classes)
of entanglement, one can introduce entanglement measures.
An entanglement measure is a real-valued function f of the
amplitudes Pi1...ik satisfying a number of physically useful
properties [40]. Here, we will be content merely with one
of such properties, namely, that our measures should be

coming from relative invariants under the SLOCC group
(invariants under the unimodular SLOCC group). A rational
function I : ∧kV ∗ → C is a SLOCC relative invariant if
there exists a rational character χ : GL(V ) → GL(1,C), i.e.,
a one-dimensional rational representation such that

I (g∗P ) = χ (g)I (P ). (30)

If χ ≡ 1, then I is called an invariant. The entanglement mea-
sures f : ∧∗V → R studied here are arising as magnitudes of
relative invariants with respect to the SLOCC group (invariants
under the unimodular SLOCC group).

There are a number of covariants that can be defined to form
such invariants. For a study of covariants and invariants useful
in the fermionic context, see Gurevich [41]. Here, we will be
content with some of his constructions suitably modified and
adapted to our purposes. For a multifermionic state P , one can
review a collection of SLOCC invariants as follows.

Degree 1 invariants. These are the ranks of the linear maps
that can be constructed from P and are linear in the amplitudes.
Let ι denote the interior product of Eq. (11). Define the set of
linear maps

P (l) : ∧lV → ∧k−lV ∗, α �→ ιαP . (31)

Now, P (l) is a linear map from a vector space of dimension (N
l
)

to a vector space of ( N
k−l

), thus it has a SLOCC invariant rank at
most min((N

l
),( N

k−l
)). However, not all of these are independent.

Obviously, P (k−l) is the transpose of P (l), thus their rank is
equal.

Degree 2 invariants. These are ranks of linear maps which
are quadratic in the amplitudes of P . Let

κ̃
(l)
P : ∧lV → ∧2k−lV ∗, α �→ ιαP ∧ P. (32)

Now, by virtue of the (13) isomorphism one can define a new
quantity

κ
(l)
P ≡ 	 ◦ κ̃

(l)
P (33)

which is a linear map from ∧lV to ∧N−2k+lV ⊗ ∧NV ∗. The
appearance of the one-dimensional space ∧NV ∗ means that
according to Eq. (24), this object picks up a determinant factor
under a SLOCC transformation. Obviously, this construction
only makes sense if 0 � l � k satisfies

0 � 2k − l � N. (34)

Let us give the explicit form of κ
(l)
P (α):

κ
(l)
P (α) = 1

(N − 2k + l)!

(
K

(l)
P

)a1...aN−2k+l

b1...bl
αb1...bl

× ea1 ∧ . . . ∧ eaN−2k+l
⊗ E, (35)

where
(
K

(l)
P

)a1...aN−2k+l

b1...bl
= 1

(k − l)!k!
εa1...aN−2k+l i1...ik−l ik−l+1...i2k−l

×Pb1...bl i1...ik−l
Pik−l+1...i2k−l

. (36)

Clearly, the ( N

2k − l) × (Nl ) matrices K
(l)
P have a SLOCC invariant

rank. The index structure of K
(l)
P shows that under SLOCC

transformations, the upper indices are transformed via the use
of N − 2k + l matrices gi

j and the lower indices via the use of l

matrices g
′ j
i ; moreover, due to the presence of the Levi-Civitá
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symbol [compare also with the transformation rule of Eq. (24)],
an extra factor of Detg′ = (Detg)−1 appears.

Proposition 1. κ̃
(k−1)
P = 0 if and only if P is separable.

Proof. Let α ∈ ∧k−1V . By definition

κ̃
(k−1)
P (α) = αi1...ik−1Pi1...ik−1ikPj1...jk

eik ∧ ej1 ∧ . . . ∧ ejk . (37)

Since α is arbitrary, then our condition reads as

Pi1...ik−1[ikPj1...jk ] = 0, (38)

where the brackets denote antisymmetrization. It can be shown
(see, e.g., Proposition 3.5.30 of Penrose and Rindler [42]) that
Eq. (38) is a sufficient and necessary condition for Pi1...ik to be
separable, i.e., of the form Pi1...ik = a[i1bi2 . . . zik]. �

These amplitudes can be expressed in terms of a single
Slater determinant, hence they represent separable multi-
fermion states. Note that for these sufficient and necessary
conditions of separability, an equivalent form is provided by
the set of Plücker relations usually expressed [43] in the

�A,B =
k+1∑
n=1

(−1)n−1Pi1i2...ik−1jn
Pj1j2...jk+1 ĵn

= 0 (39)

form. Here, A = {i1,i2, . . . ,ik−1} and B = {j1,j2, . . . ,jk+1}
are k − 1 and k + 1 element subsets of the set {1,2, . . . ,N},
and where the number ĵn has to be omitted.

Degree n + 1 invariants. Define

κ
(l1l2...ln)
P : ⊗n

j=1(∧lj V ) → ∧k+nk−∑n
j=1 lj V ∗

∼= ∧N−k(n+1)+∑n
j=1 lj V ⊗ ∧NV ∗,

α1, . . . ,αn �→ 	
(
ια1P ∧ . . . ∧ ιαn

P ∧ P
)
,

αi ∈ ∧li V . (40)

Just like the ones of Eq. (35), these quantities are based on∏n
j=1 (N

lj
) times ( N

(n+1)k−∑n
j=1 lj

) matrices K
(l1...ln)
P with a SLOCC

invariant rank. For the definition to make sense, we have the
constraint for 0 � lj � k:

0 � (n + 1)k −
n∑

j=1

lj � N. (41)

These covariants with degree over 2 can have extra symmetry
properties if there exists li = lj for some i �= j . Consider, for
example, κ

(ll)
P . Then, we have

κ
(ll)
P (α1,α2) = (−1)k−lκ

(ll)
P (α2,α1), α1,α2 ∈ ∧lV . (42)

As an example needed later on, let us consider the special case
of κ

(l1...ln)
P with l1 = . . . = ln = 1 for three-fermion systems

with N single-particle states. In this case, k = 3, α = αbeb ∈
V , and we define m via 3 + 2n + m = N . For simplicity in
this case we will refer to κ

(l1...ln)
P as κ

[m,n]
P . Then, κ [m,n]

P ∧n V →
∧mV ⊗ ∧NV ∗ has the form

κ
[m,n]
P (α1, . . . ,αn)

= 1

m!

(
K

[m,n]
P

)a1...am

b1...bn
α1

b1 . . . αn
bnea1 ∧ . . . ∧ eam

⊗ E,

(43)

where(
K

[m,n]
P

)a1...am

b1...bn

= 1

2n3!
εa1...ami1...i2n+3Pb1i1i2 . . . Pbni2n−1i2n

Pi2n+1i2n+2i2n+3 .

(44)

Notice that (K [m,n]
P )a1...am

b1...bn
is totally antisymmetric in its

upper, and symmetric in its lower, indices.
The ranks of the linear maps defined above are SLOCC

invariants because a SLOCC transformation on them simply
means an invertible change of basis in the domain and the
range and a multiplication by some power of the SLOCC de-
terminant. However, these ranks are not continuous invariants
in the amplitudes Pi1i2i3 . We can also use the above-defined
linear maps to define continuous relative SLOCC invariants.
The idea is to utilize the trace and determinant defined on linear
automorphisms of vector spaces. In order to do this, we need
to construct square matrices. This can be done by composing
maps with each other to have the same dimensional range and
domain. As we will see, the simplest case arises when the
above-defined maps are square matrices themselves.

It is also worth noting that a system of k qudits with Hilbert
space H = Cd ⊗ . . . ⊗ Cd can be embedded in this special
fermionic system [44] in the following way:

|ψ〉 =
d∑

μ1,...,μk=1

ψμ1...μk
|μ1〉 ⊗ . . . ⊗ |μk〉 ∈ H,

(45)

Pψ =
d∑

μ1,...,μk=1

ψμ1...μk
eμ1 ∧ ed+μ2 ∧ . . . ∧ e(k−1)d+μk .

Obviously, a SLOCC transformation on H of the form g1 ⊗
. . . ⊗ gk ∈ GL(d,C)⊗k acting on ψ like

ψμ1...μk
�→ (g1)ν1

μ1
. . . (gk)νk

μk
ψμ1...νk

(46)

can be embedded in the SLOCC group GL(V ) of our fermionic
system via

g =

⎛
⎜⎝

g1

. . .
gk

⎞
⎟⎠ ∈ GL(dk,C) = GL(V ). (47)

As a consequence, embedded states on different GL(V ) orbits
must be in different GL(d,C)⊗k orbits as well. However,
the converse is not generally true: entanglement classes of
the fermionic system may split into different classes when
just the embedded system is considered. However, when we
consider the generalized SLOCC group, i.e., the SLOCC group
combined with permutations, some important exceptions arise.
In the case of three-qubits, the embedding into three-fermions
with six single-particle states is bijective between the SLOCC
classes of the two systems. As was shown in the case of
four-qubits embedded into the system of four-fermions with
eight single-particle states, two inequivalent four-qubit states
remain inequivalent under the fermionic SLOCC group [45].
As pointed out in Sec. IV D 1, splitting does not occur
between families of entanglement classes for the embedding
of three-qutrits into the system of three-fermions with nine
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single-particle states. Most likely this is true for the entan-
glement classes too. In the cases when splitting of fermionic
entanglement classes does occur, one can still use the ranks
of the maps κ

(l1...ln)
Pψ

in order to obtain a coarse graining of the
entanglement classes of H.

Finally, note that one can see from the isomorphism (27)
that the anticommutation relations (25) are invariant under
invertible SLOCC transformations. Based on this property,
one can extend the group GL(V ) acting on fermionic states
to a bigger one which also enables the implementation of
Bogoliubov transformations. This way, one can obtain a
classification of states on the whole fermionic Fock space,
not just on the fixed-particle-number subspaces. For details on
this subject, see our recent work [46].

IV. ENTANGLEMENT OF THREE-FERMIONS

A. Six single-particle states

The entanglement classification of three-fermions with
six single-particle states is already well known and has a
broad connection with several mathematical and physical
structures [9–11,25] in the literature. It was first recognized as
a quantum information theory problem in Ref. [30], where also
the connection to Freudenthal triple systems has been revealed.
Later, it has been realized that the corresponding mathematical
problem has already been solved long ago [14] and that
the generic SLOCC orbit is precisely the one which shows
up in the theory of prehomogeneous vector spaces [31,32].
Moreover, within such three-fermionic systems, three-qubit
systems can be embedded [25,30,44,45] in this case this
generic SLOCC class corresponds to the famous Greenberger-
Horne-Zeilinger (GHZ) class [23] of three-qubit entanglement.
Furthermore, recently it has been shown that the problem
is even connected to string theory via the so-called Hitchin
functionals [26,33,34].

Let V be a the six-dimensional complex vector space C6.
Then, an unnormalized three-fermion state can be represented
as

P = 1

3!
Pi1i2i3e

i1 ∧ ei2 ∧ ei3 ∈ ∧3V ∗. (48)

The Pi1i2i3 are the 20 complex amplitudes describing the three-
fermion state. The SLOCC transformations act with the same
GL(V ∗) = GL(6,C) map on each slot as

Pi1i2i3 �→ g
′ j1
i1

g
′ j2
i2

g
′ j3
i3

Pj1j2j3 (49)

just as defined in Eqs. (22) and (20).
In the following, we show that the SLOCC orbits of

this system are completely characterized by the ranks of the
degree one P (2) [Eq. (31)] and the degree two κ

(l1=1)
P = κ

[1,1]
P

[Eq. (35)] covariants. In order to see this, let us consider the
latter one. According to Eq. (36), its underlying 6 × 6 matrix
has the explicit form

(
K

[1,1]
P

)a

b
= 1

2!3!
εai1i2i3i4i5Pbi1i2Pi3i4i5 , (50)

where we also used the notation introduced in Eq. (44). By
construction, K [1,1]

P transforms under SLOCC transformations

as (
K

[1,1]
P

)a

b
�→ Det(g′)ga

c g
′ d
b

(
K

[1,1]
P

)c

d
, g ∈ GL(V ). (51)

According to Eq. (20), the matrix g′ is just the inverse
transpose of the one g, hence, this transformation rule is of
the form K

[1,1]
P �→ [Det(g)]−1 gK

[1,1]
P g−1. It follows that any

power of the trace of K
[1,1]
P is a relative invariant. One can

immediately check that TrK [1,1]
P = 0, hence, the next item in

line to experiment with is Tr(K [1,1]
P )2.

It is well known that this quantity suitably normalized

D(P ) = 1
6 Tr

(
K

[1,1]
P

)2
(52)

is indeed a relative invariant and its magnitude defines a
good measure of entanglement. That D is a relative invariant
transforming as

D(P ) �→ [Det(g′)]2D(P ) (53)

can immediately be seen from the transformation property of
Eq. (51) and the definition of Eq. (52). In order to see the
last property, namely, that its magnitude provides a measure
of entanglement, let us give this relative invariant another
look [30]. First, we reorganize the 20 independent complex
amplitudes Pi1i2i3 into two complex numbers η,ξ and two
complex 3 × 3 matrices X and Y as follows. As a first step,
we change our labeling convention by using the symbols 1̇,2̇,3̇
instead of 4,5,6, respectively; hence, we have

(1,2,3,4,5,6) ↔ (1,2,3,1̇,2̇,3̇). (54)

Hence, for example, we can alternatively refer to P456 as P1̇2̇3̇
or to P125 as P122̇. Now, we define

η ≡ P123, ξ ≡ P1̇2̇3̇, (55)

X =

⎛
⎜⎝

X11 X12 X13

X21 X22 X23

X31 X32 X33

⎞
⎟⎠ ≡

⎛
⎜⎝

P12̇3̇ P13̇1̇ P11̇2̇

P22̇3̇ P23̇1̇ P21̇2̇

P32̇3̇ P33̇1̇ P31̇2̇

⎞
⎟⎠, (56)

Y =

⎛
⎜⎝

Y11 Y12 Y13

Y21 Y22 Y23

Y31 Y32 Y33

⎞
⎟⎠ ≡

⎛
⎜⎝

P1̇23 P1̇31 P1̇12

P2̇23 P2̇31 P2̇12

P3̇23 P3̇31 P3̇12

⎞
⎟⎠. (57)

With this notation, the quartic polynomial of Eq. (52) is

D(P ) = [ηξ − Tr(XY )]2 − 4 Tr(X�Y �)

+ 4η Det(X) + 4ξ Det(Y ), (58)

where X� and Y � correspond to the regular adjoint matrices for
X and Y, hence, for example, XX� = X�X = Det(X)I with I

the 3 × 3 identity matrix.
Now, according to Eq. (45), we can embed a three-qubit

state ψ into our system of three-fermions with six single-
particle states as the state Pψ . However, for convenience we
chose another form of this embedding [30] which amounts
to a permutation (3245) of the basis vectors e1, . . . e6. One
can show that under this permutation, the matrix of embedded
SLOCC transformations familiar from Eq. (47) takes a form
of a 6 × 6 matrix consisting of four blocks of 3 × 3 diagonal
matrices. Via this embedding, we keep merely eight complex
amplitudes from the 20 ones of P which transform according to

042310-6



ENTANGLEMENT CLASSIFICATION OF THREE FERMIONS . . . PHYSICAL REVIEW A 89, 042310 (2014)

the restricted SLOCC group as the amplitudes of a three-qubit
system. Let us label the eight amplitudes of Pψ as

(P123,P123̇,P12̇3,P1̇23,P1̇2̇3̇,P1̇2̇3,P1̇23̇,P12̇3̇)

= (ψ000,ψ001,ψ010,ψ100,ψ111,ψ110,ψ101,ψ011), (59)

where unlike in Eq. (45), now we switched to the use of the
conventional labeling μ1,μ2,μ3 = 0,1 of basis states. Then,
D(Pψ ) ≡ D(ψ) takes the following form:

D(ψ) = [ψ0ψ7 − ψ1ψ6 − ψ2ψ5 − ψ3ψ4]2

− 4[(ψ1ψ6)(ψ2ψ5) + (ψ2ψ5)(ψ3ψ4)

+ (ψ3ψ4)(ψ1ψ6)] + 4ψ1ψ2ψ4ψ7 + 4ψ0ψ3ψ5ψ6,

(60)

where (ψ0,ψ1, . . . ,ψ7) ≡ (ψ000,ψ001, . . . ,ψ111). D(ψ) gives
rise to a famous entanglement measure [47] called the three-
tangle τ123 which for normalized states satisfies

0 � τ123 = 4|D(ψ)| � 1. (61)

Hence, D(P ) with the normalization as given by Eq. (52) is
a natural generalization of the three-tangle for three-fermions
with six single-particle states. For normalized fermionic states,
it can be shown [30] that an analogous quantity T123 formed
from D(P ) satisfies

0 � T123 = 4|D(P )| � 1 (62)

just like the three-tangle does for three-qubits. We note that
the expression for D as given by Eq. (58) is just the quartic
invariant of the Freudenthal triple system over the cubic Jordan
algebra M(3,C) of 3 × 3 complex matrices [30,48].

Let us give yet another form [26,49] of the quartic invariant
D(P ). Define a symplectic form on ∧3V ∗,

{. . . , . . .} : ∧3V ∗ × ∧3V ∗ → C,
(63)

(P,Q) �→ 1

3!3!
εijklmnPijkQlmn,

and a three-form P̃ dual to the original three-form P ∈ ∧3V ∗
as

P̃ = 1

3!
P̃abce

a ∧ eb ∧ ec,

P̃abc = 1

2!3!
εdi2i3i4i5i6PbcdPai2i3Pi4i5i6

= Pbcd

(
K

[1,1]
P

)d

a
. (64)

Then, the new form of the quartic invariant is

D(P ) = 1
2 {P̃ ,P }. (65)

In the theory of Freudenthal triple systems, the quantity P̃

which is cubic in the original amplitudes of P is usually defined
via the so-called trilinear form [48]. With the help of P̃ for a
state with D �= 0, one can define a dual fermionic state as

P̂ ≡ −i
P̃√
D

. (66)

With our convention of defining a factor of −i, the expression
of P̂ boils down to the expression of the so-called Freudenthal
dual of P defined only for real states in the paper [49] of

TABLE I. Entanglement classes of three-fermions with six single-
particle states, and the ranks of the simplest covariants.

Type Canonical form of P Rank P (2) Rank κ
(1)
P Rank κ

(2)
P

Null 0 0 0 0
Sep e123 3 0 0
Bisep e123 + e156 5 1 4
W e126 + e423 + e153 6 3 6
GHZ e123 + e456 6 6 6

Borsten et al. One can check that the dual state satisfies the
identities

D(P̂ ) = D(P ), ˆ̂P = −P. (67)

Notice also that according to Eqs. (53) and (66) (unlike the
quantity P̃ ) the one P̂ does not pick up a determinant factor
under SLOCC transformations.

The classification problem for three-forms in V = C6

under the group action GL(V ) has been solved long ago by
Reichel [14]. In the context of fermionic entanglement, it has
recently been rediscovered by physicists [30]. According to
this result, the GL(V ) orbits of three-forms correspond to the
SLOCC orbits of three-fermions with six single-particle states.
We have five SLOCC classes. Using the notation

eijk ≡ ei ∧ ej ∧ ek, (68)

the representatives of these classes taken together with the
ranks of the basic covariants can be seen in Table I.

The four nontrivial classes are labeled by the states
familiar from the classification of three-qubits [23]. Namely,
we have the totally separable, biseparable, W, and GHZ
(Greenberger-Horne-Zeilinger) classes. Using the language of
embedded systems, the notation of Eq. (54), and the mapping
of Eq. (59), one obtains the normalized representatives of these
classes as |000〉 for the separable, (|000〉 + |011〉)/√2 for
the biseparable, (|001〉 + |010〉 + |100〉)/√3 for the W, and
(|000〉 + |111〉)/√2 for the GHZ class.

An alternative description of the nontrivial SLOCC classes
in terms of normalized representatives can also be given using
the invariant D and the covariant P̃ as follows:

PGHZ = 1

2
(e123 + e156 + e264 + e345), D(P ) �= 0 (69)

PW = 1√
3

(e123 + e156 + e264), D(P ) = 0, P̃ �= 0 (70)

Pbisep = 1√
2

(e123 + e156), D(P ) = 0, P̃ = 0 (71)

Psep = e123, D(P ) = 0, P̃ = 0. (72)

Here, we have given the representatives of the GHZ and W
classes in a form different from those appearing in Table I.
In this new form, the number of terms appearing in the
representatives is increasing as we proceed from the separable
class to the maximally entangled GHZ one. Notice that the
difference from the representatives of the GHZ and W classes
of Table I and Eqs. (69) and (70) amounts to a SLOCC
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transformation. The meaning of these transformations can
easily be clarified if we reinterpret these states as three-qubit
ones according to the prescription of Eq. (59). Indeed, using the
new labeling of Eq. (54), the three-qubit states corresponding
to those of Eqs. (69)–(72) are

1

2
(|000〉 + |011〉 + |101〉 + |110〉), (73)

1√
3

(|000〉 + |011〉 + |101〉), (74)

1

2
(|000〉 + |011〉), (75)

|000〉. (76)

Now, it is easy to show that

1

2
(|000〉 + |011〉 + |101〉 + |110〉)

= (H ⊗ H ⊗ H )
1√
2

(|000〉 + |111〉)

= H ⊗ H ⊗ H | GHZ〉 (77)

and
1√
3

(|000〉 + |011〉 + |101〉)

= (I ⊗ I ⊗ X)
1√
3

(|001〉 + |010〉 + |100〉)

= (I ⊗ I ⊗ X)|W〉, (78)

where H and X are the usual Hadamard and bit flip gates

H = 1√
2

(
1 1
1 −1

)
, X =

(
0 1
1 0

)
. (79)

Hence, these states are local unitary (hence also SLOCC)
equivalent to the usual GHZ and W states [23]. Notice also
that since

D[(g1 ⊗ g2 ⊗ g3)ψ] = Det(g1)2Det2(g2)Det2(g3)D(ψ),

g1,g2,g3 ∈ GL(2,C) (80)

none of these transformations change the value of Cayley’s
hyperdeterminant D(ψ). Moreover, since D(Pψ ) = D(ψ)
after reinterpreting again our three-qubit states as three-
fermionic ones via the correspondence ψ �→ Pψ , the SLOCC
transformations acting on the corresponding fermionic states
can be obtained from those of Eqs. (77) and (78) using Eqs. (46)
and (47) and the permutation (3245).

Notice also that in order to separate the last two classes
with representatives of Eqs. (71) and (72), one has to use
the Plücker relations of Eqs. (38) and (39). In our special
case, these relations can be described in the following elegant
form [50]:

ηX = Y �, ξY = X�, ηξI = XY, (81)

where for the connection between the amplitudes of P and the
quantities (η,X,Y,ξ ), see Eqs. (55)–(57). These relations hold
if and only if the corresponding fermionic state is separable,
i.e., can be written in the form of a single Slater determinant.

The GHZ and W classes are the two inequivalent classes for
tripartite entangled fermionic systems with six modes. These
classes are completely characterized by the relative invariant
D(P ) and the dual state P̃ (a covariant). Note that the GHZ
class corresponds to a stable SLOCC orbit [32]. Stability
means that states in a neighborhood (with respect to the
Zariski topology) of a particular one are all SLOCC equivalent
ones. More precisely, states of the GHZ class form an open
dense orbit within the state space of three-fermions with six
single-particle states. This fact is related to the result that our
state space of such fermions corresponds to a prehomogeneous
vector space which is the class No. 5 in the Sato-Kimura
classification [32] of such spaces.

Let us elaborate on this stable class of GHZ states. As we
know, the canonical form of a representative from the genuine
entangled (GHZ) class is

P0 = e123 + e456. (82)

For this representative, one can easily check that the matrix of
K

[1,1]
P0

is of the form

(
K

[1,1]
P0

)a

b
=

⎛
⎜⎜⎜⎜⎜⎝

1
1

1
−1

−1
−1

⎞
⎟⎟⎟⎟⎟⎠

. (83)

Now, D(P0) = 1, hence, for the dual state of Eq. (66) we have

P̂0 = −i(e123 − e456). (84)

Now, the states P0 + iP̂0 and P0 − iP̂0 are clearly separable
ones. Moreover, since P and P̂ both transform covariantly
under SLOCC transformations, separability is preserved;
hence, for any state P with D(P ) �= 0 (i.e., one in the GHZ
class) the states

U± = P ± iP̂ (85)

are separable ones. In other words, for any state in the GHZ
class the expression

P = 1
2 (U+ + U−) (86)

provides a canonical decomposition in terms of two Slater
determinants.

Let us also discuss the structure of the SLOCC classes
for real states. In this case, the vector space underlying our
three-fermion state space is V = R6 and the SLOCC group
is GL(6,R). In contrast to the five classes of Table I, now
we have six entanglement classes. The extra class is coming
from a splitting of the usual GHZ class into two classes.
The two classes are having D(P ) > 0 and D(P ) < 0 are
called GHZ+ and GHZ− classes, respectively. The normalized
representatives are

PGHZ+ = 1
2 (e123 + e156 + e264 + e345),

(87)
PGHZ− = 1

2 (e123 − e156 − e264 − e345).
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Of course, PGHZ+ is just the state known from Eq. (69) which
is real SLOCC equivalent to the GHZ representative of Table I.
Let us illustrate this result in the language of embedded three-
qubit systems. These fermionic states correspond to the ones

|GHZ+〉 = 1
2 (|000〉 + |011〉 + |101〉 + |110〉),

(88)
|GHZ−〉 = 1

2 (|000〉 − |011〉 − |101〉 − |110〉).
We already know from Eq. (77) that

|GHZ+〉 = H ⊗ H ⊗ H |GHZ〉. (89)

On the other hand, we have

|GHZ−〉 = U ⊗ U ⊗ U |GHZ〉, U = 1√
2

(
1 i

1 −i

)
. (90)

These expressions illustrate the fact that although the states
|GHZ±〉 are complex SLOCC equivalent, however, they are
real SLOCC inequivalent. One can also write these states as

|GHZ+〉 = 1√
2

(|F+〉 ⊗ |F+〉 ⊗ |F+〉 + |F−〉 ⊗ |F−〉 ⊗ |F−〉),

|F±〉 = 1√
2

(|0〉 ± |1〉), (91)

|GHZ−〉 = 1√
2

(|E〉 ⊗ |E〉 ⊗ |E〉 + |E〉 ⊗ |E〉 ⊗ |E〉),

|E〉 = 1√
2

(|0〉 + i|1〉), (92)

where the overline means complex conjugation. These ex-
pressions illustrate our result of Eq. (86) for decomposing
an arbitrary state from the GHZ class into two separable
states. According to the definition of the dual state P̂ of
Eq. (66), we see that for real states with D(P ) > 0 the
separable components are remaining real; on the other hand,
for D(P ) < 0 they are complex-conjugate states. In this latter
case, one can define the 6 × 6 matrix [33]

JP ≡ K
[1,1]
P√−D(P )

. (93)

One can prove that (K [1,1]
P )2 = D(P )I , where I is the 6 × 6

identity matrix. Hence, for D(P ) < 0 we have

J 2
P = −I. (94)

This means that if we start with a real three-fermion state
P satisfying D(P ) < 0, then on its single-particle space V =
R6 this P defines a complex structure. For the special state
PGHZ− of Eq. (87), the complex structure in question is just the
canonical one giving rise on V to the complex coordinates

E1,2,3 = e1,2,3 + ie4,5,6, E1,2,3 = e1,2,3 − ie4,5,6. (95)

Since

E123 + E123 = 2(e123 − e156 − e426 − e345) (96)

in the three-qubit reinterpretation, these complex coordinates
correspond to our writing |GHZ−〉 in the (92) form. Notice
also that with respect to the complex structure JPGHZ− , the

components E123 and E123 are giving rise to the (3,0)
holomorphic and (0,3) antiholomorphic parts of PGHZ− .

We note in closing that there is an interesting physical
application of these complex structures as defined by real
three-fermion states. For this one takes a closed oriented six-
dimensional real manifold M equipped with a real differential
three-form P with D(P ) < 0 everywhere. Notice that locally
at each point of M the tangent space and its dual gives rise to
copies of a V = R6, hence, we can regard the differential three-
form P as a collection of three-fermion states parametrized by
the points of M. Now, such a P defines an almost complex
structure JP on M. One can then show [33] that when P is
closed and belonging to a fixed cohomology class, then the
critical points of the functional

VH =
∫
M

√
−D(P )d6x (97)

are satisfying the equation

dP̂ = 0, (98)

meaning that the dual form P̂ is also closed. Hence, the sep-
arable differential form � = P + iP̂ is of type (3,0), closed,
and the almost complex structure JP is integrable. In this way,
one can generate a complex structure to a six-dimensional
manifold M rendering it to a threefold. Calabi-Yau threefolds
are particularly important actors in string theory. Such spaces
describe the structure of extra dimensions. The shapes and
volumes of such spaces are subject to quantum fluctuations. It
can be shown that the fluctuations in shapes preserving volume
correspond to fluctuations in the complex structure of M.
Hence, the result briefly discussed above means that the critical
points of certain action functionals of three-forms belonging
to a fixed cohomology class single out special complex
structures. Fixing a cohomology class physically means that
we fix the wrapping configurations of three-dimensional
extended objects, membranes, around the noncontractible
three-cycles of the extra dimensions. Under certain conditions,
the projections of these higher-dimensional configurations to
our four-dimensional space-time look like charged black holes.
For an application of these ideas within the interesting field
of the so-called black-hole and qubit correspondence [51], see
our recent paper on Hitchin functionals related to measures of
entanglement [26].

B. Seven single-particle states

In the case of three-fermions with seven single-particle
states, an arbitrary unnormalized state is described by the
element P ∈ ∧3V ∗ where V = C7. Such an element can be
written as

P = 1

3!
PI1I2I3e

I1 ∧ eI2 ∧ eI3 (99)

with {eI }7
I=1 a basis of V ∗. Now, the SLOCC group is GL(V ) =

GL(7,C) with the same kind of action as in (22).
Let us first consider the covariants κ

(1)
P ≡ κ

[2,1]
P and κ

(1,1)
P ≡

κ
[0,2]
P . For simplicity, we introduce the notation

(MA)BC ≡ (
K

[2,1]
P

)AB

C
, (100)

NAB ≡ (
K

[0,2]
P

)
AB

, (101)
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where their explicit form according to Eq. (44) is

(MA)BC = 1

12
εABI1I2I3I4I5PCI1I2PI3I4I5 , (102)

NAB = 1

24
εI1I2I3I4I5I6I7PAI1I2PBI3I4PI5I6I7 . (103)

Note that for later use we have regarded M as a collection
of seven 7 × 7 matrices. Also note that in the real case
V = R7 used in the literature on manifolds of special holon-
omy [33,35,52], a suitable scalar multiple of the latter covariant
shows up as

BAB = − 1
6NAB. (104)

It is arising from the map BP : V ⊗ V → ∧7V ∗ which gives
rise to a seven-form when acting on the pair of vectors v and
u as

BP (v,u) = − 1
6 ιvP ∧ ιuP ∧ P. (105)

The transformation properties of these covariants are

(MA)BC �→ (Detg′)gA
D gB

E g′F
C (MD)EF , (106)

NAB �→ (Detg′)g′C
A g′D

B NCD. (107)

It is convenient to study the case of three-fermions with seven
single-particle states as the case of adding an extra mode to the
six original ones of three-fermions discussed in the previous
section. For this purpose, we split our seven-dimensional
vector space V to the direct sum of a six- and a one-dimensional
vector space spanned by the extra basis vector e7. Then, we
write

P = P + ω ∧ e7, (108)

where P is given by Eq. (48) and ω is a two-form

ω = 1
2ωij e

i ∧ ej . (109)

In the following, we adopt the convention for the indices such
as A,B, . . . I,J, . . . running from 1 to 7, and on the other hand
indices such as a,b, . . . i,j, . . . are running from 1 to 6. Hence,
we have

Pabc ≡ Pabc, Pab7 = ωab. (110)

Now, for the components of our covariants, a straightforward
calculation yields the following results:

(M7)7
7 = 0, (M7)7

c = 0,

(M7)b7 = 1
12εbijklmωijPklm, (M7)bc = Kb

c , (111)

(Ma)7
7 = − 1

12εaijklmωijPklm, (Ma)7
c = −Ka

c ,

(Ma)b7 = 1
4εabijklωijωkl, (112)

(Ma)bc = 1
4εabijkl

(
Pcijωkl − 2

3ωciPjkl

)
, (113)

N77 = 6Pf(ω),

Na7 = N7a = − 1
12εijklmn

(
ωaiωjkPlmn + 2

3Paijωklωmn

)
,

(114)

Nab = 1
8εijklmnPaijPbklωmn + Kc

aωcb + Kc
bωac. (115)

Here, by an abuse of notation for the covariant of Eq. (50)
we have used the shorthand Ka

b and Pf(ω) is the Pfaffian of ω

defined as

Pf(ω) = 1

233!
εijklmnωijωklωmn. (116)

These expressions can be further simplified in the special case
when

P ∧ ω = 0. (117)

The meaning of this condition is as follows. Due to the
split of Eq. (108), one can understand the structure of three-
fermions with seven single-particle states with 35 amplitudes
via looking at the simpler structure of three-fermions with
six single-particle states having merely 20 ones. In this
perspective, the two-form ω giving rise to the extra 15
amplitudes can be regarded as an extra structure living on
the six-dimensional vector space: a symplectic form. The
condition P ∧ ω = 0 encapsulates a compatibility condition
between the symplectic form ω and the three-form P . In the
mathematical literature, this condition means that the three-
form P is primitive with respect to ω. When P is primitive,
using the identity ιei (P ∧ ω) = ιei P ∧ ω − P ∧ ιei ω one can
show that

(
Paijωkl + 2

3ωaiPjkl

)
ei ∧ ej ∧ ek ∧ el = 0. (118)

For our covariants, this result yields the much simpler looking
expressions

(M7)7
7 = (M7)7

c = (M7)b7 = 0, (M7)bc = Kb
c , (119)

(Ma)7
7 = 0, (Ma)7

c = −Ka
c , (Ma)b7 = 1

4εabijklωijωkl,

(Ma)bc = 1
2εabijklPcijωkl, (120)

N77 = 6Pf(ω), Na7 = N7a = 0,
(121)

Nab = 3Kc
aωcb = 3Kc

bωca.

Notice that by virtue of Eq. (121), the 7 × 7 matrix N can be
written in the factorized form

N =
( −3ω 0

0 6Pf(ω)

) (
K 0
0 1

)
, (122)

where ω and K are the 6 × 6 matrices corresponding to
the coefficient matrix of the two-form ω and the matrix of
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Eq. (50). We see that if the first matrix has full rank, then
rank N =rankK + 1. Also, because the matrix N has to be
symmetric, ω and K must anticommute.

It is convenient to define another symmetric 7 × 7 matrix

LAB ≡ (MA)CD(MB)DC . (123)

This matrix is a covariant quartic in the original amplitudes
and under SLOCC transformations transforms as

LAB �→ (Detg′)2gA
CgB

DLCD. (124)

The 7 × 7 matrix L can be regarded as the dual of the one N .
In Appendix A, it is shown that for P ∧ ω = 0, this matrix can
also be written in the factorized form

L =
(−12ω̃ 0

0 6

) (
K 0

0 D(P )

)
, (125)

where

ω̃ij = 1
8εijklmnωklωmn. (126)

From the covariants N and L one can form a relative invariant
J (P) homogeneous of degree 7:

J (P) ≡ 1

24327
Tr(L N) = 1

24327
LABNAB, (127)

where the normalization was chosen for future convenience.
Under SLOCC transformations we have

J (P) �→ (Detg′)3J (P). (128)

Clearly, when written in terms of the components of P and
ω, the relative invariant J (P) has a complicated expression.
However, by virtue of Eqs. (122) and (125) in the special case
when P ∧ ω = 0, it has a factorized form

J (P) = 1
4 Pf(ω)D(P ). (129)

As a useful relative invariant, one can also define either Det(N)
or Det(L). However, it is easy to see that none of them are
independent from J (P). Indeed, using, e.g., Eq. (122) for
calculating Det(N), one obtains

Det(N) = −6 × [9Pf(ω)D(P )]3 . (130)

Here, we have used Det(K) = −D3 which follows from K2 =
D1, Tr(K) = 0, and the Newton identities, moreover, we have
also used that Det(ω) = [Pf(ω)]2. The case of real states is
important in the string theory literature where the determinant
of the matrixBP of Eq. (104) is used [35] as a relative invariant.
With our normalization as used in Eq. (127), we have

DetBP = [J (P)]3 . (131)

In order to present the SLOCC classification of three-fermions
with seven single-particle states, let us consider again our
seven-dimensional complex vector space V with its canonical
basis vectors by eA. Let us denote as usual the basis vectors
of its six-dimensional subspace by ea, a = 1, . . . ,6. As a
complex basis of the dual of this subspace we define

E1,2,3 = e1,2,3 + ie4,5,6, E1,2,3 = e1,2,3 − ie4,5,6, E7 = ie7.

(132)

e6 e1 e5

e3

e4

e2

e7

FIG. 1. The oriented Fano plane. The points of the plane corre-
spond to the basis vectors of the seven-dimensional single-particle
space. The lines of the plane represent three-fermion basis vectors
with the arrows indicating the order of single-particle states in them
to get a plus sign.

Then, a GHZ-type state in the six-dimensional subspace can
be written as

E123 + E123 = 2(e123 − e156 + e246 − e345). (133)

With the usual relabeling 4,5,6 �→ 1,2,3 and up to normaliza-
tion, the state on the right-hand side is just the one of Eq. (96).
Let us add to this state the one (E11 + E22 + E33) ∧ E7. This
contains a full rank symplectic form of that six-dimensional
subspace in complex form. Then, as our basic three-fermion
state with seven single-particle states we chose

P0 ≡ 1
2 [E123 + E123 + (E11 + E22 + E33) ∧ E7]

= e123 − e156 + e246 − e345 + e147 + e257 + e367. (134)

Notice that the structure of our tripartite state P0 is encoded in
the incidence structure of the lines of the oriented Fano plane
which is also encoding the multiplication table of the octonions
(see Fig. 1). As a complex three-form it can be shown [15,52]
that the subgroup Stab(P0) of the SLOCC group GL(7,C) that
fixesP0 is the exceptional group GC

2 × {ω1|ω3 = 1} where 1 is
the 7 × 7 identity matrix. From the theory of prehomogeneous
vector spaces [31,32] it is known that the three-form P0 can be
regarded as the representative of the Zariski-open SLOCC orbit
of the prehomogeneous vector space [∧3V,GL(7,C),�]. Here,
� refers to the representation of G ≡ GL(7,C) on W ≡ ∧3V

of the (22) form, i.e., the one induced by the canonical
representation of G on V . The orbit determined by P0 is
dense, meaning its Zariski closure gives the full space ∧3V .
Notice that dim ∧3 V = 35, dimG = 49, and dimStab(P0) =
dimG2 = 14, hence, dimG = dimW + dimStab(P0).

A comment here is in order. Rather than using P0 as an
entangled state, in string theory it is used as a real differential
form on a seven-dimensional real manifold. In this context,
instead of the complex SLOCC group, the real one, i.e.,
GL(7,R), is used. The stabilizer of P0 as a real three-form
is the compact real form G2 which is the automorphism group
of the octonions. In the theory of special holonomy manifolds,
invariant forms such as P0 are called calibrations. Note that
after the permutation e5 ↔ e7 we obtain the form for P0

usually used in the literature on such manifolds [52,53].
The orbit structure of three-fermions with seven single-

particle states is available in the mathematical literature [14,41]
and summarized in Table II with the ranks of the basic
covariants computed. Here, we would like to point out an
important fact not mentioned in the literature that the structure
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TABLE II. Entanglement classes of three-fermions with seven single-particle states.

Name Type Canonical form of P Rank κ
(1,1)
P Rank P (2) Rank κ

(1)
P

I Null 0 0 0 0
II Sep E123 0 3 0
III Bisep E1 ∧ (E23 + E2̄3̄) 0 5 1
IV W E123̄ + E12̄3 + E1̄23 0 6 3
V GHZ E123 + E1̄2̄3̄ 0 6 6
VI Sympl3-null (E11̄ + E22̄ + E33̄) ∧ E7 1 7 1
VII Sympl3-sep (E11̄ + E22̄ + E33̄) ∧ E7 + E123 1 7 4
VIII Sympl3-bisep (E11̄ + E22̄ + E33̄) ∧ E7 + E1 ∧ (E23 + E2̄3̄) 2 7 6
IX Sympl3-W (E11̄ + E22̄ + E33̄) ∧ E7 + E123̄ + E12̄3 + E1̄23 4 7 7
X Sympl3-GHZ (E11̄ + E22̄ + E33̄) ∧ E7 + E123 + E1̄2̄3̄ 7 7 7

of these SLOCC classes can elegantly be described using the
Fano plane as follows (see Fig. 2).

Class I (null). This is the null class consisting of the trivial
zero state.

Class II (sep). This is the class of separable states consisting
of a single Slater determinant. As a representative of this class
we choose the e367 part of the state P0 of Eq. (134). We can
choose a graphical representation for this state as an oriented
circle with three distinguished points 3, 6, and 7. Alternatively,
after remembering that the numbers 367 can be cyclically
permuted without introducing a sign, we can represent this
state as an oriented line (673) of the Fano plane starting from
the point 6 and ending at the point 3.

Class III (bisep). This is the class of biseparable states.
As a representative of this class, we choose the e257 + e367

part of the state P0. Graphically, we can refer to this class
as two oriented circles touching each other at the point 7.
Alternatively, using a cyclic rearrangement, one can depict

6 1 5

3

4

2
7

6 1 5

3

4

2
7

6 1 5

3

4

2
7

X: sympl3-GHZ IX: sympl3-W VIII: sympl3-bisep

6 1 5

3

4

2
7

6 1 5

3

4

2
7

6 1 5

3

4

2

VII: sympl3-sep VI: sympl3 V: GHZ

6 1 5

3

4

2

6 5

32
7

6

3
7

IV: W III: bisep II: sep

FIG. 2. Graphical representation of the nine entanglement classes
of three-fermions with seven single-particle states with the use of the
Fano plane.

this class as the two oriented lines 572 and 673 of the Fano
plane intersecting at the point 7.

Class IV (W). This is the SLOCC class of W states
with representative taken to be the e246 − e345 − e156 part of
P0. Notice that in the notation of Eq. (54) using a cyclic
rearrangement, this state is of the −e1̇23̇ − e1̇2̇3 − e12̇3̇ form
which is the negative of a state reminiscent of the three-qubit
W state, hence the name. For a graphical representation, one
can imagine three oriented circles touching each other in the
points 4, 5, and 6. Alternatively, one can take the three oriented
lines (435), (516), and (624) of the Fano plane forming a
clockwise-oriented triangle with its vertices taken as the points
4, 5, and 6.

Class V (GHZ). This is the SLOCC class of GHZ states
with representative taken to be the e123 − e156 + e246 − e345

part of the state P0. To see that this state is SLOCC equivalent
to the usual two-term GHZ state, just refer to Eq. (133). For
a graphical representation, one can envisage the equilateral
triangle of class IV with a clockwise-oriented circle inserted
in the middle touching the triangle in the three points: 1, 2,
and 3. Clearly, the resulting picture is just that part of the Fano
plane that we obtain after omitting the three lines intersecting
in the point 7.

Class VI (sympl3-null). This class is the one whose repre-
sentative is based on a symplectic form with rank 3 defined on a
six-dimensional subspace of V . The representative we chose is
just the one based on the symplectic form e14 + e25 + e36. This
gives rise to the e147 + e257 + e367 part of P0. As a graphical
representation for this class we chose the three lines 572, 673,
and 471 of the Fano plane intersecting in the point 7. Notice
that the arising diagram is just the complement of that part of
the Fano plane which represents the GHZ class.

Class VII (sympl3-sep). This class is represented by a full
rank symplectic form plus a separable state. The corresponding
representative is the e123 + e147 + e257 + e367 part of P0. The
graphical picture we can attach to this case is that part
of the Fano plane which consists of three lines intersecting in
the point 7 and a circle 123. This picture is just the complement
of the triangle part of the Fano plane corresponding to the W
class.

Class VIII (sympl1-GHZ). This class is represented by
the four-term GHZ state plus a term containing a rank-one
part from the symplectic form. This means that we keep
the following five terms from P0: e123 − e156 + e246 − e345 +
e147. The resulting diagram is containing five lines of the Fano
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plane. These are the ones that are the complements of the two
lines that show up in the class of biseparable states.

Class IX (sympl2-GHZ). This class is represented by the
four-term GHZ state plus two terms containing the rank-two
part of the symplectic form. In this case, we keep the following
six terms from P0: e123 − e156 + e246 − e345 + e147 + e257.
The corresponding diagram contains six lines of the Fano
plane. These are the ones that form the complement of the
single line (673) showing up in the separable class.

Class X (sympl3-GHZ). This is the class which corresponds
to the Zariski dense orbit in the space of three-forms. It is
represented by the state P0 itself. Clearly, since now we keep
all seven Slater determinants: the four comprising the GHZ
state and the three giving rise to the full rank symplectic form.
The graphical representation of this class is just the Fano plane
itself. For the sake of completeness, we mention that this case
can be regarded as the complement of the null class represented
by the zero state.

Using this graphical representation based on the Fano
plane, one can obtain an alternative description of the SLOCC
classes. First, observe that one can organize the 10 classes
into dual pairs [41]. These pairs are as follows (I,X), (II,IX),
(III,VIII), (IV,VII), (V,VI). The pairs exhibit complementary
sets of lines of the Fano plane. The five dual pairs can be
labeled by the classes I–V that are just the well-known five
classes of three-fermions with six single-particle states. Some
of the remaining five classes, namely classes VI, VII, and
X, can be labeled by a full rank symplectic form (sympl3)
plus representatives from the classes I–V (null, sep, GHZ).
However, using the finite geometry of the Fano plane, one
can easily see that even the exceptional classes, i.e., VIII
and IX, can be given this interpretation based on a full rank
symplectic form. Indeed, class VIII which is sympl1-GHZ can
be reinterpreted as sympl3-bisep; on the other hand, class IX
which is sympl2-GHZ can be reinterpreted as sympl3-W. In
order to see this, just look at the diagram representing class
IX with a representative state having six Slater determinants.
Take the triple of lines (624), (354), and (714). Taken together,
they form a three-term state (e62 + e35 + e71) ∧ e4 which is
based on a the full rank symplectic form e62 + e35 + e71 in
the six-dimensional subspace spanned by {e1,e2,e3,e5,e6,e7}.
Take now the remaining three oriented lines (231), (165),
and (572). It is easy to see that in our new six-dimensional
subspace, the corresponding states form a W state. Indeed,
the oriented triangle graphically representing such a W
state has now vertices the points 1, 5, and 2. Taking the
permutation (16) (2473), this new W state and symplectic form
is transformed back to the one familiar from classes IV and
VI. Similar reasoning gives the desired reinterpretation for
the class VIII. Now, in this new interpretation apart from the
presence of a full rank symplectic form, the extra five classes
VI–X are having the same structure as the classes I–V. The
upshot of these considerations is summarized in Table II.

C. Eight single-particle states

As usual, define the three-fermion state P ∈ ∧3V ∗, V =
C8 as

P = 1

3!
Pi1i2i3e

i1 ∧ ei2 ∧ ei3 , (135)

with {ei}8
i=1 being a basis of V ∗. We have GL(V ) = GL(8,C)

as the SLOCC group with action identical as of Eq. (49).
According to Eqs. (43) and (44) for three-fermions with

eight single-particle states, one can define the covariants
κP

[m,n] with 3 + 2n + m = N = 8 with the corresponding ma-
trix elements (KP

[m,n])a1...am
b1...bn

. We need two such covariants
based on

(Fa)b1b2 ≡ (
K

[1,2]
P

)a

b1b2
= 1

24
εai1i2i3i4i5i6i7Pb1i1i2Pb2i3i4Pi5i6i7

(136)

and(
Ea1a2a3

)
b

≡ (
K

[3,1]
P

)a1a2a3

b
= 1

12
εa1a2a3i1i2i3i4i5Pbi1i2Pi3i4i5 .

(137)

From one of these one can form the 8 × 8 symmetric matrix
G which is of degree six in P and transforming just as NAB of
Eq. (107):

Gab ≡ (Fc)ad (Fd )bc. (138)

Alternatively, one can define an 8 × 8 symmetric matrix of
degree 10 in P as follows:

Hab = (Fa)ci(E
ckl)j (Fb)dk(Edij )l . (139)

This quantity transforms as

Hab �→ (Detg′)4ga
cg

b
dH

cd . (140)

Now, using the matrices G and H , one can form the relative
invariant of degree 16

I(P ) = Tr(G H) (141)

transforming as

I(P ) �→ [Det(g′)]6I(P ). (142)

The orbit structure of ∧3V ∗ is available in the mathematical
literature [41]. It turns out that in addition to the 10 classes of
the previous section, we have 13 more classes. From the above
and considerations of Sec. III, we have the noncontinuous
independent invariants: rankG, rankF=rankκ

(11)
P , rankκ

(1)
P ,

and rankP (1) so far to classify these. It turns out that this is not
sufficient for full classification, we need to use the degree five
map (F • E)akl

ij ≡ (Fa)ci(Eckl)j . The rank of this map is now
sufficient for the full SLOCC classification.

The entanglement classes and the corresponding ranks are
shown in Table III. The representative states are encoded as

� = αE123 + βE567 + γE154 + δE264 + εE374

+ λE278 + μE368, (143)

where as usual Eijk = ei ∧ ej ∧ ek . The continuous invariant
of Eq. (141) is only nonzero for the class XXIII which is a
Zariski-open orbit of the prehomogeneous vector space [31,32]
[∧3V,GL(8,C),�]. Here, again � is the representation (22) of
GL(8,C) on ∧3V .

D. Nine single-particle states

Again, write a three-fermion state as

P = 1

3!
Pi1i2i3e

i1 ∧ ei2 ∧ ei3 ∈ ∧3V ∗, (144)
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TABLE III. Entanglement classes of three-fermions with eight
single-particle states. The classes I,...,X of Table II are omitted here.

Name α β γ δ ε λ μ Rank G Rank F Rank κ
(1)
P Rank F • E

XI 0 0 1 1 1 0 1 0 3 6 0
XII 0 1 1 1 1 0 1 0 4 7 0
XIII 1 1 1 0 0 0 1 0 4 8 0
XIV 1 1 1 1 0 0 1 0 5 8 1
XV 1 1 1 1 1 0 1 0 6 8 2
XVI 0 0 1 0 0 1 1 1 8 8 1
XVII 0 0 1 1 0 1 1 1 8 8 2
XVIII 0 1 1 1 0 1 1 1 8 8 4
XIX 0 0 1 1 1 0 1 2 8 8 2
XX 0 1 1 1 1 1 1 2 8 8 5
XXI 1 1 1 0 0 1 1 3 8 8 7
XXII 1 1 1 1 0 1 1 5 8 8 8
XXIII 1 1 1 1 1 1 1 8 8 8 8

where {ei}9
i=1 is a basis of V ∗ and now V = C9. The SLOCC

group is GL(V ) = GL(9,C) and the action is still the one
of (49).

The orbit structure is available due to the work of Vinberg
and Élashvili [21]. It turned out that there are a total of 164
entanglement classes. The classification is based on the unique
decomposition of P :

P = Q + R, (145)

where Q is semisimple and R is nilpotent. States which have
closed orbits under the unimodular group SL(V ) are called
semisimple and states that have SL(V ) orbits whose closure
contains the zero vector are called nilpotent. The 164 orbits
can be grouped into seven families according to the type of
their semisimple part.

The case of nine dimensions is a bit different from the
previously discussed ones. Recall that in the cases discussed
so far we had only one relative invariant nonvanishing only on
one particular orbit. It follows that these orbits were dense open
subsets of the whole three-fermion state space. We call these
kinds of orbits stable. The vector spaces admitting a stable orbit
when considered as a representation of a particular algebraic
group are called prehomogeneous vector spaces [31,32]. In
the case of nine dimensions, we have dim ∧9V ∗ = 84 and
dim GL(9) = 81. It follows that the highest value of the local
dimension of an orbit can be at most 81, thus there are no
stable orbits. It turns out [21] that there are seven orbits with
a zero-dimensional stabilizer subgroup, thus with a maximal
local dimension of 81, and there is precisely one in every
family.

Now recall two standard textbook results:
(1) If φi , i = 1, . . . ,m, are differentiable functions on a

vector space W , then the existence of a nontrivial relation
�(φ1, . . . ,φm) = 0 holding on an open subset U of W implies
that the system of gradients {gradφ1, . . . ,gradφm} is linearly
dependent. Equivalently, if this system is linearly independent,
such a relation does not exist. In this latter case, we say these
functions are algebraically independent on U (see Proposition
4 of Appendix A).

(2) If a Lie group G acts on W , then there are at most
dim W − dim G − dim Stab(v) algebraically independent in-
variant differentiable functions satisfying φ(v) = φ(gv), v ∈
W, ∀ g ∈ G on W . Here, Stab(v) is the stabilizer of v ∈ W

(see Proposition 5 of Appendix A).
We apply this to W = ∧3V ∗ and G = SL(9,C). The 80

dimensional orbits obviously have dim Stab = 0, thus we have
84 − 80 = 4 independent invariants w.r.t. the action of the
unimodular group SL(9,C). These are relative invariants w.r.t.
the SLOCC group GL(9,C) picking up determinant factors.
Indeed, as shown previously by Vinberg [54] for this particular
group and representation, the algebra of invariants is freely
generated by four polynomial invariants. They were first found
by Egorov [55] with a different method from the one described
here. Now, we construct these invariants with the methods
described in Sec. III. It turned out that this method was first
used by Katanova [56]. Consider the covariant κ

(2,1)
P with

matrix elements

(
K

(2,1)
P

)abc

def
≡ T abc

def = 1

2!3!
εabcpqrstuPdepPf qrPstu. (146)

Now, because T has three upper and three lower indices, one
can take its powers which will have the same index structure:

(T 2)a1b1c1
a3b3c3

= T
a1b1c1
a2b2c2

T
a2b2c2
a3b3c3

,

...

(T m)a1b1c1
am+1bm+1cm+1

= T
a1b1c1
a2b2c2

...T
ambmcm

am+1bm+1cm+1
.

(147)

More strictly speaking, by antisymmetrization of its lower
indices, T can be regarded as a linear map T : ∧3V → ∧3V ,
hence one can compose T with itself and form T 2 = T ◦
T ,...,T m = T ◦ . . . ◦ T . Now, define a set of relative invariants
by

φ3n = TrT n = (T n)abc
abc. (148)

The subscript 3n denotes the homogeneous degree of φ3n in
the amplitudes Pijk . Note that φ3n = 0 for n odd and n = 2.
Let us introduce the notation

J12 = 1

27×33×7
φ12, J18 = − 1

210×33×7×13
φ18,

(149)

J24 = 1

211×32×7×19
φ24, J30 = − 1

212×33×5×7×13
φ30,

for later convenience. Before proceeding with the review of the
seven families and describing the properties of these invariants
in each class, we make an important observation.

Proposition 2. The value of any continuous SL(V ) invariant
function is independent of the nilpotent part.

Proof. A nilpotent state by definition has the zero state in
the closure of its SL(V ) orbit, hence for R nilpotent there
exists a sequence {sn} in SL(V ) such that s∗

nR → 0. Let φ be a
continuous SL(V ) invariant and P = Q + R an arbitrary state.
We have

φ(P ) = φ(Q + R) = φ(s∗
nQ + s∗

nR). (150)

Taking the limit and using continuity of φ gives φ(P ) =
φ(Q). �
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Now, any semisimple state Q can be brought by an SL(V )
transformation to the following form [21]:

Q0 = aq1 + bq2 + cq3 + dq4, (151)

where for simplicity we use the notation

q1 = E123 + E456 + E789, q2 = E147 + E258 + E369,

q3 = E159 + E267 + E348, q4 = E168 + E249 + E357.

(152)

We give explicit expressions for the invariants J12, J18, J24,
J30 evaluated at Q0 in Appendix B. Define the matrix

M =

⎛
⎜⎜⎜⎝

∂aJ12 ∂aJ18 ∂aJ24 ∂aJ30

∂bJ12 ∂bJ18 ∂bJ24 ∂bJ30

∂cJ12 ∂cJ18 ∂cJ24 ∂cJ30

∂dJ12 ∂dJ18 ∂dJ24 ∂dJ30

⎞
⎟⎟⎟⎠ . (153)

Now, one can check with any computer algebra system that
the determinant of M is a not identically zero-degree 80
polynomial expression in the coefficients a,b,c,d:

1

2143457112 × 6 × 199
det M

= a2b2c2d2[(a3 + b3 − c3)3 + (3abc)3]2[(a3 − b3 + d3)3

+ (3abd)3]2[(c3 + b3 + d3)3 − (3cbd)3]2

× [(c3 + a3 − d3)3 + (3cad)3]2. (154)

As a consequence, the invariants J12, J18, J24, J30 are alge-
braically independent on any open subset of semisimple states
and hence by Proposition 2 on any open subset of ∧3V . We
note here that the rank of the linear map T : ∧3V → ∧3V is
also a SLOCC invariant, but it is not continuous so Proposition
2 does not apply to it. We now review the seven families of
states based on where their semisimple part belongs to.

First family. This family contains only semisimple states
with no possible nilpotent part. According to the work of
Vinberg and Élashvili [21], the coefficients of the canonical
form (151) satisfy

abcd �= 0,

(b3 + c3 + d3)3 − (3bcd)3 �= 0,

(a3 + c3 − d3)3 + (3acd)3 �= 0,
(155)

(a3 − b3 + d3)3 + (3abd)3 �= 0,

(a3 + b3 − c3)3 + (3abc)3 �= 0.

Notice that this is equivalent with det M �= 0. Indeed, this is
the only orbit with rankM = 4. This orbit has a discrete thus
zero-dimensional stabilizer.

Second family. The semisimple part has the canonical form

aq1 − bq2 + dq4. (156)

Formally, we can obtain this by setting c = 0 and b → −b

in (151). The amplitudes satisfy [21]

abd(a3 − b3)(a3 − d3)(b3 − d3)[(a3 + b3 + d3)3 − (3abd)3]

�= 0. (157)
Now, one can check that this is equivalent to dropping the third
row of M , setting c = 0 and b → −b in it and requiring any
of the 3 × 3 subdeterminant of the resulting 3 × 4 matrix to
be nonzero. Indeed, we have rankM = 3 for these semisimple
states. The vanishing of det M means that it is possible that
a function of the four invariants exists which equals zero. It
turns out that indeed there exists an invariant of degree 132
which vanishes for this family:

�132 = J 11
12 − 449 402 187 651 722 704 63

223 219 999 424 885 5116
J 8

12J
2
18 + 113 325 967 730 636 958 495 085 217

100 918 096 569 989 877 122 6274
J 5

12J
4
18

− 115 188 459 017 686 510 39

329 340 982 758 027 804
J 2

12J
6
18 − 188 875

152 6823
J 9

12J24 + 209 558 437 596 771 340 00

150 673 499 611 797 720 33
J 6

12J
2
18J24

− 480 987 578 992 750 926 25

150 673 499 611 797 720 33
J 3

12J
4
18J24 + 156 259 946 875

279 742 616 799 48
J 7

12J
2
24

− 433 810 987 242 942 718 75

244 091 069 371 112 306 9346
J 4

12J
2
18J

2
24 − 327 783 664 656 25

485 912 925 380 696 76
J12J

4
18J

2
24

− 373 398 260 937 50

327 991 224 631 970 313
J 5

12J
3
24 − 198 339 133 437 500

741 017 211 205 562 559
J 2

12J
2
18J

3
24

+ 351 718 750 000

327 991 224 631 970 313
J 3

12J
4
24 − 125 000 0000

327 991 224 631 970 313
J12J

5
24

+ 522 717 082 571 600 510

502 244 998 705 992 4011
J 7

12J18J30 − 463 179 817 627 822 843 297 4860

454 131 434 564 954 447 051 8233
J 4

12J
3
18J30

+ 456 915 743 822 635 90

741 017 211 205 562 559
J12J

5
18J30 − 951 594 557 840 795 000

135 606 149 650 617 948 297
J 5

12J18J24J30

+ 213 381 682 764 464 5000

135 606 149 650 617 948 297
J 2

12J
3
18J24J30 + 140 973 248 590 625 000

122 045 534 685 556 153 4673
J 3

12J18J
2
24J30

+ 108 902 750 000 00

200 074 647 025 501 890 93
J12J18J

3
24J30 − 800 769 966 485 1700

452 020 498 835 393 160 99
J 6

12J
2
30
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+ 668 635 746 252 714 792 5300

151 377 144 854 984 815 683 9411
J 3

12J
2
18J

2
30 + 139 240 333 581 2500

135 606 149 650 617 948 297
J 4

12J24J
2
30

− 237 196 179 151 2500

135 606 149 650 617 948 297
J12J

2
18J24J

2
30 − 216 716 472 500 000

122 045 534 685 556 153 4673
J 2

12J
2
24J

2
30

− 144 455 405 710 417 120 00

151 377 144 854 984 815 683 9411
J 2

12J18J
3
30 + 343 287 561 098 900 00

454 131 434 564 954 447 051 8233
J12J

4
30. (158)

We have �132 = 0 for the second and �132 �= 0 for the first
family. There are three types of possible nilpotent parts in
this family. These can be found in the work of Vinberg [21].
Semisimple states of this family have a two-dimensional
T2-type stabilizer subgroup. We note here that the second
family contains general three-qutrit states via the embedding
of Eq. (45). We will discuss this in more detail in Sec. IV D 1.

Third family. The canonical form of the semisimple part is

aq1 + dq4. (159)

We can obtain this by setting b = 0 in the canonical form of
the second family. The coefficients satisfy ad(a6 − d6) �= 0.
There are nine types of possible semisimple parts. Semisimple
states in this family have four-dimensional stabilizer subgroups
of type T4. We have �132 = 0 in this family. The rank of the
matrix M is 2 and as one expects there exists one more function
of the invariants which is identically zero in this family. Define
an invariant of homogeneous degree 48 by

�48 = J 2
24 + 13 × 232 × 293

2254
J 4

12

+ 32 × 11 × 127 × 1992

2354 × 61
J12J

2
18

−257 × 32

5 × 23
J 2

12J24 − 11 × 1992

2253 × 61
J18J30. (160)

As we will explain soon, �48 is the generalization of the
hyperdeterminant for 3 × 3 × 3 arrays. We have �48 = 0 for
states in the third family but �48 �= 0 for the first and the
second families.

Fourth family. The canonical form of the semisimple part
is

aq1 + bq2 − bq3. (161)

Formally, one obtains this by setting d = 0 and c = −b

in (151). The coefficients must satisfy ab(a3 − b3)(a3 +
8b3) �= 0. The matrix M has rank 2. We have

�48 = 22 × 5 × 112 × 1992 × b9(a3 − b3)9(a4 + 8ab3)3

(162)

for this family. The condition �48 �= 0 is obviously equivalent
with the previous one. Of course, we have �132 = 0 but we
have another invariant of degree 48 which vanishes here:

�′
48 = 113 × 193J 4

12 − 11 × 1992 × 21347

3561
J12J

2
18

+ 2 × 53 × 257

34
J 2

12J24

− 2454

36
J 2

24 + 23 × 5 × 11 × 1992

35 × 61
J18J30. (163)

We have �′
48 = 0 for the fourth family, but �′

48 �= 0 for the
first, second, and third families. There are six types of possible
nilpotent parts. The stabilizer subgroup of semisimple states
is of type A2 and has dimension 8.

Fifth family. The canonical form of the semisimple part is

− cq2 + cq3. (164)

This is just the canonical form of the fourth family with
a = 0. We require c �= 0. The matrix M has rank 1. We
have �132 = �48 = �′

48 = 0. There are 18 different types
of possible nilpotent parts. The stabilizer subgroup is 10
dimensional and of type A2 + T2 for semisimple states.

Sixth family. The canonical form of the semisimple part is

aq1, (165)

with a �= 0. This is just the state (151) with b = c = d =
0. The matrix M has rank 1 and �132 = �48 = �′

48 = 0.
Moreover, it is easy to see that the degree 24 invariant

�24 = J 2
12 − 1

111J24 (166)

is zero for this family while it is nonzero for families 1–
5. There are 25 different types of possible nilpotent parts.
The semisimple states in this family have a 24-dimensional
stabilizer subgroup of type 3A2.

Seventh family. The semisimple part is zero here, thus
this family is the family of nilpotent states. By Proposition
2, all the continuous invariants are zero here. There are
102 different types of nilpotent states listed in the work of
Vinberg and Élashvili [21]. When considered as states of the
nine-dimensional system, all states with a lower-dimensional
single-particle Hilbert space discussed in the previous sections
are in this family.

A summary of the families and their resolution with the
invariants �132,�48,�

′
48,�24 can be found in Table IV.

Recall that every previously discussed case had a sta-
ble, “GHZ-type” orbit with nonzero value of an invariant.

TABLE IV. Values of the new continuous invariants on families of
three-fermions with nine single-particle states. The last column is the
rank of the map T = κ (2,1) on semisimple states with zero nilpotent
part.

Family �132 �48 �′
48 �24 Rank T

First �= 0 �= 0 �= 0 �= 0 80
Second 0 �= 0 �= 0 �= 0 78
Third 0 0 �= 0 �= 0 76
Fourth 0 �= 0 0 �= 0 72
Fifth 0 0 0 �= 0 70
Sixth 0 0 0 0 56
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Intuitively speaking, we have more than one “GHZ-type” orbit
in the present case. These are families 1–6 which have at least
one invariant with a nonzero value. The nilpotent orbits of
the seventh family can be thought of as non-GHZ-type orbits
where all invariants vanish. In the first family, there is no
possible way of combining zero out of the four invariants. By
this property, one can think of the first family as the “most
GHZ-type” orbit of the “GHZ-type” orbits.

Before moving on to the discussion of the embedded
three-qutrit system, we would like to make an interesting
observation. The rank of the linear map T : ∧3V → ∧3V

defined in (146) is just

rankT = 80 − dim stab(Q) (167)

for semisimple states Q with zero nilpotent part.

1. Entanglement of three-qutrits

A qutrit is a three-state quantum system with Hilbert space
H = C3. The Hilbert space of three distinguishable qutrits is
just H⊗3 ∼= C9. With {|1〉,|2〉,|3〉} being a basis of H a general
three-qutrit state can be written as

|ψ〉 =
3∑

μ1,μ2μ3=1

ψμ1μ2μ3 |μ1μ2μ3〉. (168)

The SLOCC group is GL(3,C)×3 and it acts on the nine
complex amplitudes as

ψμ1μ2μ3 �→ (S1)ν1
μ1

(S2)ν2
μ2

(S3)ν3
μ3

ψν1ν2ν3 ,

S1 ⊗ S2 ⊗ S3 ∈ GL(3,C)×3. (169)

The mathematical problem of finding the SLOCC classes was
solved by Nurmiev [57,58]. Explicit expressions for the three
continuous invariants generating the invariant algebra of this
system was found by Briand et al. [59] where the problem was
also recognized as the problem of SLOCC classification of
three-qutrits. Later, Bremner and Hu managed to express the
hyperdeterminant [29] of a 3 × 3 × 3 array with these three
invariants [60,61]. In the following, we identify the problem of
three-qutrit entanglement as a special case of entanglement of
three-fermions with nine single-particle states. We relate the
invariants I6,I9,I12 and the hyperdeterminant �333 of Bremner
and Hu with the invariants of Eq. (149).

According to Nurmiev [57,58], any 3 × 3 × 3 array can be
uniquely written as the sum of a semisimple and a nilpotent
part. Just like in the case of three-fermions, a semisimple state
is defined to have a closed SL(3,C)×3 orbit while a nilpotent
state has the zero vector in the closure of its orbit. Now, any
semisimple state can be brought to a so-called normal form

|ψ0〉 = a|X1〉 − b|X2〉 + c|X3〉, (170)

where

|X1〉 = |111〉 + |222〉 + |333〉,
|X2〉 = |123〉 + |231〉 + |312〉, (171)

|X3〉 = |132〉 + |213〉 + |321〉.
There are a total of 43 orbits under the action of GL(3,C)×3

and these can be grouped into five families according to the

type of their semisimple part. The three fundamental invariants
evaluated at the normal form |ψ0〉 are [61]

I6 = a6 + 10a3b3 + b6 − 10a3c3 + 10b3c3 + c6,

I9 = (a + b)(a − c)(b + c)(a2 − ab + b2)(a2 + ac + c2)

× (b2 − bc + c2),

I12 = −a9b3 − 4a6b6 − a3b9 + a9c3 − 2a6b3c3 + 2a3b6c3

− b9c3 − 4a6c6 − 2a3b3c6 − 4b6c6 + a3c9 − b3c9.

(172)

The hyperdeterminant for 3 × 3 × 3 arrays has degree 36 and
expressed with these invariants as [61]

�333 = I 3
6 I 2

9 − I 2
12I

2
6 − 32I 3

12 + 36I12I6I
2
9 + 108I 4

9 . (173)

It has the property that it is zero for all families except the first
one. Now, consider the map defined in (45) for d = k = 3 and
denote it by χ : C3 ⊗ C3 ⊗ C3 → ∧3(C9)∗:

χ : |ψ〉 �→ Pψ =
3∑

μ1,μ2,μ3=1

ψμ1μ2 μ3e
μ1 ∧ e3+μ2 ∧ e6+μ3 .

(174)

Now, it is very easy to check that

χ (|X1〉) = PX1 = q2, χ (|X2〉) = PX2 = q3,

χ (|X3〉) = PX3 = q4, (175)

where q1, . . . ,q4 are defined in Eq. (152).
Proposition 3. On Imχ ⊂ ∧3V , the invariants of (149) can

be expressed with the fundamental invariants of three-qutrits
as

J12 = I 2
6 + 20I12,

J18 = I 3
6 + 30I12I6 + 100I 2

9 ,

J24 = 111I 4
6 + 4440I 2

6 I12 + 2 × 34 × 193I 2
12

+ 22 × 11 × 199I6I
2
9 ,

J30 = 2 × 32 × 52 × 2521I 2
9 I12 + 33 × 5 × 2521I6I

2
12

+ 2 × 5 × 17 × 383I 2
6 I 2

9

+ 24 × 52 × 73I 3
6 I12 + 23 × 73I 5

6 . (176)

Moreover, the invariant �48 is expressed with the hyperdeter-
minant as

�48 = −5 × 112 × 1992

2
�333I12. (177)

For the other � invariants, we have

�138 = 0,

�′
48 = 24551121992

35

(
23I12 + 1

3
I 2

6

)
I 4

9 , (178)

�24 = 2 × 11 × 199

37

(
I 2

12 − 2

3
I6I

2
9

)
.

Proof. The relations can be checked with any computer algebra
system for the image of the normal form Pψ0 which is actually
the canonical form (156) of the second family. By invariance,
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Families of three qutrits

First family

Second family

Third family

Fourth family

Fifth family

C
3 ⊗ C3 ⊗ C3

Families of three fermions

First family

Second family

Third family

Fourth family

Fifth family

Sixth family

Seventh family

∧3C9

χ

FIG. 3. A sketch showing how the embedding χ : C3 ⊗ C3 ⊗
C3 → ∧3(C9)∗ defined in (174) works. The gray rectangles on the
right side represent the image of the three-qutrit families under χ .
Different families are mapped into different families.

they are true for any semisimple state. By Proposition 2, they
remain true by adding any nilpotent state. �

Define

D36 = �333, D24 = I 2
12 − 2

3I6I
2
9 ,

(179)
D21 = (

23I12 + 1
3I 2

6

)
I9.

As a consequence of Proposition 3, the invariants D36,D24,D21

completely separate the five families of three-qutrits. One
can find representatives of these five families, e.g., in the
work of Bremner et al. [61]. We followed the enumeration
of the families used there. The first family has D36 �= 0, the
second family has D36 = 0,D24 �= 0,D21 �= 0, the third family
has D36 = D24 = D21 = 0, and finally the fourth family has
D36 = D21 = 0,D24 �= 0. For the nilpotent orbits of the fifth
family, every fundamental invariant vanishes. On Fig. 3, we
sketched how the embedding χ works. The images of different
families are disjoint.

V. PINNING OF OCCUPATION NUMBERS

As a possibly relevant physical application we would like to
comment on a connection of the above SLOCC classification
of fermionic quantum states with the Klyachko constraints [13]
on the eigenvalues of the one-particle reduced density matrix
(or one-matrix). These constraints define a polytope in the
space of possible eigenvalues of the one-matrix. An important
concept is the so-called pinning of occupation numbers which
is the saturation of these Klyachko constraints [11,62]. It is
widely believed that energy minima of many fermion systems
usually do not lie in the Klyachko polytope, thus, the ground
state will be on the boundary of the polytope and hence it
will be pinned. Indeed, there are both analytical [11] and
numerical [63] results that such a pinning occurs in ground
states of realistic systems. As shown by Klyachko [62], pinning
of a state imposes selection rules on it reducing the number of
separable states or Slater determinants that it contains. This is
particulary useful in molecular physics since it simplifies the
form of the ansatz one must use in variational methods to find
the ground state.

Consider first the case of three-fermions with six single-
particle states discussed in Sec. IV A. The classical Borland-
Dennis result [9] is that if one orders the eigenvalues of the
one-matrix as λi+1 � λi , then one has a nontrivial inequality

λ5 + λ6 � λ4. (180)

Note that this inequality is independent of the normalization
of the original pure state. Now, if (180) is saturated for a state
P then it must have the form [11,62]

P = αe1 ∧ e2 ∧ e3 + βe1 ∧ e4 ∧ e5 + γ e2 ∧ e4 ∧ e6 (181)

in the basis of natural orbitals. Natural orbitals are the
eigenvectors of the one-particle reduced density matrix ρP ,
thus, we have ρP ei = λie

i . It is clear that transforming an
arbitrary state to its natural orbital form amounts to a local
unitary transformation, hence, it does not change the SLOCC
class of it. Now, if we calculate our covariant K

[1,1]
P for the

state (181) we get⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 −2βγ 0 0
0 0 0 0 0 0
0 2αγ 0 0 0 0

−2αβ 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (182)

This matrix has rank 3, 1, or 0 depending on the value of
the coefficients. Looking at Table I, we already conclude
that pinning is impossible for states in the GHZ class or
otherwise stated pinning is impossible for states with D(P ) =
1
6 Tr(K [1,1]

P )2 �= 0 [see Eq. (52)]. One might think that this
means that all states with D(P ) = 0 are pinned, but this is not
the case since the spectrum of the one-matrix is not invariant
under general SLOCC transformations, thus, pinning is not a
SLOCC invariant concept. Indeed, one can easily find both
pinned and unpinned states in the W class. Note that these
observations are in perfect agreement with the numerical work
done by Benavides-Riveros et al. [63] where pinning was
studied in finite-rank variational approximations of the ground
state of lithium. It was observed there that pinning in the
rank-six approximation can only occur if the invariant D(P )
is zero.

Consider now the case of seven single-particle states
of Sec. IV B. Pinning for this system is investigated by
Klyachko as it is important in studying the first excited state
of beryllium [62]. Moreover, it is used as the rank-seven
approximation of lithium orbitals where pinning was also
observed [63]. For seven single-particle states we have four
nontrivial Klyachko constraints:

λ1 + λ2 + λ4 + λ7 � 2,

λ1 + λ2 + λ5 + λ6 � 2,
(183)

λ2 + λ3 + λ4 + λ5 � 2,

λ1 + λ3 + λ4 + λ6 � 2.

Suppose we saturate the first one: λ1 + λ2 + λ4 + λ7 = 2 for a
normalized stateP . Then, the arising selection rules imply [62]
that P ∈ ∧2C4 ⊗ C3 ⊂ ∧3C7. In particular, in the basis of
natural orbitals P must be a linear combination of separable
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states with two indices from the set {1,2,4,7} and one index
from the set {3,5,6}. One can easily calculate the covariants
NAB and (MAB)C of Eqs. (103) and (102) for such states and
conclude that rank κ

(1,1)
P = 4 and rank κ

(1)
P = 7. Looking at

Table II, we already deduce that there is no pinning for states
in class X or equivalently for states with a nonvanishing J (P)
invariant [see Eq. (127)].

Now suppose we saturate three [the first two and the last
one in Eq. (183)] of the constraints. In this case, P must have
the form [62]

P = αe1 ∧ e2 ∧ e3 + βe1 ∧ e4 ∧ e5 + γ e1 ∧ e6 ∧ e7

+ δe2 ∧ e4 ∧ e6, (184)

when expanded on its natural orbitals. Calculating the relevant
ranks for this state gives rank κ

(1,1)
P = 1 and rank κ

(1)
P = 4

which identifies class VII of Table II. Moreover, one can check
that one can not increase the rank of κ

(1)
P by setting any of the

coefficients to zero. This means that states of the form (184)
can not be in class V. However, they do cross classes VII,
VI, IV, III, II, and I of Table II so we deduce that pinning of
three Klyachko constraints is only possible for states in these
classes and impossible in classes V, VIII, IX, and X. If we
require the saturation of all four constraints, then we have to
set γ = 0 in (184) and we get back to a state of the form (181).
Thus, pinning of all four constraints is only possible in a six
single-particle subspace and only in the classes I–IV.

VI. CONCLUSIONS

In this work, we presented a method to generate SLOCC
covariants and invariants for multifermion systems. Based
on results taken from the mathematical literature, we have
presented the SLOCC classification of three fermions with six,
seven, eight, and nine single-particle states. We also discussed
how this classification can be understood with the help of
covariants and invariants. In the special cases of six and
seven dimensions, we managed to characterize the SLOCC
entanglement classes geometrically via mapping the canonical
forms of the classes to special subconfigurations of the Fano
plane. We have also revealed that in the six-, seven-, and
eight-dimensional cases the classes giving rise to stable orbits
are examples of prehomogeneous vector spaces [31,32]. For
these classes, there is a characteristic relative invariant which
is nonvanishing. In all of these cases, these classes are giving
rise to dense, Zariski-open orbits with representatives playing
a role similar to the classical three-qubit GHZ state. In the
cases of six and seven single-particle states, we outlined some
connections between the discussed SLOCC classification and
the celebrated Klyachko constraints on the spectra of one-
particle reduced density matrices. In particular, we observed
that saturation (or pinning) of the constraints is not possible in
every SLOCC class.

In the case of nine dimensions, there is no stable orbit and
there are four algebraically independent polynomial invariants.
The SLOCC orbits can be organized into seven families. The
seventh family contains nilpotent orbits where all of the four
invariants vanish. These can be considered as a generalization
of the non-GHZ classes. The rest of the families have at
least one invariant with a nonzero value, thus, these can

be thought of as a generalization of GHZ-type orbits. We
have shown that these families can be distinguished via a
calculation of an order 132, two order 48, and an order 24
combination of the fundamental invariants. We have also
shown that the entanglement classification of three-qutrits
and the corresponding invariant algebra can be recovered
from the embedding of the system into the one of three
fermions with nine single-particle states. In particular, the
3 × 3 × 3 hyperdeterminant arises as a factorization of one
of the invariants of order 48.
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APPENDIX A: PROOF OF SOME THEOREMS

Here, we present some textbook theorems for Sec. IV D
and some explicit calculations leading to some of the results
of Sec. IV B.

Proposition 4. Let M be an n-dimensional manifold. There
are at most n algebraically independent functions on V .

Proof. Let φi : M → C, i = 1, . . . ,m, functions on M .
Suppose that there exists � : Cm → C such that

�(φ1(x), . . . ,φm(x)) = 0 (A1)

on every point x ∈ U of an open subset U ⊂ M . Taking the
exterior derivative with coordinates xa , a = 1, . . . ,n, yields

d� =
(

∂�

∂φ1

∂φ1(x)

∂xa
+ . . . + ∂�

∂φm

∂φm(x)

∂xa

)
dxa = 0, (A2)

hence if � has nonvanishing derivatives at φi(x), then the
system of n component vectors { ∂φ1

∂xa , . . . ,
∂φm

∂xa } is linearly
dependent. The negation of the above result reads as if the
system { ∂φ1

∂xa , . . . ,
∂φm

∂xa } is linearly independent on U , then
�(φ1, . . . ,φm) = 0 possible only if � is constant zero on
U . �

Proposition 5. Let M be an n-dimensional manifold, G

a Lie group with a group action ρ on M , and φ : M → C
a differentiable G-invariant function, i.e., φ(x) = φ(ρ(g)x),
∀ x ∈ M,∀ g ∈ G. There are at most n − dim G + dim Hx

algebraically independent such functions at a point x ∈ M ,
where Hx is the stabilizer of x.

Proof. Take g = exp(εt), t ∈ g in φ(x) = φ(ρ(g)x). Then,
take the derivative w.r.t ε and set ε = 0 to obtain

dφ(x)(Vt ) = ∂φ(x)

∂xa
(Vt )

a = 0, (A3)

where (Vt )a are the components of the tangent vector Vt =
d
dε

ρ[exp(εt)]x|ε=0 ∈ TxM . Now, since Hx is a subgroup its
Lie algebra hx is a linear subspace in g, hence g = hx ⊕ mx

as vector spaces. If t ∈ hx , then the above is automatically
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satisfied, but if t ∈ mx , then (Vt )a �= 0 and the above means
that ∂φ(x)

∂xa is in the orthogonal complement of the space Mx =
Span{Vt |t ∈ mx} ⊂ TxM . It is easy to see that dim Mx =
dim mx = dim G − dim Hx . Taken together with Proposition
4, the claim follows. �

Some detailed calculations for Sec. IV B.:
Proposition 6. Let P̃ = 1

3!K
c
i Pcjke

i ∧ ej ∧ ek. Then, P ∧
ω = 0 implies P̃ ∧ ω = 0.

Proof. We know that Tr(K) = 0, hence K is an element of
the Lie algebra of SL(6,C). The action of K on the five-form
P ∧ ω is [64]

K(P ∧ ω) = − 1
2 Tr(K)P ∧ ω + Ka

be
b ∧ ιea

(P ∧ ω)

= Ka
be

b ∧ ιea
P ∧ ω − Ka

be
b ∧ P ∧ ιea

ω. (A4)

Now,

ιea
P ∧ ω = 1

4Paijωkle
i ∧ ej ∧ ek ∧ ek, ιea

ω = ωale
l (A5)

hence,

0 = K(P ∧ ω)

= (
1
4Ka

b Paijωkl − (Ka
b ωal

)
Pijk

)
eb ∧ ei ∧ ej ∧ ek ∧ el.

(A6)

According to Eq. (121), Ka
bωal = 1

3Nbl = 1
3Nlb. Since Nbl is

symmetric and eb ∧ el is antisymmetric, the second term gives
zero. Hence, the first term which is proportional to P̃ ∧ ω

vanishes as claimed. �
Proposition 7. If P ∧ ω = 0, then

(
Pabiωjk + 1

3ωabPijk + Paijωbk − Pbijωak

)
eijk = 0. (A7)

Proof. The result immediately follows from the identity

ιea
ιeb

(P ∧ ω) = ιea
ιeb

P ∧ ω + ιeb
P ∧ ιea

ω − ιea
P ∧ ιeb

ω

+P ∧ ιea
ιeb

ω = 0. (A8)

�
Proposition 8. Let LAB ≡ (MA)CD(MB)DC and P ∧ ω =

0. Then, we have L77 = 6D(P ) and L7a = La7 = 0.

Proof. By virtue of Eqs. (119) and (52), we have

L77 = (M7)CD(M7)DC = (M7)cd (M7)dc

= Kc
dK

d
c = 6D(P ). (A9)

On the other hand, using Eq. (120) one gets

L7a = La7 = (M7)cd (Ma)dc = Kc
d

1
2εadijklPcijωkl

= 1
2εadijkl P̃dijωkl. (A10)

Using Proposition 6, the latter expression is zero. �
Proposition 9. If P ∧ ω = 0, then Lab =

3
2Ka

cε
cbijklωijωkl = 3

2Kb
cε

caijklωijωkl .
Proof:

Lab = (Ma)7
d (Mb)d7 + (Ma)c7(Mb)7

c + (Ma)cd (Mb)dc ,

(A11)

(Ma)7
d (Mb)d7 = 1

4Ka
d εdbijklωijωkl,

(A12)
(Ma)c7(Mb)7

c = 1
4Kb

d εdaijklωijωkl,

(Ma)cd (Mb)dc = 1
4εacijklεbdmnrsPdijPcmnωklωrs . (A13)

Now using Proposition 7, in the last term one can write

εbmndrsPijdωrs

= (− 1
3ωijPdrs + Pidrωjs − Pjdrωis

)
εbmndrs . (A14)

Using this, one can write

(Ma)cd (Mb)dc = Kb
d εdaijklωijωkl

+ 1
2εacijklεbmndrsωklωjsPcmnPidr . (A15)

Now, since in the first Levi-Civitá symbol we have antisym-
metry in the indices (c,i) and in the second Levi-Civitá symbol
we have symmetry in the pair of indices (mn,dr), the last term
is zero. Using the symmetry of Gab, the three different terms
of Eq. (A11) give the same type of terms with a prefactor of 3

2 .
Notice that using the definition of ω̃ of Eq. (126) one can write

Lab = −12ω̃acKb
c = −12ω̃bcKa

c . (A16)

This result, taken together with the ones of Proposition 8,
yields the factorized form for L of Eq. (125). �

APPENDIX B: EXPLICIT EXPRESSIONS FOR THE FOUR INDEPENDENT INVARIANTS OF THREE-FERMIONS WITH
NINE SINGLE-PARTICLE STATES

Here, we list explicit expressions for the invariants of Eq. (149) of Sec. IV D evaluated on the canonical form (151) of
semisimple states

J12 = a12 + b12 + c12 + 22c6d6 + d12 − 220a3(b3 − c3)(b3 − d3)(c3 − d3) + 220b3c3d3(c3 + d3) + 22b6(c6 + 10c3d3 + d6)

+ 22a6[b6 + c6 − 10c3d3 + d6 − 10b3(c3 + d3)], (B1)

J18 = a18 + b18 + c18 − 17c12d6 − 17c6d12 + d18 + 1870a9(b3 − c3)(b3 − d3)(c3 − d3)

− 1870b9c3d3(c3 + d3) − 17b12(c6 + 10c3d3 + d6)

− 170b3c3d3(c9 + 11c6d3 + 11c3d6 + d9) − 17b6(c12 + 110c9d3 + 462c6d6 + 110c3d9 + d12)

− 17a12[b6 + c6 − 10c3d3 + d6 − 10b3(c3 + d3)] − 17a6[b12 + c12
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− 110c9d3 + 462c6d6 − 110c3d9 + d12 − 110b9(c3 + d3) + 462b6(c6

+ d6) − 110b3(c9 + d9)] + 170a3[b12(c3 − d3) − 11b9(c6 − d6)

+ 11b6(c9 − d9) + c3d3(c9 − 11c6d3 + 11c3d6 − d9) + b3(−c12 + d12)], (B2)

J24 = 111a24 + 111b24 + 111c24 + 506c18d6 + 10166c12d12 + 506c6d18

+ 111d24 − 206448a15(b3 − c3)(b3 − d3)(c3 − d3) + 206448b15c3d3(c3 + d3)

+ 506b18(c6 + 10c3d3 + d6) + 1118260b9c3d3(c9 + 11c6d3 + 11c3d6 + d9)

+ 10166b12(c12 + 110c9d3 + 462c6d6 + 110c3d9 + d12) + 1012b3c3d3(5c15

+ 204c12d3 + 1105c9d6 + 1105c6d9 + 204c3d12 + 5d15) + 506b6(c18

+ 408c15d3 + 9282c12d6 + 24310c9d9 + 9282c6d12 + 408c3d15 + d18)

+ 506a18[b6 + c6 − 10c3d3 + d6 − 10b3(c3 + d3)] + 10166a12[b12 + c12 − 110c9d3

+ 462c6d6 − 110c3d9 + d12 − 110b9(c3 + d3) + 462b6(c6 + d6) − 110b3(c9 + d9)]

− 1118260a9[b12(c3 − d3) − 11b9(c6 − d6) + 11b6(c9 − d9) + c3d3(c9 − 11c6d3 + 11c3d6

− d9) + b3(−c12 + d12)] + 506a6[b18 + c18 − 408c15d3 + 9282c12d6 − 24310c9d9

+ 9282c6d12 − 408c3d15 + d18 − 408b15(c3 + d3) + 9282b12(c6 + d6)

− 24310b9(c9 + d9) + 9282b6(c12 + d12) − 408b3(c15 + d15)]

− 1012a3[5b18(c3 − d3) − 204b15(c6 − d6) + 1105b12(c9 − d9) − 1105b9(c12 − d12)

+ c3d3(5c15 − 204c12d3 + 1105c9d6 − 1105c6d9 + 204c3d12 − 5d15)

+ 204b6(c15 − d15) − 5b3(c18 − d18)], (B3)

J30 = 584a30 + 584b30 + 584c30 − 435c24d6 − 63365c18d12 − 63365c12d18

− 435c6d24 + 584d30 + 440220a21(b3 − c3)(b3 − d3)(c3 − d3)

− 440220b21c3d3(c3 + d3) − 435b24(c6 + 10c3d3 + d6)

− 25852920b15c3d3(c9 + 11c6d3 + 11c3d6 + d9) − 63365b18(c12 + 110c9d3

+ 462c6d6 + 110c3d9 + d12) − 1394030b9c3d3(5c15 + 204c12d3 + 1105c9d6

+ 1105c6d9 + 204c3d12 + 5d15) − 63365b12(c18 + 408c15d3 + 9282c12d6

+ 24310c9d9 + 9282c6d12 + 408c3d15 + d18) − 290b3c3d3(15c21

+ 1518c18d3 + 24035c15d6 + 89148c12d9 + 89148c9d12 + 24035c6d15

+ 1518c3d18 + 15d21) − 435b6(c24 + 1012c21d3 + 67298c18d6

+ 653752c15d9 + 1352078c12d12 + 653752c9d15 + 67298c6d18

+ 1012c3d21 + d24) − 435a24[b6 + c6 − 10c3d3 + d6 − 10b3(c3 + d3)]

− 63365a18[b12 + c12 − 110c9d3 + 462c6d6 − 110c3d9 + d12 − 110b9(c3 + d3)

+ 462b6(c6 + d6) − 110b3(c9 + d9)] + 25852920a15[b12(c3 − d3) − 11b9(c6 − d6)

+ 11b6(c9 − d9) + c3d3(c9 − 11c6d3 + 11c3d6 − d9) + b3(−c12 + d12)]

− 63365a12[b18 + c18 − 408c15d3 + 9282c12d6 − 24310c9d9 + 9282c6d12

− 408c3d15 + d18 − 408b15(c3 + d3) + 9282b12(c6 + d6) − 24310b9(c9 + d9)

+ 9282b6(c12 + d12) − 408b3(c15 + d15)] + 1394030a9[5b18(c3 − d3) − 204b15(c6 − d6)

+ 1105b12(c9 − d9) − 1105b9(c12 − d12) + c3d3(5c15 − 204c12d3 + 1105c9d6

− 1105c6d9 + 204c3d12 − 5d15) + 204b6(c15 − d15) − 5b3(c18 − d18)]

− 435a6[b24 + c24 − 1012c21d3 + 67298c18d6 − 653752c15d9

+ 1352078c12d12 − 653752c9d15 + 67298c6d18 − 1012c3d21 + d24 − 1012b21(c3 + d3)

+ 67298b18(c6 + d6) − 653752b15(c9 + d9) + 1352078b12(c12 + d12)

− 653752b9(c15 + d15) + 67298b6(c18 + d18) − 1012b3(c21 + d21)]
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+ 290a3[15b24(c3 − d3) − 1518b21(c6 − d6) + 24035b18(c9 − d9)

− 89148b15(c12 − d12) + 89148b12(c15 − d15) − 24035b9(c18 − d18)

+ c3d3(15c21 − 1518c18d3 + 24035c15d6 − 89148c12d9 + 89148c9d12

− 24035c6d15 + 1518c3d18 − 15d21) + 1518b6(c21 − d21) − 15b3(c24 − d24)]. (B4)
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