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Laser-light (coherent-state) modulation is sufficient to achieve the ultimate (Holevo) capacity of classical
communication over a lossy and noisy optical channel, but requires a receiver that jointly detects long modulated
code words with highly nonlinear quantum operations, which are near-impossible to realize using current
technology. We analyze the capacity of the lossy-noisy optical channel when the transmitter uses coherent-state
modulation but the receiver is restricted to a general quantum-limited Gaussian receiver, i.e., one that may
involve arbitrary combinations of Gaussian operations [passive linear optics: beam splitters and phase shifters;
second-order nonlinear optics (or active linear optics): squeezers, along with homodyne or heterodyne detection
measurements] and any amount of classical feedforward within the receiver. Under these assumptions, we show
that the Gaussian receiver that attains the maximum mutual information is either homodyne detection, heterodyne
detection, or time sharing between the two, depending upon the received power level. In other words, our result
shows that to exceed the theoretical limit of conventional coherent optical communication, one has to incorporate
non-Gaussian, i.e., third- or higher-order nonlinear operations in the receiver. Finally we compare our Gaussian
receiver limit with experimentally feasible non-Gaussian receivers and show that in the regime of low received
photon flux, it is possible to overcome the Gaussian receiver limit by relatively simple non-Gaussian receivers
based on photon counting.
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I. INTRODUCTION

The bosonic channel plays a crucial role in classical and
quantum information theory applied to optical communication.
Classical capacity of the bosonic channel is particularly
important since it determines the ultimate performance limit
of conventional optical communication technology. Derivation
of this ultimate limit, the Holevo capacity, is a nontrivial
theoretical problem on which much effort has been spent
[1–11]. If the channel is lossless and noiseless, capacity
can be attained by modulating photon number states and an
ideal photon number counting receiver [1,2]. For a pure-loss
channel, the capacity was found in [3]:

Closs = g(ηN̄), (1)

where η is the channel’s power transmissivity, N̄ is the average
input photon number per mode, and g(x) = (x + 1) log(x +
1) − x log x (throughout the paper, we choose log ≡ log2).
It was also shown [3] that capacity can be attained by a
coherent-state modulation, but the optimal receiver must use
joint measurements over many channel uses, which are very
hard to realize physically [4–7]. For lossy bosonic channel
with additive thermal noise from the environment, it was
conjectured [8] that the capacity is given by

Cthermal = g[ηN̄ + (1 − η)Nth] − g[(1 − η)Nth], (2)

where Nth is the average number of noise photons per mode.
The above conjecture relied on an unproven minimum output
entropy conjecture, which was recently proven [11] to be true,
hence confirming that (2) indeed is the capacity of the lossy-
noisy bosonic channel, and that it can be achieved using a
coherent-state modulation.

One of the practically important things to note is that the
capacities Closs, and Cthermal can be achieved by encoding
information in coherent states with a Gaussian distribution, i.e.,
one does not need to use nonclassical states such as entangled

or squeezed states. Unlike the simple transmitter, the receiver
must use a decoding strategy that is highly nonclassical. In
the proof of achievability in the original Holevo-Schumacher-
Westmoreland theorem [12–14], they employed the square-
root measurement (SRM) over an infinite sequence of signal
states (code word). This is in general a collective measurement
which may include entangling operations between modulation
symbols across channel uses and thus is a highly nonclassical
operation. Since there is a clear gap between the Holevo ca-
pacity Closs and the Shannon capacities of conventional optical
receivers [3,6], i.e., homodyne, heterodyne, or direct-detection
receivers, a natural question arises: how to design receiver
measurements that can achieve a reliable communication rate
beyond the Shannon limits of conventional receivers using a
receiver that is more practical than the SRM, the mathematical
specification of which unfortunately sheds no light on a
structured receiver design. This question has been explored
theoretically [5,15–17] and experimentally [18,19], but a truly
realizable receiver specification that outperforms conventional
optical receivers still eludes us.

In this paper, we restrict ourselves to receiver measurements
consisting of a limited class of quantum operations, called
Gaussian operations, and allow any amount of classical
feedback or feedforward (FF) within the receiver. This class
of operations can be constructed by combining passive linear
optics (a network of beam splitters and phase shifters),
second-order nonlinear optical processes (squeezers), along
with homodyne and heterodyne detection measurements, all
of which are now routinely implemented [20,21]. On the
other hand, it has also been found that some of the important
quantum protocols cannot be performed with Gaussian oper-
ations and classical processing alone. Examples of those are
universal quantum computing [22], entanglement distillation
of Gaussian states [23–25], optimal cloning of coherent
states [26], optimal discrimination of coherent states [27–30],
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and Gaussian quantum error correction [31]. Here we ask
the question whether the classical information transmission
capacity for bosonic channels can benefit from a receiver that
is restricted to Gaussian quantum operations and FF. The main
result of our paper is an addition to the long list of the above
“no-go theorems”, i.e., we show that Gaussian operations
and classical FF processing cannot exceed the Shannon limit
of homodyne and heterodyne detection for the lossy-noisy
bosonic channel with coherent-state inputs. Our result has
a practical importance: To exceed the theoretical limit of
the conventional coherent optical communication system via
a collective quantum decoder, one has to incorporate non-
Gaussian operations in the receiver. As a by-product of the
analysis, we propose a hybrid receiver that time shares between
homodyne and heterodyne, which we show to slightly surpass
the envelope of the homodyne and heterodyne capacities in a
certain regime of average signal photon number per mode.

Finally we compare our Gaussian receiver limit with ex-
perimentally feasible non-Gaussian receivers based on photon
counting detectors. We show that for extremely low signal
power, it is possible to overcome the Gaussian receiver limit
via relatively simple non-Gaussian receivers.

II. CHANNEL MODEL

The sender encodes messages in coherent states and sends
them via multiple uses of a lossy-noisy bosonic channel
NB, each use of which can be modeled by a beam splitter
with transmissivity η ∈ (0,1] with a zero-mean thermal state
injected into the other input port (see Fig. 1). Let Ñth be the
mean photon number of the thermal state. For a coherent state
input |β〉, β ∈ C, the output is a displaced thermal state:

NB(|β〉〈β|) = D(α)ρth(Nth)D†(α) ≡ ρ(α), (3)

FIG. 1. (Color online) Lossy and noisy bosonic channel model
and n use of the channels.

where D(α) = exp[αâ† − α∗â] is a displacement operation, â
and â† are the annihilation and creation operators, respectively,
ρth(Nth) is a thermal state with mean photon number Nth, and

α = √
ηβ, Nth = (1 − η)Ñth. (4)

The sender prepares an n-mode coherent state, ρS =∫
d2nβ P (β)|β〉〈β|, to encode a message, where |β〉 = |β1〉 ⊗

· · · ⊗ |βn〉, with β = [β1, . . . ,βn]T ∈ Cn and P (β) a proba-
bility distribution function. The modulation power constraint
translates to ∫

d2nβ P (β)|β|2 � Ñ . (5)

The n channel use transmission transforms ρS to

ρR =
∫

d2nα P (α)ρr (α), (6)

where α = [α1, . . . ,αn]T = √
ηβ and ρr (α) =

D(α)ρ⊗n
th (Nth)D†(α), with D(α) = D(α1) ⊗ · · · ⊗ D(αn),∫

d2nα P (α)|α|2 � N̄, (7)

and N̄ = ηÑ . A quantum Gaussian receiver decodes the
message from ρR , which in general could make a Gaussian
collective measurement involving any Gaussian operation,
classical FF and postprocessing. Let {�(αM )} be a positive
operator-valued measure for an n-mode quantum Gaussian
receiver with measurement outcome αM . The maximum
reliable information rate per channel use is given by

C(N ) = lim
n→∞

1

n
max
P, �

I (Xn; Yn), (8)

where I (Xn; Yn) is the mutual information calculated for priors
PXn (xn) = P (α) and transition probabilities PYn|Xn(yn|xn) =
P (αM |α) = Tr[ρr (α)�(αM )].

III. CAPACITY OF A LOSSY-NOISY BOSONIC CHANNEL
WITH COHERENT STATES AND GAUSSIAN RECEIVER

In this section, we derive an explicit expression for Eq. (8)
and show that the optimal quantum Gaussian receiver is
simply given by a homodyne or heterodyne receiver, or
an appropriate time sharing between them. Let us consider
the general structure of an n-mode Gaussian receiver. As
illustrated in Fig. 2(a), it can be decomposed into (n + m)-
mode-input Gaussian unitary operations UGi , i = 1,2, . . .

with m-mode ancillary Gaussian input, single-mode Gaussian
measurements (without classical FF), and classical FF into
subsequent unitaries. Without loss of generality, we consider
only “noise-free” operations that map pure states into pure
states (we can simulate any noisy process by simply discarding
a part of the system in a noise-free operation [25]).

We prove the statement of optimality stated above, by show-
ing (1) the classical FF is not necessary to maximize I (Xn; Yn),
(2) the optimal Gaussian measurement is a separable one, and
(3) the optimal separable measurement is given by homodyne,
heterodyne, or time sharing between them.

Step 1: Classical feedforward operations. First we show
that the classical FF operations in Fig. 2(a) are not necessary.
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FIG. 2. (Color online) (a) General model of Gaussian receiver,
(b) Gaussian joint measurement, and (c) Gaussian separable measure-
ment. UG: Gaussian unitary operation. GM: Gaussian measurement.
ρR: signal state after transmitting the lossy and noisy bosonic
channels.

One is able to show this by slightly extending the theorem on
Gaussian operations shown in [23–25] as a part of the no-go
theorem on Gaussian entanglement distillation via Gaussian
local operations. Precisely, in [23–25] it was shown that
for a Gaussian state input, any trace decreasing Gaussian
operation (such as a partial measurement) can always be
transformed into a trace preserving (deterministic) operation
by adding an appropriate conditional displacement operation.
It is thus clear that if the input in Fig. 2(a) is a Gaussian state,
the conditional classical FF based on partial measurement
outcomes are unnecessary. Note, however, that the received
signal ensemble [Eq. (6)] is a convex combination of displaced
thermal states which in general could be a non-Gaussian state.
Nevertheless, by slightly extending the above theorem, we can
show that for any possible convex combination [i.e., for any
probability distribution P (α)], any trace decreasing Gaussian
operation can be transformed into a trace preserving Gaussian
operation. This allows us to conclude that the conditional
operations with partial measurement and classical FF are not
necessary in our receiver. Though the extension of [23–25]
is rather straightforward, we describe it in Appendix B for
completeness.

Step 2: Joint and separable measurement. Removing
the partial measurements and classical FF, the receiver
measurement is now as illustrated in Fig. 2(b) where an
n-mode Gaussian unitary operation UG is followed by n

heterodyne measurements. We now show that even a collective
measurement is not necessary to obtain the maximum mutual
information. Such a collective Gaussian detection is described
by a set of operators {�G(�M,dM)}dM where �M and dM are,
respectively, the covariance matrix (CM) and displacement
vector (DV) of the characteristic function:

χG(x) = Tr[�G(�M,dM)W(x)]

= exp
[− 1

4xT �Mx + idT
Mx

]
, (9)

FIG. 3. (Color online) Decomposition of Gaussian unitary oper-
ation. U,V : unitary operations with linear optics. Si : single-mode
squeezers.

where W(x) = exp[−ixT R] is the Weyl operator, x ∈ R2n,
and R = [x̂1, . . . ,x̂n,p̂1, . . . ,p̂n]T consists of quadrature op-
erators satisfying commutation relation [x̂k,p̂l] = iδkl . Note
that the displacement vector dM corresponds to a set of
measurement outcomes. We summarize some basic properties
of characteristic functions in Appendix A.

It is known that a Gaussian unitary operation can be
decomposed into a passive linear optical unitary operation
U (implementable via a network of beam splitters and phase
shifters), a set of single-mode squeezers, and another passive
linear optic unitary V [32] as illustrated in Fig. 3 [see also
Eq. (A9) in Appendix A]. The covariance matrix and the
displacement vector for the Gaussian measurement is now
constructed as follows. A set of n heterodyne measurements
on n modes is given by a correlation matrix γM0 = I2n and
a 2n real vector dM0 , where I2n is a 2n × 2n identity matrix.
Denoting the symplectic matrix for the linear operation V

as SV , the CM and the DV of the measurement consisting
of V and the heterodyne receivers are ST

V γM0SV = I2n and
ST

V dM0 , respectively. Including the single-mode squeezers,
the measurement is described by ST

S ST
V γM0SV SS = γM̄ =

diag[e−2r1 · · · e−2rn e2r1 · · · e2rn ] and ST
S ST

V dM0 = dM̄ , where
ri are the squeezing parameters. Finally, adding the linear
operation U and defining ST

UdM̄ ≡ dM̃ , the characteristic
function of the joint Gaussian measurement is given by

χG(x) = exp
[− 1

4xT ST
UγM̄SUx + idT

M̃
x
]
. (10)

Note that the entries of dM̃ can be obtained by applying the
linear transformation V , in software, on the measurement
outcome dM0 . Since this operation can be performed after
the measurement we can remove V from the Gaussian unitary
operation without loss of generality.

The received ensemble is a set of displaced thermal
states (6). In terms of the characteristic functions, de-
noting α = [α1, . . . ,αn]T by a 2n-length real vector dr =√

2[−Im α1, . . . ,−Im αn,Re α1, . . . ,Re αn]T , the characteris-
tic function of the displaced thermal state ρr (α) is given by

χr (x) = exp
[− 1

4xT γthx + idT
r x

]
, (11)

where

γth =
[

1 + 2Nth 0

0 1 + 2Nth

]⊕n

. (12)

The conditional probability of obtaining the outcome dM̃

by detecting ρr (α) with the Gaussian measurement in Eq. (10)
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is then given by

P (dM̃ |dS) =
(

1

2π

)2n ∫
dx χr (x)χM (−x)

= 1√
det

(
γth + ST

UγM̃SU

)
× exp

[
−(dS − dM̃ )T

1

γth + ST
UγM̃SU

(dS − dM̃ )

]
.

(13)

The expression in Eq. (13) is equivalent to that of a classical
multidimensional Gaussian channel with a correlated noise
CM, γth + ST

UγM̄SU [33]. It is well known that the mutual
information of a Gaussian channel is maximized by a Gaussian
input distribution [33],

P (dr ) = 1

2πn
√

det P
exp

[
−1

2
dT

r

1

P
dr

]
, (14)

where P is a diagonal matrix [34] with the power constraint:
1

2n

∑2n
i=1 Pii � N̄ . As a consequence the mutual information

per channel use is given by I (X; Y ) = I (Xn; Yn)/n where

I (Xn; Yn) = 1

2
log

det
(
2P + γth + ST

UγM̄SU

)
det

(
γth + ST

UγM̄SU

)
= 1

2
log

det
(
2P + γth + ST

UγM̄SU

)
det(γth + γM̄ )

. (15)

The second equality follows from γth = (1 + 2Nth)I2n and uni-
tarity of SU . To maximize I (Xn; Yn), we need to optimize SU

such that det(2P + γth + ST
UγM̄SU ) is maximized. According

to the Hadamard inequality:

det(X) �
∏

i

Xii , (16)

where X is a positive matrix and equality holds iff X is
diagonal, the maximum is obtained when 2P + γth + ST

UγM̄SU

is diagonal. Since P and γth are diagonal and the trace of
ST

UγM̄SU is invariant under any SU , we conclude that SU = I2n

is optimal. As a consequence, the passive-linear-optic unitary
U is unnecessary. Since we have already concluded that the
other unitary V is also unnecessary, we conclude that it is
sufficient for the optimal quantum Gaussian receiver to make
a set of separable measurements [Fig. 2(c)].

Step 3: Optimization of the separable receiver. We split
this part into the following two steps. We first consider a
fixed receiver for all n channel uses and show that the optimal
measurement is given either by a homodyne or a heterodyne
measurement depending on the value of N̄ . Next we show
that in a given range of N̄ values, one can further optimize
the mutual information by sharing the channel uses between
homodyne and heterodyne measurements with an optimal
power allocation across the channel uses.

As a first step, let us consider the maximization of the
single-mode mutual information

I (X; Y ) = 1

2
log

det
(
2P (1) + γ

(1)
th + γ

(1)
M

)
det

(
γ

(1)
th + γ

(1)
M

) , (17)

by optimizing a single-mode measurement γ
(1)
M and power

distribution P (1) (the superscripts denote n = 1). As mentioned

above, I (X; Y ) is maximized with diagonal P (1) and γ
(1)
M .

General expressions of diagonal P (1) and γ
(1)
M are given by

P (1) =
[
N1 0
0 N2

]
, γ

(1)
M =

[
e−2r 0

0 e2r

]
, (18)

where the power constraint is (N1 + N2)/2 = N̄ . Note that
r = ±∞ and r = 0 correspond to homodyne and hetero-
dyne measurement, respectively. Substituting Eq. (18) and
N2 = 2N̄ − N1 into Eq. (17), we have

I (X; Y ) = 1

2
log

[
(2N1 + 2Nth + e−2r )

(1 + 2Nth + e−2r )

× (4N̄ − 2N1 + 2Nth + e2r )

(1 + 2Nth + e2r )

]
≡ f (N1,r),

which we want to maximize over 0 � N1 � 2N̄ and r ∈
(−∞,∞). By evaluating ∂f (N1,r)/∂N1 and ∂f (N1,r)/∂r , we
find that the extremum could exist only at (N1,r) = (N̄,0) with
f (N̄,0) = log[(1 + Nth + N̄ )/(1 + Nth)]. On the other hand,
for r → ±∞ or N1 = 0,2N̄ , the maximum f is obtained at
(N1,r) = (2N̄,∞) and (0,−∞) with

f (2N̄,∞) = f (0,−∞) = 1

2
log

1 + 2Nth + 4N̄

1 + 2Nth
. (19)

Therefore, the maximum mutual information is given by

I (X; Y ) = max

[
1

2
log

1 + 2Nth + 4N̄

1 + 2Nth
, log

1 + Nth + N̄

1 + Nth

]
,

=
⎧⎨
⎩

1
2 log 1+2Nth+4N̄

1+2Nth
, 0 � N̄ � 2(1+Nth)

1+2Nth

log 1+Nth+N̄

1+Nth
, N̄ � 2(1+Nth)

1+2Nth

, (20)

which implies that if we fix the measurement on each mode,
homodyne or heterodyne measurement is optimal. In other
words, squeezing cannot increase the mutual information.

The above result is slightly improved around N̄ = 2(1 +
Nth)/(1 + 2Nth) by optimizing the power allocation between
channel uses. In the following, to simplify the expressions, we
set Nth = 0 although the same approach works for finite Nth.

Consider n channel uses (modes) and suppose homodyne
detection is used on the first t uses and heterodyne detection
on the rest. We can optimize the power allocation for these
n modes under the condition

∑
i Ni � nN̄ where Ni is the

average photon number of the ith mode. This optimization can
be carried out by the Lagrange multiplier method, defining

F (N1, . . . ,Nn) =
t∑

i=1

1

2
log(1 + 4Ni)

+
n∑

i=t+1

log(1 + Ni) + λ

(
n∑

i=1

Ni − N̄

)
,

(21)

where λ is a Lagrange multiplier. Solving (dF )/(dNi) = 0 for
i = 1, . . . ,n, we find the optimal photon numbers Ni as

Ni = 1

4
(ν − 1) (1 � i � t), (22)

Ni = ν

2
− 1 (t < i � n), (23)
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where ν = (4N̄ + 1 + 3x)/(1 + x) and x = (n − t)/n. The
mutual information is then given by

1

n
I (Xn; Yn) = 1

2
(1 + x) log

4N̄ + 1 + 3x

1 + x
− x. (24)

We can further optimize x (or equivalently ν) and obtain

1

n
I (Xn; Yn) = 1

ν∗ − 3
(log ν∗ − 2)(2N̄ − 1) + 1, (25)

where ν∗ is one of the solutions of ν(1 + 2 ln 2 − ln ν) = 3,
which satisfies Ni > 0 for all i. Numerically, this is ν∗ =
7.145 . . . . The optimal x is then given in terms of ν∗ as
x = (4N̄ + 1 − ν∗)/(ν∗ − 3), which yields 0 < x � 1 when
(ν∗ − 1)/4 < N̄ � (ν∗ − 2)/2. Therefore, in summary, the
capacity of the pure-loss optical channel with laser-light
modulation and a general quantum Gaussian receiver is given
by

C =

⎧⎪⎨
⎪⎩

1
2 log(1 + 4N̄ ), 0 � N̄ � ν∗−1

4 (homodyne)
log ν∗−2

ν∗−3 (2N̄ − 1) + 1, ν∗−1
4 < N̄ � ν∗−2

2 (homodyne + heterodyne)

log(1 + N̄ ), ν∗−2
2 < N̄ (heterodyne),

(26)

where (ν∗ − 1)/4 = 1.536 . . . and (ν∗ − 2)/2 = 2.572 . . . .
This is illustrated in Fig. 4.

The capacities for the channel with finite Nth can be derived
from Eq. (20) by the same optimization procedure. We plot the
numerical results in Fig. 5.

IV. NON-GAUSSIAN RECEIVERS BASED
ON PHOTON COUNTING

In the previous sections, we showed that one has to
incorporate non-Gaussian operations in the receiver in order
to exceed the theoretical limit of conventional coherent
optical communication. In this section, we compare that limit
with the performance theoretically achievable using currently

Optimal 
receiver

Homodyne

Heterodyne

(a)

0 1 2 3 4 5
0.0

0.5

1.0
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2.0

2.5

N

I
X

;Y

Homodyne

Heterodyne

Optimal receiver

(b)

1.6 1.8 2.0 2.2 2.4
1.3
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1.6
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N

I
X

;Y

FIG. 4. (Color online) Capacity of homodyne (violet), hetero-
dyne (blue), and optimal (yellow) receivers for a pure-loss optical
channel as a function of the average photon number at the receiver
N̄ = ηÑ . (a) and (b) show the same plots with different x-y ranges.

known structured non-Gaussian optical receivers, and also
with the ultimate (Holevo) capacity limit. We only consider
separable non-Gaussian receivers, i.e., receivers that detect
each modulation symbol one at a time. One of the practical, but
highly non-Gaussian, operations for an optical communication
receiver is photon counting. This falls under the category of
direct detection receivers (unlike homodyne and heterodyne
detection, which collectively fall under coherent detection
receivers). Direct detection receivers include the photon num-
ber resolving detector (PNRD) and the on-off single-photon
detection (SPD) receiver, where the latter can discriminate
only between zero and nonzero photons.

It has been shown theoretically that combining an ideal
single-photon detector with the phase-space displacement
operation (implementable using a highly transmissive beam
splitter and a strong coherent-state local oscillator), and
potentially also classical feedback (e.g., subsequent single-
photon detection events triggering real-time updates to the
amplitude and phase of a local oscillator that in turn is mixed
with, to coherently null, the received pulse before it is incident
on the detector’s active surface) can beat the coherent-detection
(homodyne and heterodyne) limit of discriminating two or
more coherent states [27,35–38]. This was experimentally
verified, without correcting for imperfections, for the binary
phase-shift keyed (BPSK) signal ({|α〉,|−α〉}) [28] and for the
quadrature phase-shift keyed signal ({|α〉,|iα〉,|−α〉,|−iα〉})
[39]. It was recently suggested that a PNRD receiver could also

0 1 2 3 4 5
0.0

0.5

1.0

1.5

2.0

2.5

N

I
X

;Y

FIG. 5. (Color online) Capacity of optimal Gaussian receiver for
optical channels with loss and thermal noise. The solid lines from top
to bottom correspond to Nth = 0,1,2,3,4,5.
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be useful for designing a nulling-based receiver to discriminate
M-ary PSK signals at an error rate below the heterodyne
detection limit [40]. In addition, it should be noted that
a similar technique is useful to reduce the discrimination
error below what is possible with standard optical receivers,
not only for phase modulated signals but also for intensity
modulated signals such as on-off keying (OOK) [41,42] and
pulse-position modulation (PPM) [43,44]. Finally, a general
design of a sequential-nulling receiver was recently proposed,
which outperforms heterodyne detection for discriminating
any M spatiotemporal coherent-state wave forms by a factor
of 4 in the error-probability exponent [45]. These results on
improved structured receivers for coherent-state discrimina-
tion suggests that receivers based on photon counting could
also be useful to go beyond the capacity limit of Gaussian
receivers. This is because the task of a communication
receiver is essentially to discriminate between 2nR modulated
code words, each of which is a n-mode coherent-state
wave form.

For optical communication system designers, a popular way
to assess the performance of a transceiver is to plot the trade-off
between spectral efficiency [expressed in bits per symbol, or
(bits/s)/Hz] and the photon information efficiency (expressed
in bits per received photon), for a given modulation format
and a receiving strategy. For instance, for a pure-loss channel
with n̄ mean received photon number per mode (or per time
slot), using an optimal code and a Holevo-capacity-achieving
receiver, the spectral efficiency (SE) is g(n̄) (bits/s)/Hz and
the photon information efficiency (PIE) is g(n̄)/n̄ bits/photon.
When n̄ is small, PIE is high and SE is small (this is the
regime interesting for deep-space communication where every
received photon is very precious), and in the high n̄ regime,
PIE is low and SE is high (this is the regime of interest
for fiber-optic communication where the primary goal is to
maximize the data rate). In Fig. 6, we plot the PIE-SE tradeoff
for the Gaussian receiver limit (homodyne, heterodyne, and
time sharing between the two), the ultimate Holevo limit,
and several different modulation and receiver strategies. For
this plot, we chose the lossy optical channel (Nth = 0) for
simplicity.

In Fig. 6, all the lines plotted with nonblack colors
correspond to structured receivers, i.e., optical receivers the
designs of which are fully specifiable in terms of standard
optical and electrical elements. The majority of plots in the
figure pertain to discrete modulation formats (e.g., BPSK,
OOK, and PPM). For computing the highest capacities
attainable by coherent-detection (homodyne, heterodyne, and
the optimal time sharing between the two) receivers, as well
as for evaluating the ultimate Holevo limit, we assume the
optimal modulation, which for all those cases, is the continuous
Gaussian modulation (i.e., when each symbol |α〉 of a code
word is chosen independent and identically distributed from
the distribution p(α) = exp[−|α|2/n̄]/πn̄, α ∈ C).

The two non-Gaussian receivers we consider are single-
photon detection (on-off direct detection) and the Dolinar
receiver, a structured non-Gaussian receiver that can dis-
criminate between any two coherent states at the minimum
average error rate allowed by quantum mechanics [36,41].
The first observation to make is that in the low n̄ (low SE,
high PIE) regime, both the aforementioned non-Gaussian

FIG. 6. (Color online) The trade-off between PIE and SE for
various choices of modulation formats and receivers. All nonblack
plots correspond to structured optical receivers, whereas the black
lines are the Holevo capacities constrained to different modulation
formats (i.e., with no restrictive assumption on the receiver). The thin
black line on the top is the ultimate (Holevo) limit—no constraint
on modulation and receiver—the highest capacity attainable over a
pure-loss optical channel.

receivers—the Dolinar receiver (along with BPSK modula-
tion) and the SPD receiver (along with either OOK or PPM
modulation)—outperform the performance attainable by the
general Gaussian receiver we studied in this paper. In the
n̄ � 1 regime, the exact scaling of the Holevo limit
[Cultimate(n̄) = −n̄ ln n̄ + n̄ + o(n̄) (nats/s)/Hz], and the ca-
pacity achievable by a single-photon-detection receiver
[CSPD(n̄) = −n̄ ln n̄−n̄ ln ln(1/n̄)+O(n̄) (nats/s)/Hz] show
that the gap between the two vanishes (i.e., their ratio goes
to 1) as n̄ → 0 [46]. Similarly, in the high n̄ (low PIE,
high SE) regime, the ratio of capacity attained by a coherent
detection receiver (heterodyne detection) and the Holevo
limit goes to 1 as n̄ → ∞. Despite this, it is evident from
Fig. 6 that there is a substantial gap between the attainable
performance by known structured receivers (all of which admit
physical realizations via a symbol-by-symbol detection of the
received modes) and the Holevo limit, even at moderate to
high spectral efficiency. This gap in capacity is even more
amplified when more than one spatial mode is employed, such
as in a diffraction-limited near-field free-space optical channel
[47]. Even though some recent progress has been made on
codes [6] and receiver designs [7] that could in principle
attain the Holevo limit, a fully structured, and a practically
feasible, design of such a non-Gaussian optical receiver still
eludes us. Finally, note that it is not just the receiver choice,
but an appropriate choice of the modulation constellation
commensurate with the photon number level, is important as
well. Figure 6 shows that in the high photon number (high SE)
regime, the capacity attained by heterodyne detection (with
an optimally chosen modulation) becomes higher than the
envelope of the Holevo rates of an M-ary PSK constellation
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(for M = 21,22, . . . ,216). This is not surprising since in the
high photon number regime, the “circle” distribution does not
approximate the circularly symmetric Gaussian distribution
p(α) well. This is why the envelope of the Holevo rates of
M-ary PSK modulation is very close to the ultimate Holevo
capacity at low n̄ (since one circle in the phase space very well
approximates the Gaussian) and peels off from it at higher n̄

values.

V. CONCLUSIONS

The ultimate classical capacity of a lossy, noisy bosonic
channel is attained by a transmitter that modulates coherent-
state (ideal laser-light) signals, albeit requiring a joint-
detection receiver, which is hard to construct. In this paper,
we restricted the receiver to a general quantum Gaussian
receiver, which is made up of arbitrary quantum Gaussian
operations (passive linear optics, squeezing, and homodyne or
heterodyne measurements) along with classical feedforward
operations. We showed that the optimal Gaussian receiver
strategy that maximizes the information rate is simply given
by either homodyne or heterodyne detection, or time sharing
thereof. In other words, it was shown that any nontrivial
Gaussian operation such as squeezing, partial measurements,
and conditional feedforward, do not help increase the com-
munication performance over conventional homodyne and
heterodyne detection receivers. In order to bridge the gap
between the Shannon capacity limit of homodyne and/or
heterodyne detection, and the ultimate Holevo capacity [3], the
receiver must use non-Gaussian operations. We showed that
in the low-photon flux regime, the direct detection receiver (a
practical non-Gaussian receiver) as well as the Dolinar receiver
(another structured non-Gaussian receiver) can outperform the
capacity attained by Gaussian measurements. We quantified
the gap between the Shannon capacity limits of all the
above known structured optical receivers, and the Holevo
limit—the maximum capacity attainable with any receiver
structure permissible by physics—in terms of the trade space
between photon information efficiency (bits per received
photon) and spectral efficiency [(bits/s)/Hz]. In order to
attain the Holevo limit, the receiver must make collective
measurements over long code word blocks [4–7], which must
include non-Gaussian elements (such as Kerr interactions,
photon counting, or interactions with non-Gaussian states).
Heralded realization of non-Gaussian states and measurements
is an active area of theoretical and experimental study. An im-
portant theoretical question is to conceive of an experimentally
feasible design of a non-Gaussian receiver that can attain the
Holevo capacity, the maximum rate at which classical data
can be reliably transmitted over an optical communication
channel.
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APPENDIX A: CHARACTERISTIC FUNCTIONS
AND GAUSSIAN STATES

Here we briefly summarize the characteristic function
formalism for Gaussian states and operations. More details
can be found, for instance, in Refs. [21,25].

Characteristic function. Let us consider an n-mode bosonic
system associated with an infinite-dimensional Hilbert space
H⊗n and N pairs of annihilation and creation operators,
{âi , â

†
i }i=1,...,n, respectively, which satisfy the commutation

relations

[âi ,â
†
j ] = δij . (A1)

From these, one may construct the quadrature field operators:

x̂i = 1√
2

(â†
i + âi), and (A2)

p̂i = i√
2

(â†
i − âi). (A3)

It is easy to verify that the commutation relations now translate
to [x̂i ,p̂j ] = iδij . In the n-mode bosonic system, a quantum
state with density operator ρ is described by its characteristic
function

χ (x) = Tr[ρW(x)], (A4)

where

W(x) = exp[−ixT R] (A5)

is a Weyl operator, R = [x̂1, . . . ,x̂n,p̂1, . . . ,p̂n]T is a 2n vector
consisting of quadrature operators, and x = [x1, . . . ,x2n] is a
2n real vector. The overlap between any two operators O1 and
O2 is described by their characteristic functions as

Tr[O1O2] =
(

1

2π

)n ∫
dx χO1 (x)χO2 (−x). (A6)

Gaussian states and operations. The characteristic function
for any Gaussian state is represented by

χ (x) = exp
[− 1

4xT γ x + idT x
]
, (A7)

where 2n × 2n matrix γ and 2n vector d are called the
covariance matrix and the displacement vector, respectively.
Also, a Gaussian unitary operation is defined as a unitary
operation that transforms Gaussian states to other Gaussian
states. Any Gaussian unitary operation acting on a Gaussian
state can be described by symplectic transformations of the
covariance matrix and the displacement vector as

γ → ST γ S, d → ST d, (A8)

where S is a symplectic matrix. For any covariance matrix,
there exists a symplectic transformation that diagonalizes the
covariance matrix (symplectic diagonalization). If the unitary
operation includes only linear optical process (beam splitters
and phase shifts), then ST = S−1 and such a matrix S is called
an orthogonal symplectic matrix.

Decomposition of Gaussian unitary operation. A symplec-
tic matrix S can always be decomposed as

S = O

(
M 0
0 M−1

)
O ′, (A9)
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where M is a positive diagonal matrix and O,O ′ are orthogonal
symplectic matrices. The physical meaning of the decompo-
sition is that any Gaussian unitary circuit can be described
by a sequential operation of linear optic circuit O, a product
of single-mode squeezing operations, and another linear optic
circuit O ′.

APPENDIX B: CLASSICAL FEEDFORWARD
OPERATION FOR A GAUSSIAN STATE ENSEMBLE

WITH A NON-GAUSSIAN DISTRIBUTION

In this Appendix, we show that for a convex combination of
Gaussian states, any trace decreasing Gaussian operation can
be transformed into a trace preserving Gaussian operation.
To this end, we use the characteristic functions whose basic
properties were mentioned above in Appendix A.

Recall that the received state [Eq. (6)] is given by

ρR =
∫

d2nαP (α)ρr (α).

Its characteristic function is given by a convex combination of
the characteristic functions of ρr (α):

χR(x) = Tr [ρRW(x)]

=
∫

d2nαP (α)Tr[ρr (α)W(x)]

=
∫

d2nαP (α)χρr (α)(x), (B1)

where χρr (α)(x) is the characteristic function of ρr (α).
Consider the trace decreasing operation consisting of a

single step FF operation as illustrated in Fig. 7, where an
n-mode state ρR is incident into an (n + m)-mode Gaussian
unitary operation UG with an m-mode auxiliary Gaussian state
ρaux and a part of the output (system B) is measured by an
m-mode Gaussian measurement. Let (γr,dr ) and (γaux,daux)
be sets of the covariance matrices and displacement vectors
for ρr (α) and ρaux, respectively. Let SG be a symplectic
matrix for UG. Then after operating UG, the covariance matrix
and displacement vector of the (n + m)-mode output are
respectively given by

ST
G(γr ⊕ γaux)SG ≡

[
A C

CT B

]
(B2)

FIG. 7. (Color online) Gaussian measurement with a single step
feedforward (see the text for details).

and

S(dr ⊕ daux) ≡
[
dA

dB

]
. (B3)

After measuring the system B by a Gaussian measurement
with the covariance matrix γM and displacement (measurement
outcome) dM , we obtain the output in A conditioned on
dM , whose covariance matrix and displacement vector are
respectively given by [25,27]

�out = A − CT 1

B + γM

C (B4)

and

dout =
(

dA − CT 1

B + γM

dB

)
− CT 1

B + γM

dM

≡ d̃out + d̃M, (B5)

where without loss of generality we assumed that UG does
not include displacement operations (it can easily be canceled
by the inverse operation). Although this is a conditional
operation on the measurement outcome dM , one can easily
eliminate dM in the output state by adding an additional
displacement operation D†(d̃M ) which results in the output
state to be deterministically given by �out and dout those that
are independent of d̃M . As a consequence, for input state ρR ,
we have the output

χout =
∫

d2nαP (α)χα(x), (B6)

where χα(x) is a Gaussian characteristic function with �out

and dout. It does not include dM and thus is independent of
the partial measurement outcome. Thus the total operation is
deterministic.
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