
PHYSICAL REVIEW A 89, 042305 (2014)

Comparison of different definitions of the geometric measure of entanglement
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Several inequivalent definitions of the geometric measure of entanglement (GM) have been introduced and
studied in the past. Here we review several known and new definitions, with the qualifying criterion being that
for pure states the measure is a linear or logarithmic function of the maximal fidelity with product states. The
entanglement axioms and properties of the measures are studied, and qualitative and quantitative comparisons
are made between all definitions. Streltsov et al. [New J. Phys. 12, 123004 (2010)] proved the equivalence of two
linear definitions of GM, whereas we show that the corresponding logarithmic definitions are distinct. Certain
classes of states such as “maximally correlated states” and isotropic states are particularly valuable for this
analysis. A little-known GM definition is found to be the first one to be both normalized and weakly monotonous,
thus being a prime candidate for future studies of multipartite entanglement. We also find that a large class
of graph states, which includes all cluster states, have a “universal” closest separable state that minimizes the
quantum relative entropy, the Bures distance, and the trace distance.
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I. INTRODUCTION

Entanglement measures lie at the heart of quantum infor-
mation theory, because they assess the usefulness of quantum
states for tasks such as quantum teleportation, quantum
computation, and cryptography protocols [1,2]. Numerous
entanglement measures have been defined in the past, each of
which may capture different properties of a state as a resource
for certain tasks. One well-known measure is the geometric
measure of entanglement (GM). Originally introduced for pure
bipartite states [3,4], the GM was subsequently generalized
to multipartite and to mixed states [5–7]. Two key benefits
of GM are that it is an inherently multipartite entanglement
measure and that it is comparatively easy to compute for many
states [6,8–19].

The GM has a variety of operational interpretations: It
assesses the usability of initial states for Grover’s algo-
rithm [20,21], the discrimination of quantum states under
LOCC [10], the additivity and output purity of quantum
channels [22] and the usefulness of states as resources for
one-way quantum computation [8,23–25]. Further uses of
GM include the construction and study of entanglement
witnesses [6,26], the derivation of a generalized Schmidt
decomposition [27], and the study of condensed matter
systems, such as ground-state characterization and detection
of phase transitions [28–30].

Several inequivalent definitions of GM have surfaced in
the literature [5–7,9–12,20]. Regarding pure states, GM is
expressed either as a linear or logarithmic function of the
maximal fidelity with product states. Regarding mixed states,
the pioneering papers did not agree on a unique definition,
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which led to the emergence of several inequivalent extensions
of GM to mixed states. Although some of the GM definitions
have been compared to other entanglement measures [11], a
detailed comparison of all the different definitions of GM to
each other has not been done before. An important milestone
towards this goal was achieved by Streltsov et al. [13], who
proved the equivalency of two frequently used definitions of
GM.

In this paper we compare and characterize several known
and new definitions of GM. The only qualifying criterion for
an entanglement quantity to be regarded a GM definition is that
on the subset of pure states it coincides with the well-defined
linear or logarithmic GM.

Five known definitions, one little-known, and one new
definition of GM are studied in this paper, first with respect to
their entanglement axioms. This is followed by a quantitative
and qualitative comparison of the definitions to each other. The
“maximally correlated states” (as defined in Definition 11) turn
out to be a particularly helpful class of states for this purpose.
We also discover that a large class of graph states, including
all cluster states, have a “universal” closest separable state that
minimizes the quantum relative entropy, the Bures distance,
and the trace distance.

The paper is organized as follows. Section II reviews
some basic concepts of quantum information theory for later
usage. In Sec. III the definitions of GM are introduced, and
some preliminary results, e.g., with regard to entanglement
axioms, are obtained. The subsequent Sec. IV closely examines
the relationship between all six distinct definitions of GM
from a variety of perspectives, and a hierarchy that allows
for a partitioning of state space is obtained. A common
closest separable state with respect to three different distance
measures is presented for a large class of graph states in
Sec. V. The concluding Sec. VI summarizes our results. For
convenience, Tables I and II and Figs. 1 and 2 list some of our
findings in compact form.
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TABLE I. The inequalities (35) facilitate a partitioning of state
space S(H) into four subsets with clear physical meaning, and the
inequalities (36) allow for a further division of the genuinely mixed
entangled states D = D1 ∪ D2 ∪ D3 into three subsets. Theorem 7
and Theorem 20 describe necessary and sufficient conditions for states
belonging to D2 and D3, respectively.

Characterization Linear Logarithmic
Subset of states in subset measures measures

A Pure separable 0 = Gf/c = Gm 0 = Gf
l = Gc

l = Gm
l

B Pure entangled 0 < Gf/c = Gm 0 < Gf
l = Gc

l = Gm
l

C Genuinely mixed 0 = Gf/c < Gm 0 = Gf
l = Gc

l < Gm
l

separable
D1 0 < Gf

l < Gc
l < Gm

l

D D2 Genuinely mixed 0 < Gf/c < Gm 0 < Gf
l = Gc

l < Gm
l

entangled
D3 0 < Gf

l < Gc
l = Gm

l

II. PRELIMINARIES

First, we review some basic concepts for later usage,
in particular axiomatic entanglement measures and distance
measures. For more comprehensive reviews we refer to
Refs. [1,2,31,32].

A. Axiomatic entanglement measures

Operationally motivated entanglement measures such as
the entanglement cost and the distillable entanglement have
clear physical meanings but tend to be difficult to study from
a mathematical viewpoint, especially for multipartite systems.

TABLE II. Overview of the axioms fulfilled for the various
definitions of GM. Subtable (a) lists the linear and logarithmic GM
for pure states and whether axioms are fulfilled when considering
quantum operations between pure states only. Subtable (b) lists the six
distinct extensions of GM to mixed states. An axiom being fulfilled on
pure states [as indicated in (a)] is necessary, but not sufficient for that
axiom being fulfilled for mixed state extensions. The only exception
is normalization, which is defined by pure states only. The properties
of Gt and Gf

l have not been studied before, and we found that Gc
l

satisfies Axiom 2(a) for two-qubit systems. For higher dimensions it
is still unknown whether Gc

l satisfies Axiom 2(a).

(a) Pure states |�〉
Properties G Gl

Axiom 1
√ √

Axiom 2(a)
√ √

Axiom 2(b)
√

✗

Normalization ✗
√

(b) Extensions to mixed states ρ

Properties Gf/c Gm Gt Gf
l Gc

l Gm
l

Axiom 1
√

✗ ✗
√ √

✗

Axiom 2(a)
√

✗ ✗
√

? ✗

Axiom 2(b)
√

✗ ✗ ✗ ✗ ✗

Convexity
√

✗ ✗
√ √

✗

Concavity ✗
√

✗ ✗ ✗ ✗

ER + S

Gm
l

Gm

Gt

Gc
l

Gf
l

Gf/c

ET

FIG. 1. The quantitative hierarchy of the different measures is
shown, with the six distinct extensions of GM in white boxes.
For a given state ρ ∈ S(H) the value of the measures increases
monotonically from bottom to top along the vertical lines, and
measures that are not vertically connected are not in an inequality
relationship to each other. The quantities ẼT and ER + S are not
extensions of GM, but they provide lower and upper bounds,
respectively.

On the other hand, axiomatically motivated entanglement
measures may not have operational implications.

Let S(H) be the space of operators acting on H. Con-
sidering n parties A1, . . . ,An with joint Hilbert space H =
⊗n

j=1Hj , a general n-partite state shared over the parties is
described by a density matrix ρ ∈ S(H) acting on H. Such
a state is considered separable if it can be written in the
form ρ = ∑

i piρ
1
i ⊗ · · · ⊗ ρn

i , with
∑

i pi = 1, and where
ρ

j

i is a single-particle state of the j -th party. In the axiomatic
approach [2,33,34], an entanglement measure is a functional
E : S(H) → R+ that satisfies two fundamental axioms as
follows:

(1) E(ρ) = 0 if ρ is separable.
(2) E does not increase on average under local operations

and classical communication (LOCC). Depending on which
quantum operations are considered, this is defined as

(a) Weak monotonicity: E(ρ) � E(σ ) , if ρ
LOCC�−→ σ =

E(ρ) = ∑
i

	Piρ 	P †
i .

A

B

C D

(0=Gf =Gm)

(0=Gf
l =Gm

l )

(0<Gf =Gm)

(0<Gf
l =Gm

l )

(0<Gf <Gm)

(0<Gf
l <Gm

l )
(0=Gf <Gm)

(0=Gf
l <Gm

l )

FIG. 2. Illustration of the partitioning of state space S(H) =
A ∪ B ∪ C ∪ D into four pairwise disjoint sets. The pure states
(A ∪ B) lie at the boundary, and the separable states (A ∪ C) form
a closed, convex subset of S(H). The set a state ρ belongs to is
uniquely determined by whether the inequalities in (35) are strict or
equalities. By means of �2

f (ρ) and �2
m(ρ), the same partitioning can

be facilitated by the logarithmic quantities Gf
l and Gm

l . When taking
Gc

l into account, as well, the set of genuinely mixed entangled states
D = D1 ∪ D2 ∪ D3 is further subdivided into three pairwise disjoint
sets.
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(b) Strong monotonicity: E(ρ) �
∑

i piE(σi) , if

ρ
LOCC�−→ σi = Ei (ρ)

Tr Ei (ρ) with probability pi = Tr Ei(ρ) .

Here, the maps E and Ei stand for LOCC, and the ele-
ments { 	Pi} form a complete positive-operator valued mea-
sure, i.e.,

∑
i

	P †
i

	Pi = 1. Weak monotonicity corresponds to
trace-preserving quantum operations where the measurement
outcome is unknown or discarded. Strong monotonicity
corresponds to selective quantum operations, also known as
measuring quantum operations [1]. Weak monotonicity is a
special case of strong monotonicity that follows when a single
outcome is obtained with probability 1, i.e.,E = E1. We refer to
measures satisfying Axioms 1 and 2(a) as weak entanglement
measures and measures that additionally satisfy Axiom 2(b)
as strong entanglement measures.

Historically, strong monotonicity was required for en-
tanglement measures [1,33,34], but in many cases weak
monotonicity suffices [2]. Weak entanglement measures thus
can be considered proper entanglement measures. Another
historic requirement is that entanglement measures should
coincide with the entropy of entanglement for pure bipartite
states [1,34]. However, many popular measures fail this
property, and the property cannot be easily extended to
multipartite states, so it is not considered essential anymore.
Invariance under local unitary (LU) operations is clearly
important for entanglement measures, but it does not need to
be stated as a separate axiom, because it automatically follows
from weak monotonicity [1].

Apart from the axioms discussed above, many more
desirable properties could be specified. Some common ones
are the following:1

Normalization: E(|�〉⊗n) = n for 2 qubit Bell states |�〉
Convexity: E(ρ) �

∑
i piE(ρi) for all ρ = ∑

i piρi

Additivity: E(ρ⊗2) = 2 E(ρ) for all ρ ∈ S(H)
Strong additivity: E(ρ ⊗ σ ) = E(ρ) + E(σ )

for all ρ,σ ∈ S(H).
The desirability of normalization is clear from the per-

ception that Bell states carry 1 ebit of entanglement each.
Convexity is motivated by the notion that entanglement should
not increase under loss of information, namely when a selec-
tion of identifiable states ρi (right-hand side) is transformed
into a mixture ρ (left-hand side) [1]. One may assume that
this process can be physically realized by standard quantum
operations, and thus strong monotonicity implies convexity.
However, some additional properties (such as continuity) need
to be satisfied, and the logarithmic negativity constitutes a
counterexample by being a strong entanglement measure that
is not convex [35]. An important consequence of convexity
is that the measure can be maximized on the subset of pure
states, i.e., there exist maximally entangled states (MES) that
can be cast as pure states ρ = |ψ〉〈ψ |.

If f and g are two convex functions and g is nondecreasing,
then g ◦ f is also convex. For example, if f (ρ) � 0 is a
convex measure, then f 2(ρ) is also convex, using g(x) = x2.
In analogy to convexity, concavity is defined as f (ρ) �∑

i pif (ρi) for all ρ = ∑
i piρi .

1For brevity, we abbreviate f (|ψ〉〈ψ |) as f (|ψ〉) for functions f (ρ)
defined on S(H).

Regarding the additivity axioms, the tensor products in
their definition have a specific physical meaning: Instead of
enlarging the Hilbert space, ρ ⊗ σ refers to two states acting
on the same Hilbert space [8]. If ρ and σ are both states
of n d-level subsystems, then ρ ⊗ σ is a state of n d2-level
subsystems (instead of 2n d-level subsystems). Obviously,
strong additivity implies additivity.

From a mathematical viewpoint, two entanglement mea-
sures, E1 and E2, are equivalent, if E1(ρ) = E2(ρ) holds for
all ρ ∈ S(H). A less restrictive, yet physically sound, criterion
is the property of ordering: E1 and E2 have the same entangle-
ment ordering if the same order is obtained when sorting all
states by their amount of entanglement. This is the case if for all
ρ,σ ∈ S(H) the two statements E1(ρ) > E1(σ ) and E2(ρ) >

E2(σ ) are equivalent, i.e., they are either both true or both false.
Entanglement measures that are equivalent will be denoted as
E1 ≡ E2, and measures with the same ordering as E1

∼= E2.
Many different entanglement measures have been pro-

posed, but here we only consider measures that are based on
the distance to the set of separable states. The relative entropy
of entanglement (REE) measures the minimum distance in
terms of relative entropy between the given state ρ and the set
of separable states (SEP) as follows:

ER(ρ) := min
σ∈SEP

S(ρ|σ ) , (1)

where

S(ρ|σ ) = Tr ρ(log ρ − log σ ) (2)

is the quantum relative entropy [34]. Any state σ minimizing
S(ρ|σ ) is called a closest separable state of ρ. Since
the definition involves the minimization over all separable
states, REE is known only for a few examples, such as
bipartite pure states [34,36,37], Bell diagonal states [36,38,39],
Werner states [40–42], maximally correlated states, isotropic
states [38,39], generalized Dicke states [11,14,26], antisym-
metric basis states [11,26], some graph states [10,43], the
Smolin state, and Dür’s multipartite entangled states [14,15].
A numeric method for computing REE of bipartite states has
been proposed [34].

The REE can be applied to arbitrary multipartite states,
pure or mixed. The central measure of this paper, the
geometric measure of entanglement (GM)—to be discussed in
Sec. III—is also an inherently multipartite measure, although
its definition for mixed states is not unique.

B. Distance measures and fidelity

A good measure of distance D(ρ,σ ) : S(H) × S(H) →
R+ between two quantum states should be symmetric, zero
if and only if ρ = σ , and observe weak monotonicity, which
in this context means D(ρ,σ ) � D(E(ρ),E(σ )) for any trace-
preserving quantum operation E [2,31,36]. The last prop-
erty, also known as contractivity under quantum operations,
guarantees LU invariance: D(ρ,σ ) = D(UρU †,UσU †). Any
distance function with these properties is called a distance
measure. One such distance measure is the trace distance [31],

DT(ρ,σ ) = 1

2
Tr |ρ − σ | = 1

2
Tr
√

(ρ − σ )2 = 1

2

∑
i

|λi | ,

(3)
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where the λi are the eigenvalues of the matrix (ρ − σ ).
For qubits DT(ρ,σ ) is equal to half the Euclidean distance
between the corresponding Bloch vectors. The trace distance
is convex in both arguments and, furthermore, is jointly
convex [31],

DT

(∑
i

piρi,
∑

i

piσi

)
�
∑

i

piDT(ρi,σi) . (4)

Another distance measure is the Bures distance and the closely
related fidelity [31,44,45]. The Bures distance is

DB(ρ,σ ) =
√

2 − 2F (ρ,σ ) , (5)

where F (ρ,σ ) is the fidelity between two states, defined as

F (ρ,σ ) = Tr
√√

ρσ
√

ρ . (6)

Alternative definitions in the literature are D̃T := D2
T for

the trace distance, D̃B := D2
B for the Bures distance, and

F̃ := F 2 for the fidelity.2 The three necessary properties
of distance measures outlined above remain invariant under
exponentiation, and therefore D̃T and D̃B are also distance
measures. Although closely related to the Bures distance, the
fidelity is not a distance measure itself because F (ρ,σ ) = 1
when ρ = σ . The fidelity is symmetric, unitarily invariant,
concave in both arguments, jointly concave, and has codomain
F ∈ [0,1], with F = 1 if and only if ρ = σ [31]. According
to Uhlmann’s theorem, the fidelity has a clear physical
interpretation as the maximal overlap between all purifications
of the input states [31,44].

If at least one of the two arguments of the fidelity is pure,
then (6) simplifies to F 2(ρ,σ ) = Tr(ρσ ), thus yielding

F 2(|ψ〉,σ ) = |〈ψ |σ |ψ〉|, (7a)

F 2(|ψ〉,|φ〉) = |〈ψ |φ〉|2. (7b)

In particular, for pure states the fidelity coincides with the
Fubini-Study metric, the natural geometry on H.

The fidelity also provides upper and lower bounds on the
trace distance, with the lower bound increasing with the purity
of the input states as follows [31]:

1 − F (ρ,σ ) � DT(ρ,σ ) �
√

1 − F 2(ρ,σ ), (8a)

1 − F 2(|ψ〉,σ ) � DT(|ψ〉,σ ) �
√

1 − F 2(|ψ〉,σ ), (8b)

DT(|ψ〉,|φ〉) =
√

1 − F 2(|ψ〉,|φ〉). (8c)

DB(|ψ〉,|φ〉) =
√

2 − 2F (|ψ〉,|φ〉). (8d)

Vedral et al. [36] found that from every distance measure
D(ρ,σ ) a weak entanglement measure E(ρ) can be constructed
as

E(ρ) := min
σ∈SEP

D(ρ,σ ). (9)

2This ambiguity of the definitions led to an incorrect definition of
the Bures distance in Ref. [46].

This construction directly yields weak entanglement measures
from the trace distance (3) and Bures distance (5),

ET(ρ) = min
σ∈SEP

DT(ρ,σ ), (10a)

EB(ρ) = min
σ∈SEP

DB(ρ,σ ), (10b)

which we refer to as trace entanglement (TE) and Bures
entanglement (BE), respectively. In analogy to D̃T and D̃B,
we define ẼT := E2

T and ẼB := E2
B, and note that they are

also weak entanglement measures. From (5) and the left-hand
side of (8a), it follows that

ẼB(ρ) � 2ET(ρ) , for all ρ ∈ S(H).

The quantum relative entropy (2) is not symmetric, and
therefore not a proper distance measure. Nevertheless, by
means of (9), it gives rise to the REE, which is a strong
entanglement measure [34,47]. One could also ask whether the
Hilbert-Schmidt distance DHS(ρ,σ ) = Tr[(ρ − σ )2], a metric
in the mathematical sense, gives rise to an entanglement mea-
sure. However, this metric does not satisfy weak monotonicity,
and it is an open question whether inserting DHS in (9) yields
an entanglement measure [48].

A simple, but important, mathematical inequality for this
paper is

x − 1 � logb x ∀ x ∈ (0,1] ∀ 1 < b � e, (11)

where e denotes the base of the natural logarithm. We call (11)
the elementary inequality. To demonstrate its usefulness,
consider the two most common entropic quantities in quantum
information theory, the linear entropy M(ρ) = 1 − Tr(ρ2),
and the von Neumann entropy S(ρ) = − Tr(ρ log ρ). The
linear entropy can be understood as an approximation of von
Neumann entropy, obtained by the Taylor series log(ρ) ≈
ρ − 1, where 1 has the same range as ρ. For the commonly
used logarithm bases 2 and e, (11) yields 1 − ρ � − log ρ,
hence

M(ρ) � S(ρ), ∀ ρ ∈ S(H). (12)

III. GEOMETRIC MEASURE OF ENTANGLEMENT

In this section we review the two common definitions of
GM for pure states and introduce the known and unknown
extensions to mixed states.

A. GM for pure states

The fundamental quantity for GM of pure states is

�2(|ψ〉) := max
|ϕ〉∈PRO

|〈ϕ|ψ〉|2, (13)

where PRO denotes the set of fully product pure states of
H, henceforth referred to as product states. Comparing (13)
with (7), we see that �2(|ψ〉) is the maximum fidelity between
|ψ〉 and the set PRO. Furthermore, it is clear from (7) that the
maximal value of F (|ψ〉,·) can be found among pure states as
follows:

�2(|ψ〉) = max
|ϕ〉∈PRO

F 2(|ψ〉,|ϕ〉) = max
σ∈SEP

F 2(|ψ〉,σ ). (14)

Any product state or separable state that maximizes the corre-
sponding fidelity expression in (14) is called closest product
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state (CPS) or closest separable state (CSS), respectively.
Note that the CPS or CSS is in general not unique. The
relationship between the CSSs and CPSs of a given state
|ψ〉 ∈ H is seen from (7): If {|φi〉} is the set of CPSs,
then any superposition σ = ∑

i pi |φi〉〈φi | with
∑

i pi = 1 is
a CSS. Conversely, if σ is a CSS, then there must exist
a decomposition σ = ∑

i pi |φi〉〈φi | such that all |φi〉 are
CPSs.

The two common definitions of GM for pure states are
[3,6]

G(|ψ〉) := 1 − �2(|ψ〉), (15a)

Gl(|ψ〉) := − log �2(|ψ〉), (15b)

which we refer to as the linear GM and logarithmic GM,
respectively. Unless denoted otherwise, the base 2 logarithm
is used in this paper. Thanks to the elementary inequality (11),
the results of this paper are also valid for any other logarithm
base up to, and including, the base of the natural logarithm. For
larger bases this is not the case, because (11) then no longer
holds. Both G and Gl increase monotonically with �2, and
eliminating �2 yields

Gl(|ψ〉) = − log[1 − G(|ψ〉)] ∀ |ψ〉 ∈ H . (16)

Due to this monotonic relationship, G and Gl have the
same ordering for pure states. In particular, they have the
same MESs. For bipartite states the MES (up to LU) is
|�〉 = 1√

d

∑d
i=1 |ii〉, yielding G(|�〉) = 1 − 1

d
and Gl(|�〉) =

log d. For the simplest multipartite case of three qubits, the
W state has been analytically determined as the MES for
the GM [16]. For general multipartite systems, however, W

states only yield low entanglement in terms of GM, and
the identification of the MESs is an open problem. For the
subset of permutation-symmetric states the MES are better
understood [17–19], because the CPSs of symmetric states are
symmetric themselves [49], thus considerably simplifying the
optimization problem.

From (16) and the elementary inequality (11) it follows
that

G(|ψ〉) � Gl(|ψ〉) ∀ |ψ〉 ∈ H . (17)

Since �2(|ψ〉) = |〈ψ |ψ〉|2 = 1 holds for all |ψ〉 ∈ PRO,
entanglement Axiom 1 is satisfied for pure states for both
definitions in (15). Regarding Axiom 2, an extension of G to
mixed states that satisfies strong monotonicity is known [6],
which automatically implies strong monotonicity of G on
the subset of pure states. In contrast to this, an explicit
counterexample ruling out strong monotonicity is known
for Gl, and since this counterexample considers pure states
only [11], no extension of Gl to mixed states can be strongly
monotonous. However, we will later see that extensions of Gl

with weak monotonicity do exist (cf. Gf
l defined in Sec. III B 3),

and therefore Gl is weakly monotonous on the subset of pure
states. The axiomatic properties of G and Gl are summarized
in Table II in the left column.

Regarding the optional axioms, it is easy to verify that Gl is
normalized, whereas G is not. This makes Gl the natural choice
for quantitative studies of entanglement, such as scaling laws
or comparison with other measures. The MES entanglement
of n qubits (n � 3) scales linearly as n − 2 log2(n) − O(1) <

Gl(|�〉) < n − 1 [8,23,50]. Restricting the computational
coefficients to real values does not affect this scaling [8],
but for positive states (i.e., states whose coefficients are all
positive in the computational basis) the n-qubit MES are
bounded by Gl(|�〉) � n

2 , and this bound is strict for even
n (a trivial example being n/2 Bell pairs) [18]. On the
other hand, symmetric n-qubit MESs scale logarithmically as
log2(n + 1) − O(1) < Gl(|�〉) < log2(n + 1) [18,19]. These
scaling laws readily generalize to qudits, leading to the con-
clusion that the MESs of sufficiently large multipartite systems
are neither positive nor symmetric. Furthermore, since generic
states are nearly maximally entangled with respect to GM [23],
the above scaling laws can also be applied to random
states.

Regarding the additivity axioms, neither G nor Gl are
additive in general. For G this is obvious from its codomain
[0,1], and for Gl it has been shown that states with a high
amount of entanglement are not additive [8]. Nevertheless,
many states of interest are additive or even strongly additive
under Gl. In particular, it has been shown that positive states
are strongly additive [8]:

Lemma 1. Let |ψ〉 ∈ H be a positive state. Then |ψ〉 is
strongly additive, i.e., �2(|ψ〉 ⊗ |φ〉) = �2(|ψ〉)�2(|φ〉) and
Gl(|ψ〉 ⊗ |φ〉) = Gl(|ψ〉) + Gl(|φ〉) holds for all |φ〉 ∈ H.

Examples of positive states are multipartite Dicke states of
arbitrary dimension and all bipartite pure states (by means
of the Schmidt decomposition). Lemma 1 can be readily
generalized to mixed states for an extension of GM that will
be discussed in Sec. III B 2.

Note that the definition of the linear GM (15a) coin-
cides with the Groverian entanglement measure EGr(|ψ〉) =
G(|ψ〉)1/2, which has a tangible operational interpretation by
means of a quantum algorithm [7,20].

B. GM for mixed states

With the GM defined for pure states |ψ〉 ∈ H, we now
consider the possible extensions to mixed states ρ ∈ S(H).
Extensions of the linear GM will be labeled Gx(ρ), and
extensions of the logarithmic GM as Gx

l (ρ), where x stands
for a label to denote the extension. Any valid extension
must coincide with (15a) or (15b) on the subset of pure
states ρ = |ψ〉〈ψ |. In other words, Gx(|ψ〉〈ψ |) = G(|ψ〉) and
Gx

l (|ψ〉〈ψ |) = Gl(|ψ〉) must hold for all |ψ〉 ∈ H.
Since the expressions “pure” and “mixed” can be am-

biguous, we briefly clarify their usage. From a mathematical
viewpoint, σ = |ψ〉〈ψ | ∈ S(H) is a mixed state, but physically
it is equivalent to the pure state |ψ〉 ∈ H. Therefore, we refer
to both |ψ〉 and σ = |ψ〉〈ψ | as pure states. On the other
hand, we refer to all states ρ ∈ S(H) as mixed states, so
σ = |ψ〉〈ψ | can be regarded as pure and mixed. Mixed states
that are not pure will be called genuinely mixed. Mathemat-
ically, a state ρ ∈ S(H) is genuinely mixed, if and only if
rank ρ � 2.

One strategy to extend (15) to mixed states is to extend (13)
to mixed states, i.e., to introduce a function �2

x(ρ) : S(H) →
R+ with the property that �2

x(|ψ〉〈ψ |) = �2(|ψ〉) for all |ψ〉 ∈
H. The following lemma asserts the properties of extensions
defined in that manner.
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Lemma 2. Let �2
x(ρ) : S(H) → R+ be an extension of (13)

to the set of all density matrices. Then the following holds for
Gx(ρ) := 1 − �2

x(ρ) and Gx
l (ρ) := − log2 �2

x(ρ):
(1) Gx(ρ) � Gx

l (ρ) holds for all ρ.
(2) Gx

l (ρ) = − log2 (1 − Gx(ρ)) or, equivalently,
Gx(ρ) = 1 − 2−Gx

l (ρ) holds for all ρ. Furthermore, Gx ∼= Gx
l .

(3) Gx satisfies Axiom 1 if and only if Gx
l does.

(4) Gx satisfies Axiom 2(a) if and only if Gx
l does.

(5) If Gx is convex, then Gx
l is also convex.

(6) If Gx
l is concave, then Gx is also concave.

Proof.
(1) This directly follows from the elementary inequal-

ity (11).
(2) The relationships between Gx(ρ) and Gx

l (ρ) are ob-
tained by eliminating �2

x(ρ). Since f (y) = − log2(1 − y) and
g(y) = 1 − 2−y are monotonously increasing functions in
y ∈ [0,1], Gx and Gx

l have the same ordering.
(3) For any ρ ∈ SEP we have the following: Gx(ρ) = 0 ⇔

1 − �2(ρ) = 0 ⇔ �2(ρ) = 1 ⇔ − log2 �2(ρ) = 0 ⇔
Gx

l (ρ) = 0 .

(4) For any ρ �→ σ = ∑
i

	Piρ 	P †
i we have the follow-

ing: Gx(ρ) � Gx(σ ) ⇔ 1 − �2(ρ) � 1 − �2(σ ) ⇔ �2(ρ) �
�2(σ ) ⇔ − log2 �2(ρ) � − log2 �2(σ ) ⇔ Gx

l (ρ) � Gx
l (σ ) .

(5) Let Gx(ρ) = 1 − �2(ρ) be convex. Since g(y) :=
− log2(1 − y) is a convex nondecreasing function, g(Gx(ρ)) =
− log2 �2(ρ) is also convex.

(6) Let Gx
l (ρ) = − log2 �2(ρ) be concave. Its additive

inverse −Gx
l (ρ) is therefore convex. Since g(y) := 2y is a

convex nondecreasing function, g(−Gx
l (ρ)) = �2(ρ) is also

convex. Therefore, 1 − �2(ρ) is concave. �
With regard to items 5 and 6 of Lemma 2, it should be noted

that convexity of Gx does not follow from convexity of Gx
l and

that concavity of Gx
l does not follow from concavity of Gx. A

counterexample for the latter case are the measures Gm and
Gm

l introduced in Sec. III B 2.
Several extensions of GM have been proposed in the past,

and below we will introduce these as well as new ones. The first
approach is based on a convex roof construction, akin to the
entanglement of formation [1]. The second and third approach
are based on extending the definition (13) to mixed states by
means of the fidelity between the given state and the set of
all pure or mixed states, respectively. Consequently, Lemma 2
applies to these two approaches. The fourth approach is to
extend the linear GM by means of the trace distance (3).

1. Extension by convex roof: Gc/Gc
l

Based on definitions (13) and (15), the convex roofs of the
linear and logarithmic GM are

Gc(ρ) := min
{pi ,|ψi 〉}

∑
i

piG(|ψi〉), (18a)

Gc
l (ρ) := min

{pi ,|ψi 〉}

∑
i

piGl(|ψi〉), (18b)

where the minimum runs over all decompositions of ρ =∑
i pi |ψi〉〈ψi |. Decompositions that minimize (18a) or (18b)

will be called optimal decompositions and are labeled
{Pi,|�i〉}. It is natural to ask whether for a given ρ the two
functionals are minimized for the same decomposition. We

will later show that for many states Gc and Gc
l have the same

optimal decompositions (e.g., for all isotropic states and two
qubit states), but that there also exist states for which Gc and
Gc

l do not have a common optimal decomposition (e.g., for
some maximally correlated states). Another open question is
how many pure components |ψi〉 are necessary for an optimal
decomposition of Gc or Gc

l . At least for Gc it is known that
(dimH)2 pure components suffice [13].

Mathematically, any two decompositions {pi,|ψi〉} and
{qj ,|φj 〉} of the same ρ are related by a unitary matrix uij

(i.e.,
∑

k u∗
kiukj = δij ), so

√
pi |ψi〉 =

∑
j

uij

√
qj |φj 〉 (19)

holds for all i [31,51]. This identity will later be used in some
proofs.

Regarding the entanglement axioms, Axiom 1 and convex-
ity directly follow from the convex roof definitions for both
Gc and Gc

l . The quantity Gc was first studied in detail in
the seminal paper of Wei et al. [6] and found to be a strong
entanglement measure. On the other hand, Gc

l cannot be a
strong entanglement measure [11]. However, it is an open ques-
tion whether Gc

l is weakly monotonous, i.e., whether Gc
l (ρ) �

Gc
l (E(ρ)) holds for all channels E and all ρ ∈ S(H). For ρ ∈

SEP this is satisfied because of Axiom 1, and for all bipartite
pure MES |�〉 = 1√

d

∑d
i=1 |ii〉 this is also satisfied, because

Gc
l (E(|�〉)) = min

{pi ,|ψi 〉}

∑
i

piGl(|ψi〉) � min
{pi ,|ψi 〉}

−
∑

i

pi log
1

d

= log d = Gc
l (|�〉).

In the two qubit case Gc
l is a weak entanglement measure.

In Appendix A we present a direct proof employing
the concurrence and the optimal decomposition of the
entanglement of formation [52]. The same result will later
follow from a different line of argumentation.

Since the definitions (18) are not based on extending (13)
to mixed states, Lemma 2 does not apply to Gc and Gc

l . In
particular, we do not know if there exists an exact analytic
relation between Gc and Gc

l or if the two quantities have at
least the same ordering (i.e., Gc ∼= Gc

l ). The following lemma
provides an analytic relation in the form of an inequality.

Lemma 3. For every state ρ the following holds:
(1) Gc(ρ) � Gc

l (ρ).
(2) Gc

l (ρ) � − log2[1 − Gc(ρ)] or, equivalently, Gc(ρ) �
1 − 2−Gc

l (ρ).
Proof.
(1) This inequality readily follows from (17) and (18) for

all ρ.
(2) Let {Pi,|�i〉} be an optimal decomposition of ρ for

Gc
l (ρ). Then

Gc
l (ρ) =

∑
i

Pi[− log �2(|�i〉)] � − log

[∑
i

Pi�
2(|�i〉)

]

� − log

[
max

{pi ,|ψi 〉}

∑
i

pi�
2(|ψi〉)

]
= − log[1 − Gc(ρ)],
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where the inequalities follow from that fact that f (y) =
− log2(y) is a convex and monotonically decreasing function.
An analogous derivation yields Gc(ρ) � 1 − 2−Gc

l (ρ). �
Regarding the ordering of Gc and Gc

l , it will later be shown
that the two measures do not have the same ordering in general
(cf. Corollary 16).

2. Extension by trace inner product: Gm/Gm
l

Apart from the convex roof, the most widely studied
extension of GM to mixed states is obtained by extending (13)
to mixed states via the Hilbert-Schmidt inner product Tr(A†B),
also known as trace inner product [31]. As proved below, this
is equivalent to maximizing the fidelity between the input state
and set of pure product states,

�2
m(ρ) := max

σ∈SEP
Tr(ρσ ) = max

|ϕ〉∈PRO
〈ϕ|ρ|ϕ〉= max

|ϕ〉∈PRO
F 2(ρ,|ϕ〉).

(20)

Proof. The last equality is clear from (7a), and the � part
of the middle equality follows from the fact that the set of fully
separable states contains the pure product states. The � part
of the middle equation follows as

max
σ∈SEP

Tr(ρσ ) = Tr

(
ρ
∑

i

pi |φi〉〈φi |
)

=
∑

i

pi〈φi |ρ|φi〉

�
∑

i

pi max
|ϕ〉∈PRO

〈ϕ|ρ|ϕ〉 = max
|ϕ〉∈PRO

〈ϕ|ρ|ϕ〉,

where σm = ∑
i pi |φi〉〈φi |, with |φi〉 ∈ PRO for all i, is the

separable state that maximizes Tr(ρσ ). �
For pure states �2

m(ρ) obviously coincides with �2(|ψ〉)
from (13). Therefore, the functionals (15a) and (15b) are
extended to mixed states as

Gm(ρ) := 1 − �2
m(ρ), (21a)

Gm
l (ρ) := − log �2

m(ρ). (21b)

Since Lemma 2 applies to these measures, there is some
interdependence in their entanglement axioms. Indeed, neither
Gm nor Gm

l is an entanglement measure. This can be readily
seen from that fact that the two measures attain their maximum
for the maximally mixed state 1

dim(H) , a separable state [12],
thus violating Axiom 1 and Axiom 2(a).

With regard to convexity, the maximally mixed state is also
a counterexample, because it can be decomposed into pure
product states, 1 = ∑

i |i〉〈i|, with G(|i〉) = Gl(|i〉) = 0. To
check whether Gm or Gm

l are concave, consider an arbitrary
decomposition ρ = ∑

i piρi . We have

�2
m(ρ) = max

|ϕ〉∈PRO

∑
i

pi〈ϕ|ρi |ϕ〉 �
∑

i

pi max
|ϕi 〉∈PRO

〈ϕi |ρi |ϕi〉

=
∑

i

pi�
2
m(ρi).

Therefore, �2
m(ρ) is convex. From this it directly follows

that Gm(ρ) = 1 − �2
m(ρ) is concave. It remains to investigate

whether Gm
l is also concave. Let us consider the isotropic state

ρiso := p1/d2 + (1 − p)|�〉〈�|, where p ∈ [0,1] and |�〉 =
1√
d

∑d
i=1 |ii〉 [53]. We easily see that �2

m(ρiso) = p/d2 +

(1 − p)/d. The concavity of the logarithm yields Gm
l (ρiso) �

pGm
l (1/d2) + (1 − p)Gm

l (|�〉), and the inequality is strict for
p ∈ (0,1). So the isotropic state is a counterexample to the
concavity of Gm

l . To conclude, Gm
l is neither convex nor

concave.
Although not entanglement measures, the quantities Gm

and Gm
l are easier to calculate than other definitions of

GM and have received a considerable amount of atten-
tion [8,10,12,14,26,50]. The quantity Gm

l has been found to be
closely related to the relative entropy of entanglement and the
logarithmic global robustness of entanglement [8,11,18,26].
Furthermore, Gm

l has been employed for the construction of
optimal entanglement witnesses [26] and for the study of state
discrimination under LOCC [12,26]. Zhu et al. [8] calculated
�2

m(ρ) for many states of interest, and Jung et al. [50] found
that tracing out one subsystem of an n-partite pure state
does not change this quantity, i.e., �2

m(|ψ〉) = �2
m(ρ), with

ρ = Tri(|ψ〉〈ψ |), holds for all |ψ〉 ∈ H and all 1 � i � n.
The quantity Gm

l allows to generalize Lemma 1 to mixed
states [8]. A density matrix is called positive if all its entries
in the computational basis are positive.

Lemma 4. Let ρ ∈ S(H) be a positive state. Then ρ is
strongly additive, i.e., �2(ρ ⊗ σ ) = �2(ρ)�2(σ ) and Gm

l (ρ ⊗
σ ) = Gm

l (ρ) + Gm
l (σ ) holds for all σ ∈ S(H).

This lemma has been employed to show the strong additivity
of many mixed states, such as mixtures of Dicke states, Bell
diagonal states, isotropic states, multiqubit Dür states, and
the Smolin state [8]. The additivity problem of Gm

l is closely
related to that of the relative entropy and the logarithmic global
robustness [26], which facilitated the study of additivity under
these two entanglement measures, as well [8].

3. Extension by fidelity: Gf/Gf
l

We can also extend �2 to mixed states by means of the
fidelity as follows:

�2
f (ρ) := max

σ∈SEP
F 2(ρ,σ ) . (22)

This quantity has been previously studied [7,9,13,20,46,54]
and has been described as fidelity of separability [13]. In the
bipartite case (22) is equivalent to the so-called maximum
k-extendible fidelity of a state in the limit k → ∞ [54]. The
maximum k-extendible fidelity has an operational interpre-
tation as the maximum probability with which one party
can convince another party that ρ is separable in a specific
protocol [54].

It is easy to verify that for pure states �2
f coincides with

�2,

�2
f (|ψ〉) = max

σ∈SEP
F 2(|ψ〉,σ ) = max

σ∈SEP
|〈ψ |σ |ψ〉|

= max
|ϕ〉∈PRO

|〈ϕ|ψ〉|2 = �2(|ψ〉).

The corresponding extensions of the linear and logarithmic
GM are

Gf(ρ) := 1 − �2
f (ρ), (23a)

Gf
l (ρ) := − log �2

f (ρ). (23b)

As seen for Gm and Gm
l , Lemma 2 applies to these measures.

Gf is intimately related to the Groverian entanglement measure
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[which is equal to
√

Gf(ρ) for pure states ρ only] [7,20], thus
giving it an operational interpretation by a quantum algorithm.
Gf has been shown to be a weak entanglement measure [7]
and has also been studied in Ref. [46]. On the other hand, little
is known about Gf

l . It has been touched upon in the context of
additivity in Ref. [9], but to our knowledge its properties have
not been studied before.

Intriguingly, it was discovered that Gf(ρ) is equivalent to
its convex roof [13], and since the convex roof is precisely
Gc(ρ), the definitions (23a) and (18a) are equivalent:

Proposition 5. Gf ≡ Gc, i.e., Gf (ρ) = Gc(ρ) holds for all
states ρ.

We will jointly refer to these two definitions as Gf/c in
the following, except in situations where the emphasis is
on their formal definitions (i.e., fidelity-based versus convex
roof-based). The relationship among σf, the CSS of ρ in
terms of (23a), and the optimal decomposition {Pi,|�i〉} of
ρ in terms of (18a) is also fully understood and outlined in
Ref. [13]. Since Gc is known to be a strong entanglement
measure with convexity, the same is true for Gf. In particular,
the convexity of (23a) implies that �2

f (ρ) is concave. There are
many states for which Gc(ρ) has been computed [6], and from
Proposition 5 and Lemma 2 the values of Gf(ρ) and Gf

l (ρ)
directly follow.

With the known properties of Gf, it follows from Lemma 2
that Gf

l is a weak entanglement measure with convexity. From
the convexity of Gf

l it then follows that Gf
l (ρ) � Gc

l (ρ) holds
for all ρ as follows:

Gf
l (ρ) �

∑
i

PiGl(|�i〉) = min
{pi ,|ψi 〉}

∑
i

piGl(|ψi〉) = Gc
l (ρ),

(24)

where {Pi,|�i〉} is an optimal decomposition for Gc
l (ρ). The

question whether Gf
l (ρ) � Gc

l (ρ) is strict for some states will
be extensively studied in Sec. IV.

4. Extension by trace distance: Gt

It is tempting to introduce another mixed extension of
GM, based on the trace distance defined in (3). From (8c)
we obtain D2

T(|ψ〉,|φ〉) = 1 − F 2(|ψ〉,|φ〉) = 1 − |〈ψ |φ〉|2,
an expression with the form of (15a). We therefore define

Gt(ρ) := min
|ϕ〉∈PRO

D2
T(ρ,|ϕ〉) = 1

4 min
|ϕ〉∈PRO

(Tr |ρ − |ϕ〉〈ϕ||)2,

(25)

and call this measure the trace extension of GM. For pure
input states Gt obviously coincides with (15a), so (25) is an
extension of the linear GM. Note that the related definition,

ẼT(ρ) = min
σ∈SEP

D2
T(ρ,σ ), (26)

was already introduced (up to a square operation) as the trace
entanglement in (10a) and shown to be a weak entanglement
measure. From (25) and (26) it immediately follows that
ẼT(ρ) � Gt(ρ) for all ρ. To see whether ẼT also coincides
with (15a) for the subset of pure states, we need to answer
the question whether for pure input states the closest separable
state σt ∈ S(H) in terms of the trace distance can always be

chosen to be pure, i.e., σt = |φ〉〈φ|. The cluster states provide
a counterexample for this as follows.

Corollary 6. There exist pure states |ψ〉 for which
ẼT(|ψ〉) < Gt(|ψ〉) holds.

Proof. From Theorem 28 and the succeeding paragraph,
together with (8c), it follows that ẼT(|Cn〉) = D2

T(|Cn〉,δ) =
(1 − 2− n

2 )2 < 1 − 2− n
2 = 1 − �2(|Cn〉) = Gt(|Cn〉) holds for

all n qubit cluster states |Cn〉 with even n. �
As a consequence, ẼT is not an extension of the linear GM,

because DT(|ψ〉,·) is in general not minimized by pure states.
However, ẼT is an interesting quantity on its own, because
it is a weak entanglement measure and a lower bound to Gt.
Furthermore, we will see in Sec. IV C that ẼT is also a lower
bound to Gf/c, which makes it a joint lower bound to all the
GM definitions discussed in this paper.

The convexity of ET, and thus the convexity of ẼT = E2
T,

can be proved with the joint convexity of the trace distance.
For any ρ = ∑

i piρi we have∑
i

piET(ρi) =
∑

i

pi min
σi∈SEP

DT(ρi,σi)

= min
{σi }∈SEP

[∑
i

piDT(ρi,σi)

]
� min

{σi }∈SEP

[
DT

(
ρ,
∑

ipiσi

)] = min
σ∈SEP

DT(ρ,σ )

= ET(ρ),

where the inequality follows from (4).
On the other hand, Gt is not an entanglement measure.

For this, note that Gt(|ϕ〉) = 0 holds for all |ϕ〉 ∈ PRO and
that Gt(ρ) > 0 holds for all genuinely mixed ρ ∈ SEP. From
this it is not only clear that Axiom 1 is violated, but one can
also immediately construct counterexamples for the concavity
and the weak monotonicity (e.g., with the depolarizing
channel [31]). Using the isotropic state as a counterexample,
it is shown in Appendix B that Gt is not concave either.

IV. RELATIONSHIPS BETWEEN THE GM DEFINITIONS

In the previous section we introduced and discussed seven
different definitions of GM for mixed states (and only two of
them differ for pure states), of which two are equivalent. In the
following we analyze the relationship between these different
definitions.

For an arbitrary mixed state ρ ∈ S(H) the quantities Gm(ρ)
and Gm

l (ρ) correspond to the same closest product state
|φm〉 ∈ PRO, and the quantities Gf(ρ) and Gf

l (ρ) correspond
to the same closest separable state σf ∈ SEP. In contrast to
this, Gc(ρ) and Gc

l (ρ) correspond to optimal decompositions
{Pi,|�i〉} that may differ for the two measures. The quantity
Gt(ρ) corresponds to a closest product state |φt〉 ∈ PRO. In
total, with the exception of the convex roof-based measures,
the different values of GM for a given state are determined by
two product states |φm〉, |φt〉 and one separable state σf.

A. Comparison among Gf/c, Gc
l , and Gf

l

From the previous discussion we already know that
Gf ≡ Gc, Gf/c ∼= Gf

l , and that Gc
l (ρ) � Gf

l (ρ) = − log2[1 −
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Gf/c(ρ)]. In this subsection, we study the connection between
the fidelity-based and convex roof-based extensions in further
detail by addressing some open problems. For example, it is
neither obvious nor known whether Gc

l and Gf
l are equivalent

(Gc
l ≡ Gf

l ), and, if not, whether they have at least the same
ordering (Gc

l
∼= Gf

l ). For this purpose, we will first derive
necessary and sufficient conditions for Gc

l (ρ) = Gf
l (ρ) and

then investigate optimal decompositions for specific classes
of states (e.g., maximally correlated states, isotropic states,
two-qubit states).

Theorem 7. For any state ρ the following four conditions
are equivalent:

(1) Gc
l (ρ) = G

f

l (ρ) holds.
(2) Gc

l (ρ) = − log2[1 − Gf/c(ρ)] holds.
(3) There exists a decomposition {Pi,|�i〉}, so

(a) {Pi,|�i〉} is optimal for Gc(ρ) and Gc
l (ρ), and

(b) the |�i〉 are all equally entangled.
(4) For every optimal decomposition {Pi,|�i〉} of Gc

l (ρ)
the following holds:

(a) {Pi,|�i〉} is also optimal for Gc(ρ), and
(b) the |�i〉 are all equally entangled.

Here, the meaning of 3(b) and 4(b) is that �2(|�i〉) =
�2(|�j 〉) holds for all i,j .

Proof. Let {Pi,|�i〉} be some optimal decomposition of
Gc

l (ρ). Using Lemma 2, Proposition 5, and (18), we have

Gf
l (ρ) = − log[1 − Gf/c(ρ)] = − log

[
max

{pi ,|ψi 〉}

∑
i

pi�
2(|ψi〉)

]

� − log

[∑
i

Pi�
2(|�i〉)

]
� −

∑
i

Pi log �2(|�i〉)

= Gc
l (ρ), (27)

where the second inequality follows from the concavity of the
logarithm.

1. ⇔ 2.: This equivalency follows immediately from
Gf

l (ρ) = − log2[1 − Gf/c(ρ)].
1. ⇔ 4.: Apparently, Gf

l (ρ) = Gc
l (ρ) holds if and only if

both inequalities in (27) become equalities. Regarding the first
inequality in (27), this inequality becomes an equality if and
only if {Pi,|�i〉} is also an optimal decomposition for Gc(ρ).
Regarding the second inequality in (27), the strict concavity of
the logarithm implies that this inequality becomes an equality
if and only if �2(|�i〉) = �2(|�j 〉) holds for all i,j . Together,
this yields that condition 1 holds if and only if condition 4
holds.

4. ⇒ 3.: Obvious, since Gc
l (ρ) has at least one optimal

decomposition.
3. ⇒ 1.: Using the decomposition {Pi,|�i〉} postulated by

condition 3, the two inequalities in (27) turn into equalities.
Therefore, Gf

l (ρ) = Gc
l (ρ). �

Note that for states ρ that fall under Theorem 7any
optimal decomposition for Gc

l (ρ) is also optimal for Gc(ρ),
but the converse is not necessarily true. In other words,
for states ρ that satisfy Gc

l (ρ) = Gf
l (ρ), the set of optimal

decompositions for Gc
l (ρ) is a nonempty subset of the set

of optimal decompositions for Gc(ρ). It is an open question

whether states ρ with Gc
l (ρ) = Gf

l (ρ) exist, for which the set
of optimal decompositions of Gc(ρ) is strictly larger than that
of Gc

l (ρ). Without the condition Gc
l (ρ) = Gf

l (ρ), Gc(ρ) and
Gc

l (ρ) may not even have any common optimal decomposition,
as shown later in Corollary 15.

The following corollary helps to understand the relationship
between optimal decompositions of Gc(ρ) and Gc

l (ρ).
Corollary 8. Let {Pi,|�i〉} be some decomposition of ρ.

The following two conditions are equivalent:
(1) {Pi,|�i〉} is an optimal decomposition for Gc(ρ), and

the |�i〉 are all equally entangled.
(2) {Pi,|�i〉} is an optimal decomposition for Gc

l (ρ), and
Gc

l (ρ) = G
f

l (ρ) holds.
Proof.

2 ⇒ 1: This easily follows from items 1 and 4 of
Theorem 7.

1 ⇒ 2: Let {Pi,|�i〉} be an optimal decomposition of
Gc(ρ), where the |�i〉 are all equally entangled. In analogy
to (27), we have

Gf
l (ρ) = − log[1 − Gf/c(ρ)] = − log

{∑
i

Pi�
2(|�i〉)

}

=
∑

i

Pi[− log �2(|�i〉)] � min
{pi ,|ψi 〉}

∑
i

piGl(|ψi〉)

= Gc
l (ρ), (28)

where the third equality follows from the fact that the |�i〉
are all equally entangled. As shown in (24), Gf

l (ρ) � Gc
l (ρ)

holds for all ρ, so the inequality in (28) must be an equality.
Therefore, {Pi,|�i〉} is also an optimal decomposition for
Gc

l (ρ), and Gf
l (ρ) = Gc

l (ρ) holds. �
Following the derivation of general results, we next investi-

gate classes of states for whom Gf
l (ρ) and Gc

l (ρ) coincide. We
will see that for two-qubit systems Gf

l ≡ Gc
l holds and that for

general bipartite systems Gf
l (ρ) = Gc

l (ρ) holds for the subset
of isotropic states.

Proposition 9. G
f

l ≡ Gc
l holds for two qubits.

Proof. According to Proposition 4 of Ref. [13], if f (x)
is a non-negative convex function for x � 0 and obeys
f (0) = 0, then for two-qubit systems f (Gc(ρ)) is equal to its
convex roof. The function f (x) := − log2(1 − x) satisfies the
requirements, so f (Gc(ρ)) = f (Gf(ρ)) = Gf

l (ρ) is equal to its
convex roof, which is precisely min{pi ,|ψi 〉}

∑
i piGl (|ψi〉) =

Gc
l (ρ). Therefore, Gf

l (ρ) = Gc
l (ρ) holds for all ρ. �

Proposition 10. G
f

l (ρ) = Gc
l (ρ) holds for isotropic states

in two qudits.
Proof. The isotropic states are ρiso = p1/d2 + (1 −

p)|�〉〈�|, with p ∈ [0,1] and |�〉 = 1√
d

∑d
i=1 |ii〉. The

parametrization employed in Ref. [6] translates to ours as
p = d2

d2−1 (1 − F ), where F ∈ [0,1]. For F ∈ [0, 1
d

], ρ is sep-
arable [6], which implies Gf

l (ρ) = Gc
l (ρ) = 0. Next, consider

the entangled region F ∈ ( 1
d
,1]. From Ref. [6] [Eq. (36)

and (54)] it follows that Esin2 = Gf/c and Gf/c(ρiso(F )) =
1 − 1

d
[
√

F + √
(d − 1)(1 − F )]2. From Lemma 2 it fol-

lows that Gf
l(ρiso(F )) = − log 1

d
[
√

F + √
(d − 1)(1 − F )]2.

To compute Gc
l (ρiso(F )), we follow the idea of Ref. [6]

to obtain the first and second equalities of the following
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equation:

Gc
l (ρiso(F ))=Cconv

⎧⎨⎩− max
{μi }

⎡⎣log μi

∣∣∣∣F = 1

d

(
d∑

i=1

√
μi

)2
⎤⎦⎫⎬⎭

=Cconv

{
− log

1

d
[
√

F +
√

(d − 1)(1 − F )]2

}
=Cconv

[
Gf

l(ρiso(F ))
] = Gf

l(ρiso(F )). (29)

Here Cconv is the convex hull. The last equality in (29) follows
from the fact that Gf

l(ρiso(F )) is convex. This completes the
proof. �

Next, we investigate maximally correlated states, because
necessary and sufficient conditions for Gc

l (ρ) = Gf
l (ρ) can

be derived for these states. The maximally correlated states
have been extensively studied in terms of the entanglement of
formation and distillable entanglement [42,55]. In this paper
we focus on a special type of maximally correlated states
defined as follows:

Definition 11. Given a bipartite d-level system H = Cd ⊗
Cd , let {ni}ri=0 with r < d be a set of integers with 0 =
n0 < · · · < nr = d, and let |�i〉 = 1√

ni−ni−1

∑ni

k=ni−1+1 |kk〉 be

the (ni − ni−1)-level MES. Then ρ = ∑r
i=1 qi |�i〉〈�i |, with∑r

i=1 qi = 1 and qi ∈ (0,1), is a d × d maximally correlated
state.

From now on, we refer to maximally correlated states as the
states defined above. The integer r can be readily identified as
the rank of the maximally correlated state, i.e., rank ρ = r .

Lemma 12. Let ρ = ∑r
i=1 qi |�i〉〈�i | be a d × d maxi-

mally correlated state. Then
(1) The unique optimal decomposition for Gc(ρ), up to

overall phases, is {qi,|�i〉}.
(2) Gc(ρ) = Gf (ρ) = 1 − ∑r

i=1
qi

ni−ni−1
.

(3) Gc
l (ρ) � G

f

l (ρ) = − log(
∑r

i=1
qi

ni−ni−1
).

(4) Gc
l (ρ) = G

f

l (ρ) if and only if the |�i〉 are all equally
entangled.

(5) Gc
l (ρ) = G

f

l (ρ) if and only if ni − ni−1 is the same for
all i = 1, . . . ,r .

(6) If Gc
l (ρ) = G

f

l (ρ), then Gc
l (ρ) has the same optimal

decompositions as Gc(ρ).
Proof. First we prove item 1. Let {Pi,|�i〉} be some optimal

decomposition of Gc(ρ). Then

1 − Gc(ρ) =
∑

i

Pi�
2(|�i〉) �

r∑
j=1

qi�
2(|�j 〉)

=
r∑

j=1

qj

nj − nj−1
. (30)

According to (19), the relationship between the de-
compositions {Pi,|�i〉} and {qj ,|�j 〉} is

√
Pi |�i〉 =∑r

j=1 uij
√

qj |�j 〉, where uij is some unitary matrix. Because
of the form of the |�j 〉, this immediately yields the Schmidt
decomposition of |�i〉. The GM of pure bipartite states is
determined by their largest Schmidt coefficient, so we have

Pi�
2(|�i〉) = max

j∈{1,...,r}

{∣∣∣∣ uij
√

qj√
nj − nj−1

∣∣∣∣2
}

�
r∑

j=1

u∗
ij uij qj

nj − nj−1
.

(31)

By summing over all i, we obtain
∑

i Pi�
2(|�i〉) �∑r

j=1
qj

nj −nj−1
. Comparing this inequality to (30), we see

that the inequalities must become equalities, and therefore
{qj ,|�j 〉} is also optimal for Gc(ρ). Since the inequality
in (31) becomes an equality, all but one ui1, . . . ,uir are zero.
Hence, the state |�i〉 is identical to one of the states |�j 〉,
j = 1, . . . ,r , up to an overall phase. Therefore, {qi,|�i〉} is
the unique optimal decomposition for Gc(ρ), up to overall
phases.

With item 1 proved, the other items easily follow:
Item 2 and 3: These follow directly from item 1 and

�2(|�i〉) = 1
ni−ni−1

, together with Proposition 5 and (24),
respectively.

Item 4: If Gc
l (ρ) = Gf

l (ρ), then it follows from item 1 and
Theorem 7 that the |�i〉 are all equally entangled. Conversely,
if the |�i〉 are all equally entangled, then it follows from item
1 and Corollary 8 that Gc

l (ρ) = Gf
l (ρ).

Item 5: Because of �2(|�i〉) = 1
ni−ni−1

, items 4 and 5 are
equivalent.

Item 6: If Gc
l (ρ) = Gf

l (ρ), then it follows from item 1 and
Theorem 7 that every optimal decomposition of Gc

l (ρ) must
be of the form {qi,|�i〉}, up to overall phases. Since overall
phases do not change the value of (18a) or (18b), Gc(ρ) and
Gc

l (ρ) have the same optimal decompositions. �
One may wonder whether the optimal decomposition for

Gc(ρ) in Lemma 12 is also optimal for Gc
l (ρ) when Gc

l (ρ) �=
Gf

l (ρ). In the following we show that this is the case for all
maximally correlated qutrit states. Only rank-2 states need to
be considered, because for d = 3 this is the only nontrivial
case.

Proposition 13. Let q ∈ (0,1) and |ψ〉 = 1√
2
(|11〉 + |22〉).

The maximally correlated two-qutrit state ρ = q|00〉〈00| +
(1 − q)|ψ〉〈ψ | has Gc

l (ρ) = 1 − q, with {q,|00〉; 1 − q,|ψ〉}
being an optimal decomposition.

Proof. Let {Pi,|�i〉} be some optimal decomposition of
ρ for Gc

l (ρ). According to (19), there exists a unitary uij ,
so

√
Pi |�i〉 = ui1

√
q|00〉 + ui2

√
1 − q|ψ〉 for each i. Setting

xi := |ui1
√

q|2 and yi := |ui2
√

1 − q|2, we have Pi = xi + yi

and �2(|�i〉) = max{ xi

Pi
,

yi

2Pi
}. Therefore,

Gc
l (ρ) = −

r∑
i=1

Pi log

[
max

{
xi

Pi

,
yi

2Pi

}]
. (32)

Without loss of generality we assume 2xi � yi for i ∈ [1,k]
and 2xi � yi for i ∈ [k + 1,r]. We define Y := ∑k

i=1 yi � 0
and X := ∑k

i=1 xi > 0. Then

Gc
l (ρ) =

k∑
i=1

Pi log

(
Pi

xi

)
+

r∑
j=k+1

Pj log

(
2Pj

yj

)

=
k∑

i=1

(xi + yi) log

(
1 + yi

xi

)

+
r∑

j=k+1

(xj + yj ) log

(
2 + 2xj

yj

)
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� Y

[(
1 + X

Y

)
log

(
1 + Y

X

)]
+

r∑
j=k+1

yj

� Y

ln 2
+

r∑
j=k+1

yj �
r∑

i=1

yi = 1 − q.

The first inequality follows by applying Lemma 30 from
Appendix C to the first sum and using xj � 0, yj > 0 in
the second sum. The application of Lemma 30 is possible
despite the restriction 2xi � yi , because the minimum in (C1)
cannot be smaller with additional restrictions than without. The
second inequality follows from infx>0(1 + 1

x
) log2(1 + x) =

1/ ln 2.
On the other hand, the decomposition {q,|00〉; 1 − q,|ψ〉}

yields Gc
l (ρ) � 1 − q. This completes the proof. �

One may conjecture that this proposition can be generalized
to higher dimensions, with |ψ〉 = 1√

n

∑n
i=1 |ii〉 being a pure

MES of any dimension, i.e., that {q,|00〉; 1 − q,|ψ〉} is an
optimal decomposition of ρ = q|00〉〈00| + (1 − q)|ψ〉〈ψ | for
Gc

l (ρ), yielding Gc
l (ρ) = (1 − q) log n. From Proposition 14

it will follow that this is not the case for n > 2. We will see
that—compared to the qutrit case—the optimal decomposition
for Gc

l (ρ) of higher-dimensional maximally correlated states
is more complex, even in the comparatively easy rank-2 case.
In the following, e denotes the base of the natural logarithm.

Proposition 14. Let m,n ∈ N with m
n

� 1 and q ∈ (0,1)
be constants that define the rank-2 maximally correlated
qudit state ρ = q|ψm〉〈ψm| + (1 − q)|ψn〉〈ψn|, with |ψm〉 =

1√
m

∑m
i=1 |ii〉 and |ψn〉 = 1√

n

∑m+n
j=m+1 |jj 〉. Depending on the

constants m, n, and q, an optimal decomposition and the value
of Gc

l (ρ) are
m
n

� 1
e
: {q,|ψm〉; 1 − q,|ψn〉}, yielding Gc

l (ρ) =
q log m + (1 − q) log n.

m
n

< 1
e

and q � em
n

: { 1
2 ,

√
q|ψm〉 ± √

1 − q|ψn〉}, yielding
Gc

l (ρ) = log(m
q

).
m
n

< 1
e

and q < em
n

: {1 − nq

em
,|ψn〉; nq

2em
,
√

em
n

|ψm〉 ±√
1 − em

n
|ψn〉}, yielding Gc

l (ρ) = log n − q
n log e

me
.

Proof. The above decompositions provide trivial up-
per bounds [note that in the second case �2(

√
q|ψm〉 ±√

1 − q|ψn〉) = q

m
follows from q

m
>

q(1−q)
m

� e(1−q)
n

>
1−q

n
,

and in the third case �2(
√

em
n

|ψm〉 ± √
1 − em

n
|ψn〉) = e

n

follows from e
n

> 1
n

� 1
n

(1 − em
n

)]. Below we show that these
are also lower bounds.

Let {Pi,|�i〉} be some optimal decomposition for Gc
l (ρ).

According to (19), there exists a unitary uij , so
√

Pi |�i〉 =
ui1

√
q|ψm〉 + ui2

√
1 − q|ψn〉 for each i. Setting xi :=

|ui1
√

q|2, and yi := |ui2
√

1 − q|2, we have Pi = xi + yi and
�2(|�i〉) = max{ xi

mPi
,

yi

nPi
}. Therefore,

Gc
l (ρ) = −

r∑
i=1

Pi log

[
max

{
xi

mPi

,
yi

nPi

}]
.

First, we rule out nxi = myi ∀i by showing that Gc
l (ρ) =∑

i Pi log(mPi/xi) = ∑
i Pi log(m + n) = log(m + n) sur-

passes the upper bounds outlined above: For all m
n

� 1
we have log(m + n) > log n � q log m + (1 − q) log n,
as well as log(m + n) > log n � log n − q

n log e

me
.

Furthermore, for m
n

< 1
e

and q � em
n

we have
log(m + n) > log n > log(mn

me
) � log( m

q
). In the following

we therefore assume that nxi �= myi holds for at least one
i ∈ [1,r].

Without loss of generality we assume nxi � myi for
i ∈ [1,k] and nxi � myi for i ∈ [k + 1,r]. We define Y :=∑k

i=1 yi � 0, X := ∑k
i=1 xi > 0, Ỹ := ∑r

i=k+1 yi > 0, and

X̃ := ∑r
i=k+1 xi � 0, as well as h := Y

X
� 0 and s := X̃

Ỹ
� 0.

Note that 0 � hs < 1, because of hs = Y
X

X̃

Ỹ
< n

m
m
n

= 1 (the
inequality is strict, because nxi > myi or nxi < myi holds for
at least one i). Using Y + Ỹ = 1 − q and X + X̃ = q, it is easy
to verify that X = q−s(1−q)

1−hs
and Ỹ = (1−q)−hq

1−hs
. From X > 0

and Ỹ > 0, it then follows that s ∈ [0,
q

1−q
] and h ∈ [0,

1−q

q
],

respectively.

Gc
l (ρ) =

k∑
i=1

Pi log

(
mPi

xi

)
+

r∑
i=k+1

Pi log

(
nPi

yi

)

=
k∑

i=1

(xi + yi) log

[
m

(
1 + yi

xi

)]

+
r∑

i=k+1

(xi + yi) log

[
n

(
1 + xi

yi

)]
� X(1 + h) log[m(1 + h)] + Ỹ (1 + s) log[n(1 + s)],

(33)

where the inequality follows from applying Lemma 30 to each
of the two sums. In Lemma 31 of Appendix C we show that
the last line of (33) is an upper bound to the values outlined in
the proposition. Hence, the upper and lower bounds coincide.
This completes the proof. �

Note that for qutrits (m + n = 3) Proposition 14 simplifies
to Proposition 13, because 1

e
< 1

2 � m
n

. From the symmetry of
ρ = q|ψm〉〈ψm| + (1 − q)|ψn〉〈ψn|, it can be seen that Proposi-
tion 14 can be extended to the case m

n
> 1 simply by swapping

q and 1 − q. Importantly, Proposition 14 yields necessary and
sufficient conditions for rank-2 maximally correlated qudit
states to have common optimal decompositions for Gc(ρ) and
Gc

l (ρ).
Corollary 15. Rank-2 maximally correlated states ρ =

q|ψm〉〈ψm| + (1 − q)|ψn〉〈ψn| have common optimal decom-
positions for Gc(ρ) and Gc

l (ρ) if and only if 1
e

� m
n

� e.
Proof. According to Lemma 12, the unique optimal de-

composition for Gc(ρ) is {q,|ψm〉; 1 − q,|ψn〉}, up to overall
phases. For symmetry reasons it suffices to consider m

n
� 1.

For m
n

� 1
e

the statement immediately follows from Propo-
sition 14. For m

n
< 1

e
it is seen in the proof of Lemma 31

that for all q ∈ (0,1) the minimum of f (h,s) is strictly
smaller than f (0,0) = q log m + (1 − q) log n. Therefore,
{q,|ψm〉; 1 − q,|ψn〉} cannot be an optimal decomposition of
Gc

l (ρ) for m
n

< 1
e
. �

Let us sum up the preceding findings. Theorem 7 gives
necessary and sufficient conditions for Gc

l (ρ) = Gf
l (ρ). Apart

from the trivial classes of pure states and separable states, this
includes all two-qubit states (Proposition 9) and all isotropic
states (Proposition 10). Further examples are the four-qubit
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Smolin state and multiqubit Dür states, for whom Gc
l (ρ) =

− log2[1 − Gc(ρ)] can be easily verified from Ref. [15].
According to Lemma 12, Gc

l (ρ) > Gf
l (ρ) holds for maxi-

mally correlated states if and only if there are two states |�i〉
and |�j 〉 in the optimal decomposition of Gc(ρ) that are not
equally entangled. This is the case for the two-qutrit states of
Proposition 13. Despite this, Proposition 13 shows that Gc(ρ)
and Gc

l (ρ) still have common optimal decompositions, i.e.,
item 3(a) of Theorem 7can be true, while item 1 is false. In
this case, the first inequality of (27) is an equality, while the
second inequality is strict.

Optimal decompositions of two-qutrit isotropic states were
found in Ref. [56] for the entanglement of formation, a
convex roof-based entanglement measure. In all of these
optimal decompositions some of the pure states are not equally
entangled (although it is unknown whether [56] exhausts all
optimal decompositions for two-qutrit isotropic states). Using
Lemma 12, one can easily construct a state ρ in whose optimal
decomposition {Pi,|�i〉} for Gc(ρ) any two states |�i〉 and
|�j 〉 are not equally entangled. In some sense, this is a stronger
result than the one of Ref. [56].

Next we address the question whether Gc
l has the same

ordering as Gf/c or Gf
l . Because of Gf/c ∼= Gf

l , the statement
Gc

l
∼= Gf/c is equivalent to Gc

l
∼= Gf

l . The two-qubit case is
trivial, because of Gc

l ≡ Gf
l (cf. Proposition 9), so we need to

consider higher-dimensional systems.
Corollary 16. In general, Gf/c and Gc

l do not have the same
ordering (Gf/c � Gc

l ). Equivalently, G
f

l and Gc
l do not have

the same ordering (Gf

l � Gc
l ).

Proof. A simple counterexample are the two maximally
correlated six-level states ρ = 1

2 |�123〉〈�123| + 1
2 |�456〉〈�456|

and σ = 1
3 |�12〉〈�12| + 2

3 |�3456〉〈�3456|, where |�a...z〉 :=
1√

z−a+1
(|aa〉 + · · · + |zz〉). From items 2 and 4 of Lemma 12

it follows that Gf/c(ρ) = Gf/c(σ ) = 2
3 but Gc

l (ρ) < Gc
l (σ ). �

We remark that Corollary 16 can be easily verified for a
much wider range of systems, e.g., all bipartite d-level systems
with d � 4, by considering any rank-2 maximally correlated
state ρ belonging to the second class outlined in Proposition 14,
together with a suitably chosen isotropic state σ , yielding
Gf/c(ρ) < Gf/c(σ ) and Gc

l (ρ) > Gc
l (σ ).

B. Comparison between Gm and Gm
l and between Gc and Gc

l

In contrast to the convex roof-based extensions, Gm and Gm
l

are demonstrably not convex, and they attain their maximum
for the maximally mixed state. It is therefore intuitive to expect
that Gm(ρ) � Gc(ρ) and Gm

l (ρ) � Gc
l (ρ) hold for all ρ. To

prove these statements, we need the following lemma.
Lemma 17. Let ρ,|ϕ〉 be two arbitrary states, and

〈ϕ|ρ|ϕ〉 = g. Then there exists a decomposition ρ =∑r
i=1 pi |ψi〉〈ψi |, such that r = rank ρ, and |〈ϕ|ψi〉|2 = g for

all i.
Proof. We use induction on the rank of ρ. The claim

is trivial for rank ρ = 1. Suppose it is true for rank ρ = r .
Consider a general state ρ with rank ρ = r + 1 and spectral
decomposition ρ = ∑r+1

i=1 pi |ψi〉〈ψi |, with 〈ψi |ψj 〉 = 0 for
i �= j . Since 〈ϕ|ρ|ϕ〉 = g, we can assume |〈ϕ|ψ1〉|2 � g �
|〈ϕ|ψ2〉|2 without loss of generality. Denote 〈ϕ|ψj 〉 = sj e

iθj ,
sj � 0 for j = 1,2. Using (19), we rewrite the sum of the first

two terms as

p1|ψ1〉〈ψ1| + p2|ψ2〉〈ψ2| = q1|φ1〉〈φ1| + q2|φ2〉〈φ2| ,

with
√

qi |φi〉 = ui1
√

p1|ψ1〉 + ui2
√

p2|ψ2〉 for i = 1,2, and
where we define the unitary matrix as

U (ϑ) = [uij ] =
(

cϑ sϑei(θ1−θ2)

−sϑe−i(θ1−θ2) cϑ

)
, ϑ ∈ (0,π ),

with cϑ := cos ϑ
2 and sϑ := sin ϑ

2 . From 〈ψ1|ψ2〉 = 0 and
〈φ1|φ1〉 = 1, we obtain q1 = c2

ϑp1 + s2
ϑp2, hence

|φ1〉 = cϑ

√
p1|ψ1〉 + sϑei(θ1−θ2)√p2|ψ2〉(

c2
ϑp1 + s2

ϑp2
) 1

2

and

|〈ϕ|φ1〉| = cϑ
√

p1s1 + sϑ
√

p2s2(
c2
ϑp1 + s2

ϑp2
) 1

2

.

We see that limϑ→0 |〈ϕ|φ1〉| = s1 and limϑ→π |〈ϕ|φ1〉| = s2.
Since s2

1 � g � s2
2 and |〈ϕ|φ1〉| is continuous in ϑ , there

must be some ϑ such that |〈ϕ|φ1〉|2 = g. Denoting the
corresponding {qi,|φi〉} as {Qi,|�i〉}, we see that the state

ρ1 := ρ − Q1|�1〉〈�1|
1 − Q1

= Q2|�2〉〈�2| + ∑r+1
i=3 pi |ψi〉〈ψi |

1 − Q1

is a state of rank r that satisfies 〈ϕ|ρ1|ϕ〉 = g. Using
the induction assumption on ρ1, there is a decomposition
ρ1 = ∑r

i=1 p′
i |ψ ′

i 〉〈ψ ′
i |, such that |〈ϕ|ψ ′

i 〉|2 = g for all i.
Now the claim follows for ρ = (1 − Q1)ρ1 + Q1|�1〉〈�1| =
(1 − Q1)

∑r
i=1 p′

i |ψ ′
i 〉〈ψ ′

i | + Q1|�1〉〈�1|. This completes the
proof. �

Theorem 18. Gm
l (ρ) � Gc

l (ρ) holds for all states ρ.
Proof. Let |ϕ〉 ∈ PRO be a closest product state of ρ

in accordance with (20), and let rank ρ = r . By virtue of
Lemma 17, there exists a decomposition ρ = ∑r

i=1 Pi |�i〉〈�i |
such that |〈ϕ|�i〉|2 = 〈ϕ|ρ|ϕ〉 for all i. Then we have

Gm
l (ρ) = − log〈ϕ|ρ|ϕ〉 = − log

r∑
i=1

Pi |〈ϕ|�i〉|2

= −
r∑

i=1

Pi log |〈ϕ|�i〉|2 � −
r∑

i=1

Pi log �2(|�i〉)

� min
{pi ,|ψi 〉}

−
∑

i

pi log �2(|ψi〉) = Gc
l (ρ), (34)

where the third equality follows from the fact that the |〈ϕ|�i〉|
have the same value for all i. �

Corollary 19. Gm(ρ) � Gf/c(ρ) holds for all states ρ.
Proof. Using Lemma 2, Theorem 18 and Lemma 3, we

obtain Gm(ρ) = 1 − 2−Gm
l (ρ) � 1 − 2−Gc

l (ρ) � Gc(ρ). �
The following Theorem 20 establishes necessary and

sufficient conditions for Gm
l (ρ) = Gc

l (ρ) in form of a straight-
forward relationship between the CPS for �2

m(ρ) and the
optimal decomposition of Gc

l (ρ). Hence, this theorem bears
resemblance to Theorem 7, as well as to Proposition 5 of
Ref. [13].
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Theorem 20. For any state ρ the following two conditions
are equivalent:

(1) Gm
l (ρ) = Gc

l (ρ) holds.
(2) For every CPS |φm〉 of �2

m(ρ) there exists an opti-
mal decomposition {Pi,|�i〉} of Gc

l (ρ) for which �2
m(ρ) =

�2(|�i〉) = |〈φm|�i〉|2 holds for all i.
Proof.

1. ⇒ 2.: Because of Gc
l (ρ) = Gm

l (ρ), the two inequalities
in (34) must become equalities, from which it follows that
for every CPS |φm〉 there exists a decomposition {Pi,|�i〉}
of ρ which is optimal for Gc

l (ρ) and for which �2(|�i〉) =
|〈φm|�i〉|2 = 〈φm|ρ|φm〉 = �2

m(ρ) holds for all i.
2. ⇒ 1.: Let |φm〉 be a CPS for �2

m(ρ) and let {Pi,|�i〉}
be an optimal decomposition of Gc

l (ρ) for which �2
m(ρ) =

�2(|�i〉) = |〈φm|�i〉|2 holds for all i. Then, Gc
l (ρ) =

−∑
i Pi log �2

m(ρ) = − log �2
m(ρ) = Gm

l (ρ). �
In Sec. IV E this theorem will be demonstrated by means

of the maximally correlated states. With regard to the linear
measures, it will be shown in Theorem 25 that Gm(ρ) =
Gf/c(ρ) holds if and only if ρ is pure.

C. Comparison between Gt and ET

Theorem 21. Gf/c(ρ) � ẼT (ρ) holds for all states ρ.

Proof. Gf(ρ) = 1 − F 2(ρ,σf)
(8)
� D2

T(ρ,σf) �
minσ∈SEP D2

T(ρ,σ ) = ẼT(ρ). �
Theorem 22. Gt (ρ) � Gm(ρ) holds for all states ρ.
Proof. Let ρ = ∑

i pi |ψi〉〈ψi | be an arbitrary decomposi-
tion of ρ. Then

Gt(ρ) = min
|ϕ〉∈PRO

D2
T(ρ,|ϕ〉) � min

|ϕ〉∈PRO

[∑
i

piD
2
T(|ψi〉,|ϕ〉)

]

(8)= min
|ϕ〉∈PRO

[∑
i

pi(1 − |〈ϕ|ψi〉|2)

]
= 1 − max

|ϕ〉∈PRO
〈ϕ|ρ|ϕ〉 = Gm(ρ),

where the inequality follows from the convexity of D2
T. �

The inequality Gt(ρ) � Gm(ρ) can be strict, as seen for ρ =
1/d2, the maximally mixed state of two qudits: Gt(ρ) = (1 −
1
d2 )2 (cf. Appendix B), which is always smaller than Gm(ρ) =
1 − 1

d2 .

D. Inequalities and hierarchies

Using the results from the preceding sections, we find the
following inequality chains that include all the GM definitions
considered in this paper. These inequality hierarchies are
summarized and visualized in Fig. 1.

Theorem 23. The following inequalities hold for all states
ρ:

(1) ẼT (ρ) � Gt (ρ) � Gm(ρ)
(2) ẼT (ρ) � Gf/c(ρ) � Gm(ρ)
(3) Gm(ρ) � Gm

l (ρ) � ER(ρ) + S(ρ)
(4) Gf/c(ρ) � G

f

l (ρ) � Gc
l (ρ) � Gm

l (ρ)
Proof.

1: The first inequality was shown in Sec. III B 4 and the
second one in Theorem 22.

2: The first inequality was shown in Theorem 21, and the
second one in Corollary 19.

3: The first inequality follows from Lemma 2, and the
second one was shown in Refs. [11,12].

4: The first inequality follows from Lemma 2, the second
was shown in (24), and the third in Theorem 18. �

To verify that no inequality relationship exists for measures
that are not vertically connected in Fig. 1, e.g., Gt and Gc

l ,
we need to find ρ1, ρ2 ∈ S(H) so Gt(ρ1) < Gc

l (ρ1), and
Gt(ρ2) > Gc

l (ρ2). The absence of an inequality relationship
will be denoted as Gt ≷ Gc

l .
Proposition 24. Gm ≷ Gc

l , Gm ≷ G
f

l , Gt ≷ Gc
l , Gt ≷

G
f

l , and Gt ≷ Gf/c.
Proof. Let ρ1 be a genuinely mixed separable state and

ρ2 = |ψ〉〈ψ | a pure entangled state. Then, Gm(ρ1) > Gc
l (ρ1) =

Gf
l (ρ1) = 0 and Gm(ρ2) = G(|ψ〉) < Gl(|ψ〉) = Gc

l (ρ2) =
Gf

l (ρ2), from which it follows that Gm ≷ Gc
l and Gm ≷ Gf

l .
Equivalently, Gt(ρ1) > Gc

l (ρ1) = Gf
l (ρ1) = 0 and

Gt(ρ2) = G(|ψ〉) < Gl(|ψ〉) = Gc
l (ρ2) = Gf

l (ρ2), from
which it follows that Gt ≷ Gc

l and Gt ≷ Gf
l .

Let ρ1 again be a genuinely mixed separable state, and ρ2 =
q|00〉〈00| + (1 − q)|ψ〉〈ψ | the two-qutrit mixed entangled
state of Proposition 13. Then, Gt(ρ1) > Gf/c(ρ1) = 0, and
from item 2 of Lemma 12 it follows that Gf/c(ρ2) = 1−q

2 . By
choosing |φ〉 = |00〉 in (25), we have Gt(ρ2) � (1 − q)2. So
Gt(ρ2) < Gf/c(ρ2) for q ∈ ( 1

2 ,1). Hence, Gt ≷ Gf/c. �
From Theorem 23 and Fig. 1 we see that Gm and

Gm
l are upper bounds for all linear and logarithmic GM

definitions, respectively. Since �2
m(ρ) can be computed for

many prominent states (see, e.g., Ref. [8]), these upper bounds
are readily accessible. For pure states the bounds are strict, and
the more mixed a given state ρ is, the weaker the bounds are.

E. Partitioning of state space

As shown in the previous subsection, the inequalities

0 � Gf/c(ρ) � Gm(ρ), (35)

0 � Gf
l (ρ) � Gc

l (ρ) � Gm
l (ρ), (36)

hold for all states. Here we will see that these inequalities
provide a physically meaningful partitioning of state space. For
this we first prove that the measures in the above inequalities
coincide if and only if ρ is pure.

Theorem 25. For any state ρ the following three conditions
are equivalent:

(1) Gf/c(ρ) = Gm(ρ)
(2) G

f

l (ρ) = Gc
l (ρ) = Gm

l (ρ)
(3) ρ is pure, i.e., ρ = |ψ〉〈ψ |
Proof.

1 ⇒ 2: If Gf(ρ) = Gm(ρ), then �2
f (ρ) = �2

m(ρ) and
Gf

l (ρ) = Gm
l (ρ). From (36) it follows that Gf

l (ρ) = Gc
l (ρ) =

Gm
l (ρ).

2 ⇒ 1: If Gf
l (ρ) = Gm

l (ρ), then �2
f (ρ) = �2

m(ρ) and
Gf(ρ) = Gm(ρ).

3 ⇒ 2: Obvious from the definition of GM for pure states.
2 ⇒ 3: Let {pi,|ψi〉} be some decomposition of ρ, and let

|φm〉 be a CPS of �2
m(ρ). Using the concavity of �2

f (ρ), we
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have

�2
f (ρ) �

∑
i

pi�
2(|ψi〉) =

∑
i

pi max
|ϕi 〉∈PRO

|〈ϕi |ψi〉|2

�
∑

i

pi |〈φm|ψi〉|2 = 〈φm|ρ|φm〉

= max
|ϕ〉∈PRO

〈ϕ|ρ|ϕ〉 = �2
m(ρ) . (37)

From Gf
l (ρ) = Gm

l (ρ) it follows that �2
f (ρ) = �2

m(ρ), and
therefore the inequalities in (37) must become equalities. From
the second inequality of (37) it follows that there exists a
|φm〉 ∈ PRO that is a CPS for all |ψi〉. Furthermore, since the
choice of decomposition was arbitrary, this |φm〉 must be a
CPS for all |ψi〉 of all conceivable decompositions {pi,|ψi〉}
of ρ. As shown below, this is possible only for pure states, i.e.,
rank ρ = 1.
Assume r = rank ρ � 2. Because of Gf

l (ρ) = Gc
l (ρ), it fol-

lows from Theorem 7 that there exists a decomposition
{Pi,|�i〉} of ρ where the |�i〉 are all equally entangled. Since
|φm〉 is a common CPS, we can write |�1〉 and |�2〉 as

|�1〉 = α|φm〉 +
√

1 − α2|φ⊥
1 〉,

|�2〉 = α|φm〉 +
√

1 − α2|φ⊥
2 〉,

with α ∈ (0,1). Here |φ⊥
1 〉 and |φ⊥

2 〉 are states orthogonal to
|φm〉, and because of rank ρ � 2, we can assume that |φ⊥

1 〉 −
|φ⊥

2 〉 is a nonzero vector. Clearly, �2(|�1〉) = �2(|�2〉) =
α2 > 0. Starting with {Pi,|�i〉}, we use (19) to construct a
new decomposition {qi,|�i〉} of ρ by using the r × r unitary
matrix

U =

⎛⎜⎜⎝
√

P2
P1+P2

−
√

P1
P1+P2

0√
P1

P1+P2

√
P2

P1+P2
0

0 0 1r−2

⎞⎟⎟⎠,

where 1r−2 denotes the (r − 2)-dimensional unit matrix. With
this we have

|�1〉 ∝
√

P2

√
P1|�1〉 −

√
P1

√
P2|�2〉

=
√

P1P2

√
1 − α2(|�⊥

1 〉 − |�⊥
2 〉),

and, therefore, 〈φm|�1〉 = 0. This is a contradiction to the
requirement that |φm〉 is also a CPS for |�1〉. This completes
the proof. �

According to Theorem 25, Gm (or Gm
l ) coincides with the

proper entanglement measure Gf/c (or Gf
l ) only for pure states,

thus further reinforcing the observation that �2
m(ρ) assesses

the entanglement as well as the mixedness of a state ρ.
Together with the known fact that �2

f (ρ) < 1 if and only if
ρ is entangled, we can use (35) to partition the state space
into four subsets, S(H) = A ∪ B ∪ C ∪ D, corresponding to
pure separable, pure entangled, mixed separable, and mixed
entangled states, respectively. As shown in Table I and
Fig. 2, this partitioning is done by determining whether
the inequalities in (35) are strict or become equalities. The
inequalities (35) between the logarithmic measures can also
be used for partitioning S(H), and in that case, the subset
of mixed entangled states is further divided into three subsets,
D = D1 ∪ D2 ∪ D3, because Gf/c(ρ) < Gm(ρ) corresponds to

the three possible cases Gf
l (ρ) < Gc

l (ρ) < Gm
l (ρ), Gf

l (ρ) =
Gc

l (ρ) < Gm
l (ρ), and Gf

l (ρ) < Gc
l (ρ) = Gm

l (ρ).
Since Gf

l (ρ) = Gc
l (ρ) holds for isotropic states and all two-

qubit states, these states belong to the set D2. In particular, for
the special case of two qubits (H = C2 ⊗ C2) we have D =
D2, i.e., D1 and D3 are empty. From this one could conjecture
that generic mixed entangled states belong to D2. However,
for maximally correlated states, it is clear from item 5 of
Lemma 12 that most states do not belong to D2. The following
theorem elucidates the relationship between the parameters of
rank-2 maximally correlated states and the subgroups D1, D2,
and D3. For this we note that �2

m(ρ) can be easily calculated
for maximally correlated states of the form in Proposition 14
as �2

m(ρ) = max{ q

m
,

1−q

n
}.

Theorem 26. Depending on the value of the parameters
m,n ∈ N with m

n
� 1 and q ∈ (0,1), the rank-2 maximally

correlated states of Proposition 14 belong to either of the three
subsets of genuinely mixed entangled states:

D2, i.e., G
f

l (ρ) = Gc
l (ρ) < Gm

l (ρ): for m
n

= 1,

D3, i.e., G
f

l (ρ) < Gc
l (ρ) = Gm

l (ρ): for m
n

< 1
e

and q �
em
n

,

D1, i.e., Gf

l (ρ) < Gc
l (ρ) < Gm

l (ρ): for all other parameter
values.

Proof. From item 5 of Lemma 12 it follows that Gf
l (ρ) =

Gc
l (ρ) if and only if m = n. Hence, states belong to D2 if and

only if m
n

= 1. For m
n

< 1 one can distinguish between ρ ∈ D1

and ρ ∈ D3 by determining whether Gc
l (ρ) � Gm

l (ρ) is strict.
Recall that Gm

l (ρ) = min{log(m
q

), log( n
1−q

)}. If q � em
n

,
then m

q
� n

e
< n

1−q
, yielding Gm

l (ρ) = log(m
q

). Therefore, if
m
n

< 1
e

and q � em
n

(second case of Proposition 14), then
Gc

l (ρ) = Gm
l (ρ) = log(m

q
), yielding ρ ∈ D3.

Regarding the first and third cases of Proposition 14, it
is seen from its proof (including Lemma 31 and its proof)
that for parameter values in the interior of the domain (i.e.,
excluding m

n
= 1) the value of Gc

l (ρ) is strictly smaller
than both log(m

q
) and log( n

1−q
). Therefore, Gc

l (ρ) < Gm
l (ρ) =

min{log(m
q

), log( n
1−q

)} holds, so ρ ∈ D1. �
From Theorem 26 we see that the states belonging to

D3 precisely coincide with those outlined in the second
case of Proposition 14. This allows us to demonstrate
Theorem 20: Let ρ ∈ D3 be a rank-2 maximally correlated
state. Then every CPS |φm〉 of �2

m(ρ) necessarily has the
form |φm〉 = (

∑m
i=1 qi |i〉) ⊗ (

∑m
i=1 q∗

i |i〉) with
∑

i |qi |2 = 1.
According to Proposition 14, an optimal decomposition
for Gc

l (ρ) is ρ = 1
2 |�+〉〈�+| + 1

2 |�−〉〈�−| with |�±〉 =√
q|ψm〉 ± √

1 − q|ψn〉. Using this decomposition, we obtain
�2

m(ρ) = �2(|�±〉) = |〈φm|�±〉|2 = q

m
, thus verifying Theo-

rem 20.
For maximally correlated qutrit states the only possible

value of m
n

is 1
2 , so all states lie in D1. In contrast to this,

for four levels (d = 4), there are rank-2 maximally correlated
states in each of the three sets D1, D2, and D3.

In the following we determine whether the various subsets
of the genuinely mixed states, C ∪ D = C ∪ D1 ∪ D2 ∪ D3,
are convex. C and C ∪ D are clearly convex sets, while D is
not. All other subsets are investigated in the following lemma.

Proposition 27. The following sets are not convex: D1, D2,
D3, D1 ∪ D2, D1 ∪ D3, D2 ∪ D3, C ∪ D1, C ∪ D2, C ∪ D3,

042305-14



COMPARISON OF DIFFERENT DEFINITIONS OF THE . . . PHYSICAL REVIEW A 89, 042305 (2014)

and C ∪ D1 ∪ D3. Regarding C ∪ D1 ∪ D2 and C ∪ D2 ∪ D3,
at least one of the two sets is not convex.

Proof. To prove that D1, D1 ∪ D3, C ∪ D1, and C ∪ D1 ∪
D3 are not convex, it suffices to find ρ1,ρ2 ∈ D1 so 1

2 (ρ1 +
ρ2) ∈ D2. Using the notation |�a...z〉 := 1√

z−a+1
(|aa〉 + · · · +

|zz〉) for MES, we choose ρ1,ρ2 to be

ρ± = 1

2
|�12〉〈�12| + 1

2
|�±

3456〉〈�±
3456|, with

|�±
3456〉 := 1√

2
(|�34〉 ± |�56〉).

Evidently, ρ+ and ρ− are LU equivalent, so they lie in the
same set Di (i = 1,2,3). Since m

n
= 1

2 for ρ+, it follows from
Theorem 26 that ρ± ∈ D1. On the other hand,

ρ = 1
2 (ρ+ + ρ−) = 1

2 |�12〉〈�12| + 1
4 |�34〉〈�34| + 1

4 |�56〉〈�56|,
so it follows from item 5 of Lemma 12 that ρ ∈ D2.

Next, we prove that D3 and C ∪ D3 are not convex by
finding σ1,σ2,σ3 ∈ D3 that yield σ = 1

3 (σ1 + σ2 + σ3) ∈ D2.
For this, consider

σi = q|�12〉〈�12| + (1 − q)|�i
345678〉〈�i

345678|, with
e

3
� q < 1, and

|�i
345678〉 := 1√

3

(|�34〉 + ei 2πi
3 |�56〉 + ei 4πi

3 |�78〉
)
,

for i = 1,2,3. Evidently, the σi are LU equivalent, and since
m
n

= 1
3 and q � e

3 , it follows from Theorem 26 that σi ∈ D3.
On the other hand,

σ = 1

3
(σ1 + σ2 + σ3) = q|�12〉〈�12|

+ 1 − q

3
(|�34〉〈�34| + |�56〉〈�56| + |�78〉〈�78|),

so it follows from item 5 of Lemma 12 that σ ∈ D2.
To prove that D2, D1 ∪ D2, and D2 ∪ D3 are not convex, we

consider ρ± = 1
2 |�±

12〉〈�±
12| + 1

2 |�±
34〉〈�±

34| ∈ D2, which yields
ρ = 1

2 (ρ+ + ρ−) = 1
41 ∈ C.

To prove that C ∪ D2 is not convex, we consider ρ± =
1
2 |�±

12〉〈�±
12| + 1

2 |�34〉〈�34| ∈ D2, and the genuinely mixed
entangled state ρ = 1

2 (ρ+ + ρ−) = 1
4 |11〉〈11| + 1

4 |22〉〈22| +
1
2 |�34〉〈�34| ∈ D. From item 5 of Lemma 12 it follows that
ρ /∈ D2, hence ρ ∈ D1 ∪ D3. Although we do not know
whether ρ ∈ D1 or ρ ∈ D3, we can ascertain that no more
than one of the two sets C ∪ D1 ∪ D2 and C ∪ D2 ∪ D3 can
be convex. �

Although partially answered by Proposition 27, it is still
unknown whether C ∪ D1 ∪ D2 or C ∪ D2 ∪ D3 are convex.

V. GRAPH STATES AND CLUSTER STATES

Graph states are an important class of states for quantum
information [57]. A subset of them, the cluster states, are the
central ingredient for one-way quantum computation [58].
Here we show that a large class of graph states, including
all cluster states, have a “universal” closest separable state
that minimizes several inequivalent distance measures. This
property helps to prove the previous Corollary 6.

Consider a general pure graph state |G〉 with underlying
graph G = (V,E), where V is the set of vertices and E

is the set of edges. The maximum independent set α is the
largest possible set of nonadjacent vertices, and the minimum
vertex cover β is the complement of α, i.e., α + β = V . The
minimum vertex cover can be thought of as the minimal set of
qubits that needs to be measured in the computational basis to
completely disentangle the graph state.

As outlined in Ref. [43], the stabilizer S of |G〉 is generated
by n generators {gj }nj=1, and these generators stabilize a unique
state, namely |G〉. If one or more of the generators from the
generating set of S are discarded, the smaller set generates
a new Abelian group S ′ which now stabilizes a set of states
{|ψi〉} rather than a unique |G〉. Depending on the structure
of the generating set of S ′, the states {|ψi〉} may or may not
be entangled. In Ref. [43] it is shown that the optimal way
of discarding generators, such that the stabilized states {|ψi〉}
are product states, is to discard generators corresponding to
the vertices of the minimum vertex cover. So if we only keep
the generators corresponding to the maximum independent set
{gj |j ∈ α}, denoting the correspondingly generated Abelian
group as Sα , the states it stabilizes {|ψα

i 〉} are all product
states. These states form the basis vectors used below.

Ignoring possible negative amplitudes that are not important
here, |G〉 can be written as an equal superposition of the basis
vectors,

|G〉 = 1√
Dα

Dα∑
i=1

∣∣ψα
i

〉
, (38)

where Dα is the number of states |ψα
i 〉 and is related to the

cardinality of the minimum vertex cover as Dα = 2|β|. In
other words, for each generator discarded from the generating
set, the size of the set of stabilized states doubles. The
decomposition (38) is of minimal rank for graph states whose
underlying graphs satisfy certain conditions [43]. This is the
case for all bipartite (two-colorable) graphs, which includes
all cluster states of arbitrary size and dimension. However,
there also exist many non-two-colorable states that satisfy the
conditions.

In the following we assume that |G〉 satisfies the conditions,
i.e., the decomposition (38) is of minimal rank. Since the |ψα

i 〉
are product states, it immediately follows from (38) that any of
the |ψα

i 〉 is a CPS, i.e., �2(|G〉) = |〈G|ψα
i 〉|2 = D−1

α = 2−|β|.
Correspondingly, the separable state

δ = 1

Dα

Dα∑
i=1

∣∣ψα
i

〉〈
ψα

i

∣∣ (39)

was found to be a CSS for the REE [43]. Here we show that it
is also the CSS in terms of the Bures distance (5) and the trace
distance (3).

Theorem 28. Let |G〉 be a graph state of the form (38)
with minimal rank. Then (39) is a closest separable state with
respect to the quantum relative entropy, the Bures distance,
and the trace distance.

Proof. For the quantum relative entropy this was shown
in Ref. [59], and we also know that �2(|G〉) = D−1

α .
Hence, maxσ∈SEP F 2(|G〉,σ ) = max|φ〉∈PRO |〈G|φ〉|2 = D−1

α .
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From F 2(|G〉,δ) = |〈G|δ|G〉| = D−1
α it then follows that δ

minimizes the Bures distance (5).
Next consider the trace distance. The inequal-

ity minσ∈SEP DT(|G〉,σ ) � 1 − maxσ∈SEP F 2(|G〉,σ ) = 1 −
D−1

α follows from (8b). To show that δ minimizes the trace
distance, it therefore suffices to show that DT(|G〉,δ) =
1 − D−1

α . From (3) we know that DT(|G〉,δ) = 1
2

∑Dα

i=1 |λi |,
where the λi are the eigenvalues of A := |G〉〈G| − δ =
D−1

α

∑
i �=j |ψα

i 〉〈ψα
j |. Taking the states {|ψα

i 〉} as the basis, ele-
mentary linear algebra yields the nonzero eigenvalues of A as
λ1 = Dα−1

Dα
and λ2 = · · · = λDα

= − 1
Dα

, hence DT(|G〉,δ) =
Dα−1
Dα

= 1 − D−1
α . This completes the proof. �

Theorem 28 applies to all cluster states. In particular, for
n qubit cluster states |Cn〉 the minimum vertex cover has the
size |β| = � n

2 �, yielding the cardinality Dα = 2� n
2 �. For even

n, this yields �2(|Cn〉) = 2− n
2 and DT(|Cn〉,δ) = 1 − 2− n

2 .
For graph states that do not satisfy the minimal rank

condition, the state (39) generally does not minimize the three
distance measures, but it nevertheless yields upper bounds
on the distances and on the corresponding entanglement
measures, the REE, the BE, and TE.

VI. CONCLUSION

In this paper we reviewed and studied seven different
definitions of GM for arbitrary multipartite systems. Five of
these are known (Gc, Gf, Gc

l , Gm, and Gm
l ), one has previously

received only little interest (Gf
l ), and one has not been studied

before (Gt). The entanglement axioms of the measures were
investigated and are summarized in Table II. A remaining
open question is whether Gc

l satisfies weak monotonicity,
something we showed to be true at least for two-qubit states and
isotropic states. A complete quantitative hierarchy between the
measures was derived (shown in Fig. 1), and it was found
that this hierarchy can be employed to partition the state
space into pairwise disjoint sets with clear physical properties
(pure versus mixed and separable versus entangled). This is
summarized in Table I and Fig. 2.

As a by-product of Corollary 6, we found that for pure input
states ρ = |ψ〉〈ψ | the trace distance DT(|ψ〉,·) has in general
no pure CSS. This is in stark contrast to the Bures distance,
for which (14) implies that DB(|ψ〉,·) always has at least one
pure CSS. It is therefore not trivial to find states for whom the
Bures and trace distance have a common CSS, something we
did for a large class of graph states in Theorem 28.

With regard to the convex roof-based measures Gc and Gc
l ,

it was found that—unlike Gf and Gf
l or Gm and Gm

l —these
two measures are not simple functions of each other and,
in fact, do not even have the same ordering. Nevertheless,
some connections between the two measures and their optimal
decompositions could be made (Lemma 3, Theorem 7, and
Corollary 8). For this, the maximally correlated states were
particularly helpful, because their optimal decompositions
for Gc

l depend qualitatively on their parameters (Lemma 12,
Proposition 13, and Proposition 14). This way it could be
shown in Corollary 15 that for some states Gc and Gc

l do not
share any common optimal decomposition.

For the linear GM it is known that the problem of finding
the optimal convex roof decomposition is equivalent to finding

the closest separable state for the fidelity (Gf ≡ Gc) [13].
Somewhat surprisingly, we found that this is not the case for
the logarithmic GM. Already for bipartite systems the two
problems are in general inequivalent (Gf

l �≡ Gc
l ) and need to

be solved separately. Nevertheless, for two-qubit systems and
for some classes of states, such as all isotropic states and
some maximally correlated states, the two problems coincide.
While Gf

l could be verified to be weakly monotonous, the
weak monotonicity of Gc

l remains an open problem. At
least for two-qubit systems this question can be answered in
the affirmative, because Gf

l ≡ Gc
l then holds. Another open

question is whether there exist states ρ with Gc
l (ρ) = Gf

l (ρ)
for which the set of optimal decompositions of Gc(ρ) is strictly
larger than that of Gc

l (ρ), cf. Theorem 7.
As Gm and Gm

l assess the entanglement as well as the
mixedness of states [26], they are not entanglement measures.
On the other hand, Gf/c is the only known definition of
GM that yields a strong entanglement measure. Because of
its strong monotonicity and convexity, Gf/c never increases
as states become more mixed. Recalling that Gf/c(|ψ〉) =
Gm(|ψ〉) for pure states, the inequality Gf/c(ρ) � Gm(ρ)
becomes intuitively clear. What is more, Theorem 25 states
that this inequality turns into an equality only if ρ is pure.
Therefore, �G(ρ) := Gm(ρ) − Gf/c(ρ) can be considered an
entropic quantity depending on the mixedness of ρ, akin to the
linear entropy. Equivalently, �Gl(ρ) := Gm

l (ρ) − Gf
l (ρ) can

be considered an alternative to the von Neumann entropy. In
contrast to this, Gm

l (ρ) − Gc
l (ρ) cannot be expected to be a

meaningful entropy quantifier, because this quantity can be
zero for genuinely mixed states (e.g., maximally correlated
states belonging to set D3, cf. Theorem 26). For such states
the relationship between their closest product state and optimal
decomposition was derived in Theorem 20. It should also be
noted that Gm and Gm

l are readily accessible upper bounds for
all linear and logarithmic GM definitions, respectively. These
bounds can be easily computed from �2

m(ρ), but they become
weaker as ρ becomes more mixed.

The newly introduced extension of the linear GM by means
of the trace distance, Gt, is not an entanglement measure, and
it is yet unclear what its benefits or operational implications
for the study of multipartite entanglement are. In contrast to
this, the little-known quantity Gf

l , which is closely related
through �2

f to the well-known definitions Gf and Gc, has many
desirable properties: It satisfies normalization, convexity, and
weak monotonicity and is zero for separable states. Most
importantly, Gf

l is so far the only known definition of GM
that yields a normalized entanglement measure (for Gc

l the
question of weak monotonicity remains open). We therefore
propose Gf

l as the preferred definition of GM for studies where
normalization is a desirable feature, such as quantitative entan-
glement characterization, entanglement scaling, or comparison
with other multipartite entanglement measures.

Even if Gc
l should be verified as a weak entanglement

measure, Gf
l has some other benefits over the logarithmic

convex roof: The value of Gf
l (ρ) is immediately known

if �2
f (ρ) is known, which is the case if either Gf(ρ) or

Gc(ρ) have been computed. Furthermore, Gf
l is based on the

fidelity, a widely studied and physically meaningful distance
in quantum information theory, whereas Gc

l is based on an
abstract mathematical definition.
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In conclusion, for most situations either of the two fidelity-
based definitions Gf/c or Gf

l could be regarded as the best
choice of GM. Since the two definitions have the same ordering
and are closely related via �2

f , the choice depends merely
on whether normalization or strong monotonicity is more
desirable. The entanglement of a state ρ can then be found
either by computing the maximal fidelity to separable states,
�2

f (ρ), or by finding the optimal decomposition for the linear
convex roof. Furthermore, the Bures entanglement (10b) and
the Groverian entanglement EGr(ρ) = Gf(ρ)1/2 are closely
related to �2

f , and therefore to Gf and Gf
l themselves, with

all measures having the same ordering. Knowing the value of
either of these provides lower bounds to Gm(ρ), Gc

l (ρ) as well
as Gm

l (ρ). Finally, defining GM though the maximal fidelity
is also the most straightforward definition from a historical
viewpoint, because GM was originally defined by the maximal
fidelity between pure states.
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APPENDIX A: WEAK MONOTONICITY OF Gc
l

FOR TWO QUBITS

It is known that Wootters’s concurrence C(ρ) is a weak
entanglement monotone for two-qubit states, i.e., C(ρ) �
C(σ ) holds for any trace-preserving quantum operation ρ �→
σ [6,52]. Using the monotonically increasing function f (x) =
− log 1+√

1−x2

2 and Lemma 29 below, it follows that Gc
l (ρ) =

f (C(ρ)) � f (C(σ )) = Gc
l (σ ). So Gc

l is weakly monotonous
for two-qubit systems.

Lemma 29. Let ρ be an arbitrary two-qubit state. Then

Gc
l (ρ) = − log

1+
√

1−C(ρ)2

2 , where C(ρ) is the concurrence.
Proof. The proof is similar to the derivation of Gc(ρ)

in Ref. [6]. First, it is easy to verify that the claim holds
for pure states. The function f (x) = − log 1+√

1−x2

2 is mono-
tonically increasing and convex for x ∈ [0,1]. Suppose ρ =∑

i Pi |�i〉〈�i | is an optimal decomposition for Gc
l (ρ). Then

Gc
l (ρ) =

∑
i

PiGl(|�i〉) =
∑

i

Pif (C(|�i〉))

� f

(∑
i

PiC(|�i〉)
)

� f (C(ρ)), (A1)

where the inequalities follow from the convexity of f (x)
and C(ρ) [52], respectively. On the other hand, Wootters
found an optimal decomposition ρ = ∑

i Si |�i〉〈�i | for the
entanglement of formation, such that each |�i〉 has the same

concurrence as ρ. With this decomposition we obtain

Gc
l (ρ) �

∑
i

SiGl(|�i〉) =
∑

i

Sif (C(|�i〉)) = f (C(ρ)).

(A2)
From (A2) and (A1) it follows that Gc

l (ρ) = f (C(ρ)). �

APPENDIX B: COUNTEREXAMPLE FOR
CONCAVITY OF Gt

Consider the isotropic state ρiso = p 1
d2 + (1 − p)|�〉〈�|,

where |�〉 = 1√
d

∑d
i=1 |ii〉. A counterexample for the concav-

ity of Gt is found if

Gt(ρiso) < pGt(1/d2) + (1 − p)Gt(|�〉〈�|) (B1)

holds for some p ∈ (0,1) and d � 2. Obviously, Gt(|�〉〈�|) =
G(|�〉) = 1 − 1

d
, and because of the isotropic nature of the

maximally mixed state, for any |φ〉 ∈ H we can represent 1
d2 −

|φ〉〈φ| in matrix form as diag( 1
d2 − 1, 1

d2 , . . . ,
1
d2 ) by choosing

a basis with |φ〉 as the first basis vector. Therefore,

Gt

(
1

d2

)
= min

|ϕ〉∈PRO

1

4

(
Tr

∣∣∣∣ 1d2
− |ϕ〉〈ϕ|

∣∣∣∣)2

= 1

4

[∣∣∣∣ 1

d2
− 1

∣∣∣∣ + (d2 − 1)
1

d2

]2

=
(

1 − 1

d2

)2

.

Now consider Gt(ρiso). From a geometric viewpoint the rela-
tionship between p 1

d2 + (1 − p)|�〉〈�| and |ϕ〉 ∈ PRO is en-
tirely determined by the angle between |�〉 and |ϕ〉. We there-
fore parametrize |ϕ〉 = √

α|�〉 + √
1 − α|�⊥〉, where |�⊥〉 is

some state orthogonal to |�〉. From 〈�|ϕ〉 = √
α, |ϕ〉 ∈ PRO

and �2(|�〉) = 1
d

, it follows that α � 1
d

. To show that this
bound can be reached, we construct an example: The states
{|�j 〉}d−1

j=0 with |�j 〉 = 1√
d

∑d−1
k=0 ei

2πjk

d |kk〉 form an orthonor-
malized basis of MES. Obviously |�〉 = |�0〉, and defin-
ing |�⊥〉 := 1√

d−1

∑d−1
i=1 |�i〉, we obtain |ϕ〉 = √

1/d|�〉 +
√

(d − 1)/d|�⊥〉 = 1
d

∑d−1
j=0

∑d−1
k=0 ei

2πjk

d |kk〉 = |00〉 ∈ PRO.
We now write

ρiso − |ϕ〉〈ϕ| = p
1

d2
+ (1 − p)|�〉〈�| − α|�〉〈�|

−
√

α(1 − α)(|�〉〈�⊥| + |�⊥〉〈�|)
− (1 − α)|�⊥〉〈�⊥| , (B2)

and using |�〉 and |�⊥〉 as the first two basis vectors for the
matrix representation of (B2), we obtain

ρiso − |ϕ〉〈ϕ|

=

⎛⎜⎜⎜⎜⎜⎜⎜⎝

p

d2 + 1 − p − α −√
α(1 − α) 0 · · · 0

−√
α(1 − α) p

d2 − 1 + α 0 · · · 0

0 0 p

d2 · · · 0
...

...
...

...

0 0 0 · · · p

d2

⎞⎟⎟⎟⎟⎟⎟⎟⎠
.

The eigenvaules of this matrix are { p

d2 − p

2 ±
1
2

√
(2 − p)2 − 4α(1 − p), p

d2 , . . . ,
p

d2 }. The radicand in
the first two eigenvalues is positive for p ∈ (0,1) and
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α ∈ [0, 1
d

]. The first and second eigenvalue are positive and
negative, respectively, for all p ∈ (0,1), α ∈ [0, 1

d
], and d � 2.

Hence,

Gt(ρiso)

= min
|ϕ〉∈PRO

1

4

[
Tr

∣∣∣∣p 1

d2
+ (1 − p)|�〉〈�| − |ϕ〉〈ϕ|

∣∣∣∣]2

= min
α∈[0, 1

d
]

1

4

[√
(2 − p)2 − 4α(1 − p) + (d2 − 2)

p

d2

]2

,

and the minimum is obviously reached for α = 1
d

. We can now
rewrite (B1) as

1

4

[√
(2 − p)2 − 4

d
(1 − p) + (d2 − 2)

p

d2

]2

< p

(
1 − 1

d2

)2

+ (1 − p)

(
1 − 1

d

)
,

and it can be easily verified numerically that this inequality
is satisfied for all p ∈ (0,1) and all d � 2. Hence, Gt is not
concave.

APPENDIX C: AUXILIARY RESULTS FOR CALCULATION
OF Gc

l FOR MAXIMALLY CORRELATED STATES

Lemma 30. Let k ∈ N, n > 0, X > 0, and Y � 0 be con-
stants, and let x1, . . . ,xk > 0, y1, . . . ,yk � 0 be variables with
the restrictions

∑k
i=1 xi = X and

∑k
i=1 yi = Y . Then

min
{x1, . . . ,xk}
{y1, . . . ,yk}

k∑
i=1

(xi + yi) log

[
n

(
1 + yi

xi

)]

= (X + Y ) log

[
n

(
1 + Y

X

)]
. (C1)

Proof. Because of log[n(1 + yi

xi
)] = log n + log(1 + yi

xi
), it

suffices to consider n = 1. Equation (C1) clearly holds for k =
1, so we assume k � 2. First, we consider the xi to be, fixed

with their values denoted as {x ′
1, . . . ,x

′
k}. Then the function

f (y1, . . . ,yk) :=
k∑

i=1

(x ′
i + yi) log

(
1 + yi

x ′
i

)
(C2)

is a function of k variables. We use this function to define the
k functions of k − 1 variables,

gj (y1, . . . ,yj−1,yj+1, . . . ,yk)

:= f (y1, . . . ,yj−1,Yj ,yj+1, . . . ,yk), (C3)

with j ∈ [1,k], and where Yj is shorthand for Yj := Y −∑
i �=j yi . Obviously, if (C2) is minimized at (y ′

1, . . . ,y
′
k)

under the condition
∑k

i=1 yi = Y , then (C3) is minimized at
(y ′

1, . . . ,y
′
j−1,y

′
j+1, . . . ,y

′
k). In particular, all partial derivatives

must vanish at this point, and from (C2) and (C3) it follows
that

∂gj

∂yl

= log
x ′

j x
′
l + x ′

j yl

x ′
j x

′
l + Yjx

′
l

, for all j,l ∈ [1,k] with j �= l.

(C4)
To rule out boundary points as solutions, we calculate the
second derivatives,

∂2gj

∂y2
l

= x ′
l + yl + x ′

j + Yj

(x ′
l + yl)(x ′

j + Yj )
> 0,

and find that they are strictly positive. From this it follows
that (C4) can be zero at only one point and that the unique
minimum is reached there. Since x ′

j yl = Yjx
′
l results in ∂gj

∂yl
=

0, we obtain x ′
j y

′
l = y ′

j x
′
l for all j,l ∈ [1,k] with j �= l. From

this it follows that x ′
j (
∑

i y
′
i) = y ′

j (
∑

i x
′
i), and thus

y ′
j

x ′
j

= Y
X

for all j ∈ [1,k]. Inserting this into the left-hand side of (C1)
yields the right-hand side of (C1), regardless of the initial
choice of the fixed {x ′

1, . . . ,x
′
k}. This completes the proof. �

Lemma 31. For constants m,n ∈ N with m
n

� 1 and q ∈
(0,1), the minimum of the function

f (h,s) = q − s(1 − q)

1 − hs
(1 + h) log[m(1 + h)]

+ (1 − q) − hq

1 − hs
(1 + s) log[n(1 + s)]

with the domain given by h ∈ [0,
1−q

q
] and s ∈ [0,

q

1−q
],

excluding the point ( 1−q

q
,

q

1−q
), is

min f (h,s) =

⎧⎪⎨⎪⎩
q log m + (1 − q) log n for m

n
� 1

e

log
(

m
q

)
for m

n
< 1

e
and q � em

n

log n − q
n log e

me
for m

n
< 1

e
and q < em

n

.

Proof. The function f (h,s) is continuous and differentiable in its entire domain, with the partial derivatives

∂f (h,s)

∂h
= q − (1 − q)s

(1 − hs)2 ln 2

[
1 − hs + (1 + s) ln

(
m(1 + h)

n(1 + s)

)]
,

∂f (h,s)

∂s
= (1 − q) − hq

(1 − hs)2 ln 2

[
1 − hs + (1 + h) ln

(
n(1 + s)

m(1 + h)

)]
.
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For f (h,s) to attain a minimum at an interior point, both partial derivatives must vanish, i.e.,

1 − hs + (1 + s) ln

[
m(1 + h)

n(1 + s)

]
= 1 − hs + (1 + h) ln

[
n(1 + s)

m(1 + h)

]
= 0,

from which it follows that 1+s
1+h

= −1. Since this cannot be true for any h and s, the minimum of f (h,s) must be attained at a
boundary point. The boundaries of f (h,s) are

f

(
h,

q

1 − q

)
= log

(
n

1 − q

)
for h ∈

[
0,

1 − q

q

)
f

(
1 − q

q
,s

)
= log

(
m

q

)
for s ∈

[
0,

q

1 − q

)
fh(h) := f (h,0) = log n + q(1 + h) log

[
m(1 + h)

n

]
for h ∈

[
0,

1 − q

q

]
fs(s) := f (0,s) = log m + (1 − q)(1 + s) log

[
n(1 + s)

m

]
for s ∈

[
0,

q

1 − q

]
.

Because f is constant on the first two boundaries, and because fh( 1−q

q
) = log(m

q
) and fs(

q

1−q
) = log( n

1−q
), it suffices to find the

minimum of fh and fs . From n
m

� 1 it is clear that fs(s) is monotonically increasing in s, hence mins fs(s) = fs(0) = f (0,0) =
q log m + (1 − q) log n � minh f (h,0) = minh fh(h). Therefore, it suffices to find the minimum of fh. The derivative of fh is

f ′
h(h) = ∂f (h,0)

∂h
= q log

em(1 + h)

n
.

For m
n

� 1
e
, we have f ′

h(h) � 0, hence fh attains its minimum at fh(0) = f (0,0). For m
n

< 1
e

and q � em
n

, we have f ′
h(h) � 0,

hence the minimum is fh( 1−q

q
) = log(m

q
). On the other hand, for m

n
< 1

e
and q < em

n
, then f ′

h( n
em

− 1) = 0, so the minimum of

fh is fh( n
em

− 1) = log n − q
n log e

me
. �
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[35] M. B. Plenio, Phys. Rev. Lett. 95, 090503 (2005).
[36] V. Vedral, M. B. Plenio, M. A. Rippin, and P. L. Knight, Phys.

Rev. Lett. 78, 2275 (1997).
[37] M. B. Plenio and V. Vedral, J. Phys. A: Math. Gen. 34, 6997

(2001).
[38] E. M. Rains, Phys. Rev. A 60, 179 (1999).
[39] E. M. Rains, Phys. Rev. A 63, 019902(E) (2000).
[40] K. Audenaert, J. Eisert, E. Jané, M. B. Plenio, S. Virmani, and
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