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Recursive encoding and decoding of the noiseless subsystem for qudits

Utkan Güngördü,1,* Chi-Kwong Li,2,† Mikio Nakahara,1,3,‡ Yiu-Tung Poon,4,§ and Nung-Sing Sze5,‖
1Research Center for Quantum Computing, Interdisciplinary Graduate School of Science and Engineering,

Kinki University, 3-4-1 Kowakae, Higashi-Osaka, Osaka 577-8502, Japan
2Department of Mathematics, College of William & Mary, Williamsburg, Virginia 23187-8795, USA
3Department of Physics, Kinki University, 3-4-1 Kowakae, Higashi-Osaka, Osaka 577-8502, Japan

4Department of Mathematics, Iowa State University, Ames, Iowa 50011, USA
5Department of Applied Mathematics, The Hong Kong Polytechnic University, Hung Hom, Hong Kong

(Received 22 October 2013; published 2 April 2014)

We give a full explanation of the noiseless subsystem that protects a single qubit against collective errors
and the corresponding recursive scheme described by C.-K. Li et al. [Phys. Rev. A 84, 044301 (2011)] from a
representation theory point of view. Furthermore, we extend the construction to qudits under the influence of
collective SU(d) errors. We find that under this recursive scheme, the asymptotic encoding rate is 1/d .
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I. INTRODUCTION

Quantum computing and quantum information processing
make use of quantum systems as computational resources
to outperform their classical counterparts. It is expected that
a quantum computer solves computationally hard tasks for a
classical computer, such as prime-number factorization of a
large number, in a practical time and quantum key distribution
realizes a 100% secure classical information transmission. In
spite of this expectation, a working quantum computer has
not become a reality yet. One of the obstacles against its
realization is decoherence. Decoherence is a process caused by
a coupling between a quantum system (a quantum computer
in the present context) and its environment. A pure state to be
used as a computational resource becomes a dirty mixed state
due to decoherence and then the computational outcome is not
reliable any more.

There are several strategies to fight against decoherence,
and quantum error correcting codes (QECCs) are one of
the best weapons. A pure state may be contaminated due
to the interaction between the system and the environment.
Then one may embed the quantum information to higher
dimensional Hilbert space so that either (i) the error acting
on the physical qubit may be identified by introducing error
syndrome measurement qubits so that the initial quantum
information is recovered after applying appropriate corrections
or (ii) the error operator acts only on a part of the Hilbert space,
keeping the initial quantum information intact. The second
QECC scheme is often called “error-avoiding” coding for this
reason. The decoherence-free subspace (DFS) and noiseless
subsystem (NS) are two popular examples of the second kind
[1–14].

In this paper, we consider the second approach to dealing
with quantum channels, in which all physical qubits involved
in coding suffer from the same error operators. There are two
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relevant cases in which such error operators are in action:
(i) when the size of a quantum computer is much smaller
than the wavelength of the external disturbances and (ii) when
photonic qubits are sent one by one through an optical fiber
with a fixed imperfection. In both cases, the qubits suffer from
the same errors, leading to decoherence. Another instance in
which such encoding is useful is when Alice sends quantum
information to Bob (possibly billions of light years away)
without knowing which basis vectors Bob employs. Then
mismatching of the basis vectors is common for all qubits
and such mismatching is regarded as collective noise.

In our previous publications, we reported the following
results:

(1) For a limited class of error operators {σ⊗n
x ,σ⊗n

y ,σ⊗n
z },

it is possible to iteratively implement encoding/decoding
circuits, which protects n − 1 logical qubits when n is odd
and n − 2 logical qubits when n is even [15]. When n physical
qubits protect k logical qubits, the encoding rate is defined by
k/n. The asymptotic encoding rate obtained in [15] is 1, as
n � 1 for both cases.

(2) For general error operators W⊗n, where W ∈ SU(2),
we gave explicit recursive implementation of encod-
ing/decoding circuits for arbitrary numbers n of physical
qubits. We have shown that n = 2k + 1 physical qubits protect
k logical qubits, leading to the asymptotic encoding rate of 1/2
[16].

(3) A qudit is a d-dimensional analog of a qubit. It
transforms under the action of the fundamental representation
of SU(d). [It should not be confused with a vector transforming
under the action of a d-dimensional representation of SU(2).]
In [17], we identified the subspace with the maximal dimension
of the total Hilbert space of physical qudits when d = 2
and 3, which is immune to collective noise operators of the
form W⊗n, where W ∈ SU(d) (d = 2,3). It was shown that
the encoding rate approaches 1 as n � 1. The irreducible
representation (irrep) giving the encoding subspace with the
maximal dimension is given by an almost-rectangular Young
tableau [17]. Identification of an irrep with the maximal
multiplicity for d > 3 is a highly nontrivial open problem
even though the decomposition of W⊗n into irreps is well
established.
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In the present paper, we demonstrate why the recursion re-
lation introduced in [16] works from the representation theory
point of view and generalize this relation to the qudit case.
We show how to implement encoding/decoding circuits for n

physical qudits, which results in the asymptotic encoding rate
of 1/d. A natural question arising from this statement must be
‘Why do we do this analysis even though it is known that there
is a DFS-NS which gives an asymptotic encoding rate of 1?’
To implement encoding/decoding circuits, we need quantum
circuits, which physically represent the encoding/decoding
matrix UE/U

†
E . Although it may be possible to find the

quantum circuits for small n by some trial and error, it is totally
impossible to find them if the number of qudits n is more than
100 or even 10. We believe that recursive implementation of
the circuits is the only possible way to physically realize the
proposed scheme.

The rest of the paper is organized as follows. In the
next section, we outline the results of [16] for qubits from
a representation theoretical viewpoint so that they can be
easily generalized to the qudit case. In Sec. III, we give
a detailed analysis of recursive implementation of qudit
encoding/decoding circuits and prove that this implementation
gives the asymptotic encoding rate of 1/d. Section IV is
devoted to a summary and discussion.

II. SU(2) RECURSION RELATION REVISITED

In this section, we review and give further explanation
of the three-qubit noiseless subsystem and recursion relation
described in [16] from a representation theory point of
view. This approach has the advantage of being general and
applicable to systems with d levels.

Let us denote the error acting on a single site W ∈ SU(2)
and the total collective noise on the system E = W ⊗ W ⊗ W .
Such an operation is totally symmetric under exchanges,
and the resulting 8 × 8 matrix is reducible as 4 + 2 + 2.
In the context of representation theory, irreps of groups are
conveniently labeled by the Young tableau. The fundamental

irrep of SU(2) is labeled 1 . The form of the reduction is
contained in the expansion [18]

1 ⊗ 1 ⊗ 1 = 1 2 3 ⊕ 1 2
3

⊕ 1 3
2

. (1)

The irreps on the right-hand side have the dimensions 4, 2,
and 2, respectively. The two copies of the fundamental irrep
give rise to a noiseless subsystem. These irreps are more
commonly known as spin-3/2 and spin-1/2 representations
of SU(2), respectively. The dimension of an irrep is the
number of vectors belonging to it whose entries are the
Clebsch-Gordan coefficients, and they are sometimes called
Young-Yamanouchi vectors [19].

If we denote the elements of the fundamental irrep u and d

(or |u〉, |d〉), which refer to the spin-up and spin-down states,
the vectors belonging to the irreps that appear in Eq. (1) can

be written as

1 2
3

⎧⎪⎨
⎪⎩

1√
6

(−[ud + du]u + 2[uu]d)

1√
6

([ud + du]d − 2[dd]u)

1 3
2

⎧⎪⎨
⎪⎩

1√
2
(ud − du)u

1√
2
(ud − du)d

1 2 3

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

uuu
1√
3
(uud + udu + duu)

1√
3
(ddu + dud + udd)

ddd

(2)

The unitary transformation UE that block-diagonalizes E as
W ⊕ W ⊕ W (3/2), where W (3/2) is the spin-3/2 representation
of W , is constructed by using these basis vectors as columns
and grouping them in a proper fashion such as in [20]. Here,
the vertical ellipses indicate that vectors of the irrep are placed
as column vectors:

UE =

⎛
⎜⎜⎜⎜⎝

...
...

...
1 2
3

1 3
2 1 2 3

...
...

...

⎞
⎟⎟⎟⎟⎠

. (3)

An element of SU(2) is naturally expressed in exponential
form as ei(rxσx+ryσy+rzσz). Different representations can be
obtained by replacing Pauli matrices, which correspond to the
fundamental representation, with larger representations of the
algebra su(2). In the particular case of the four-dimensional
irrep, the generators are given as (see, for example, [21,22])

J (3/2)
x =

⎛
⎜⎜⎝

0
√

3 0 0√
3 0 2 0

0 2 0
√

3
0 0

√
3 0

⎞
⎟⎟⎠ ,

J (3/2)
y = i

⎛
⎜⎜⎝

0 −√
3 0 0√

3 0 −2 0
0 2 0 −√

3
0 0

√
3 0

⎞
⎟⎟⎠ ,

J (3/2)
z =

⎛
⎜⎝

3 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −3

⎞
⎟⎠ .

(4)

Figure 1 shows the entire operation of sending state
|u〉 |ψ〉 |v〉 through the noisy channel. Here, |u〉 is the spin-up
state, |ψ〉 represents the data, and |v〉 is an arbitrary ancillary.
This particular choice of the input state as well as the
output given in this figure can be justified in the following
manner. The density matrix of the system can be written
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|u

UE

W

U†
E

|u

|ψ W |ψ

|v W W |v

FIG. 1. Reordered version of the three-qubit QECC from [16].
A circuit representation for UE is shown in Fig. 2. |ψ〉 represents
the data qubit. |v〉 is the state of the ancillary qubit, which can be
arbitrary.

as (|ψ〉 〈ψ | ⊗ |v〉 〈v|) ⊕ 04. The action of the reduced error
operator E ′ = U

†
EEUE = (12 ⊗ W ) ⊕ W (3/2) on this state only

rotates |v〉, leaving |ψ〉 intact. Here 0m is an m × m zero matrix
and ⊗m is an m × m identity matrix. An important corollary
is that the action of E ′ on the subspace |u〉 |ψ〉 |v〉 is equivalent
to 12 ⊗ 12 ⊗ W . This enables recursive construction of a
noiseless subsystem for 2k + 1 qubits.

For instance, to construct a noiseless subsystem for a
five-qubit system, we use UE twice as shown in Fig. 3. By
replacing the dashed part (E ′) of the circuit with 12 ⊗ 12 ⊗ W ,
we obtain the circuit shown in Fig. 4. If we repeat the process
for the lower three-qubits, it becomes clear that the output
is |u〉 |ψ2〉 |u〉 |ψ1〉 (W |v〉) and the states |ψi〉, i = 1,2, are
protected against noise (Fig. 5).

III. RECURSIVE CONSTRUCTION OF A NOISELESS
SUBSYSTEM FOR QUDITS

Now that we have the tools for a general analysis, we turn
to the problem of finding an analogous recursion scheme for
d-level systems. To process, we first need to determine the
number of qudits m we require to avoid collective noise E =
W⊗m, where W is an arbitrary error operator on a single qudit
and an element of the fundamental representation of SU(d). To
construct a noiseless subsystem, we must have an irrep with a
multiplicity of at least d. It turns out that the fundamental irrep
appears exactly d times for d + 1 qudits, which can be shown
by using the Frobenius formula [19]:

(d + 1)!

∏
1�i<j�d νi − νj + j − i
∏d

i=1(νi + d − i)!
= d. (5)

Here, νi denote the row lengths of the corresponding Young
diagram in top-to-bottom order. Such a noiseless subsystem
can protect a single logical qudit against errors.

|u YΘ •

|ψ • Yπ/2

|v σz •

FIG. 2. Reordered SU(2) encoding gate UE from [16], in terms of
single-qubit and two-qubit controlled-U gates. Yθ = exp(iσyθ ) and
sin � = √

2/3.

|u

UE

W

U†
E

|ψ2 W

|u

UE

W

U†
E

|ψ1 W

|v W

FIG. 3. Recursive five-qubit circuit diagram from [16]. In this
reordered version, the gates act on neighboring three-qubits only.

The collective error operator E is block-diagonalized by a
unitary transformation U

†
E as

E ′ = (1d ⊗ W ) ⊕ O, (6)

where O represents the direct sum of the remaining represen-
tations of W , which are not relevant for our purposes. The
transformation matrix, which is the encoding circuit at the
same time, is constructed by placing the Young-Yamanouchi
vectors [23] of the corresponding irreps as columns below:

UE =

⎛
⎜⎜⎝

...
...

...
...

...
1 1 . . . 1 other irreps
...

...
...

...
...

⎞
⎟⎟⎠ . (7)

Here each 1 denotes any irrep that is equivalent to the
d-dimensional fundamental irrep, and their ordering is not
important and can be treated as a freedom during the
construction of the encoding/decoding circuits. In total, there
are d copies of this irrep. The vectors belonging to other irreps
can be placed in an arbitrary manner. Note that, in practice, we
do not need to worry about these vectors as long as they are
orthogonal to the basis vectors belonging to the fundamental
irreps. Such an orthogonalization is enforced by the unitarity
of the encoding circuit.

The proper input state turns out to be

|�〉 = |u〉⊗d−1 |ψ〉 |v〉 , (8)

where |ψ〉 is the qudit state carrying the information, |v〉 is
an ancillary qudit prepared in an arbitrary state, and |u〉 is the
d-dimensional vector (1,0, . . . ,0)T , the highest-weight state
in the fundamental representation of SU(d). Note that the
encoding and decoding can be seen as a basis transformation.

|u 112

|ψ2 112

|u

UE

W

U†
E

|ψ1 W

|v W

FIG. 4. Schematic recursion. This reduced circuit is equivalent to
the one shown in Fig. 3 due to the equivalence given in the text.

042301-3



GÜNGÖRDÜ, LI, NAKAHARA, POON, AND SZE PHYSICAL REVIEW A 89, 042301 (2014)

|u 112

|ψ2 112

|u 112

|ψ1 112

|v W

FIG. 5. Final version of the circuit given in Fig. 3.

In this view, |�〉 has nonzero entries only in the first d2 rows,
which means that such a state belongs to the direct-sum space
of the fundamental irreps.

The action of the collective error E ′ on this state can
be seen by acting on the corresponding density matrix ρ =
(|ψ〉 〈ψ | ⊗ |v〉 〈v|) ⊕ 0q , where q = dd+1 − d2. Clearly, |v〉
will be distorted into W |v〉 during the transmission through
the noisy channel while the remaining qubits are left intact.
We observe that the action of E ′ on this subspace is equivalent
to 1⊗d

d ⊗ W ; that is,

(U †
EW⊗d+1UE) |u〉⊗d−1 |ψ〉 |v〉 = |u〉⊗d−1 |ψ〉 W |v〉 (9)

holds. Following the arguments regarding Figs. 3–5, we see
that the equivalence enables recursive construction of a kd +
1-qudit QECC, which is capable of protecting k qudits.

A naive way of constructing noiseless subsystem for k

qudits would be to vertically clone the elementary circuit such
as the one given in Fig. 1. Since the elementary circuit protects
a single qudit using d + 1 qudits, the asymptotic encoding
rate would be 1/(d + 1). However, with the recursive scheme,
given that the number of correctable qudits using n = kd + 1
for the channel is k, we find the asymptotic behavior of the
encoding rate to be k/n → 1/d as n → ∞ for a fixed d.

IV. CONCLUSION

The noiseless subsystem is a method of using the inherent
permutation symmetry of the noise to protect a subsystem
against errors. In this work, we have used several powerful
tools from representation theory for a better understanding
and further generalization of the recursive construction of a
subsystem for qubits and have extended our results to qudits.
Our approach is based on a d + 1–qudit encoding circuit whose
implementation is realized by the vectors in the fundamental

irrep 1 . It should be noted that different constructions
based on different irreps are possible [14], although they
may not necessarily be suitable for our recursive scheme.
We have then generalized our construction to n = kd + 1.

Encoding/decoding can be realized using UE /U †
E successively,

operating on d + 1 neighboring qudits at a time, which can be
of practical importance.

We note, however, that our construction does not give the
maximum number of correctable qudits for the channel. When
the irrep with maximal degeneracy is used instead of the
fundamental representation, the ratio of protected qudits to
total number of qudits is k/n → 1 as n → ∞ [17]. However,
even though the DFS-NS with the maximal dimension is
identified, we do not yet know how to implement the
encoding circuit efficiently. Our study here gives a foolproof
implementation of the encoding circuit, although the efficiency
is 1/d for qudits. It is certainly desirable to find a recursion
relation for maximal dimension DFS-NS, which is left for
future work.

It should be emphasized that the decomposition for UE

given in Fig. 2 is not canonical. In general, given a universal
set of elementary gates, the UE matrix can be decomposed
in infinitely many different ways. Each decomposition has its
trade-offs; some will require less energy or operational time
than others, for instance. Identification of “good” elementary
gates (which are not necessarily one- or two-qudit gates [24])
and optimization of the decomposition in terms of these gates
with respect to a cost function both require us to specify
a Hamiltonian. Hence, both problems are implementation
dependent and no optimal generic decomposition exists.
Once the Hamiltonian is decided upon, obtaining an optimal
decomposition is still a nontrivial problem [25].

Finally, we remark that our scheme is applicable to
nonunitary error channels as well. The essential ingredient for
our construction is the permutation symmetry of the collective
error operator E , and the Kraus operator W may belong to a Lie
group G other than SU(d) whose fundamental representation
is d-dimensional, such as SL(d, C), following the Schur-Weyl
duality. That is, the UE given in Eq. (7) will block-diagonalize
E when W ∈ SL(d,C) and the resulting block structure will
be the same [26].
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