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We consider a potential well whose shape changes with time, so that a bound state is brought closer to the edge
of the continuum. We then ask the following: how slow should the evolution be for the adiabatic approximation
to hold? We answer the question by considering, in a Sturmian representation, linear evolution of a δ-function
potential well. The general applicability and accuracy of the obtained adiabatic criterion is discussed.
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I. INTRODUCTION

Recently, there has been a spectacular progress for confin-
ing ultracold atoms in a trap by means of several techniques
using various interactions (optical, magnetic, or electrostatic).
This has renewed the interest in controlling Bose-Einstein
condensates, few-body systems, or a single ion, trapped in
or escaping from a time-dependent potential. The applications
range from fundamental research to metrology and quantum
information processing. Frequently, the manipulations involve
externally controlled time-dependent Hamiltonians with both
discrete and continuum levels. In some cases, the continuum
is just a nuisance, leading to undesired atom loss, e.g., in
the transport of trapped ions, or in trapped-ion atomic clocks.
In other experiments the role of the continuum is essential
in achieving, for example, outcoupling required in an atom
laser with controlled atom flux [1,2], atomic pulses with a
controlled velocity distribution [3], or constructing few-body
number states [4–8]. A common feature of these techniques is
the widespread use of adiabatic methods, where the potential
is varied slowly in order to use the adiabatic phase, or to
provide robust protocols, insensitive to systematic errors, that
minimize the final excitation.

Similar considerations apply also to other fields, such as
manipulation of electrons in semiconductor heterostructures,
where the well depth or outcoupling control barriers are
modified by potential gate voltages [9,10], or in harmonic
generation, and internal atomic state preparation by intense
laser pulses [11]. All this motivates the need to understand,
and eventually control, “adiabaticity” when discrete levels are
coupled to a continuum by the Hamiltonian time dependence.
It is generally recognized that this is not a trivial task [12,13],
since the textbook adiabaticity condition (AC), for a couple
of discrete levels near an avoided crossing, is not directly
applicable wherever a discrete level is coupled simultaneously
to infinitely many δ-normalized continuum functions. Several
authors have studied the bound-to-continuum adiabatic limit
by analytical continuation, e.g., using Siegert states [14],
Floquet resonances [11], and S-matrix poles [13].

The subject of this paper is somewhat narrower. We aim
to study the adiabatic limit in the case where a discrete
level approaches the continuum threshold, and then stops
at some distance below it. Our model is an attractive
δ-function potential, whose strength varies linearly with time.

By employing the expansion in Sturmian eigenstates, we
obtain an exact analytical solution, and use it to formulate
the AC in terms of the level’s final position and the speed at
which it is moving. The condition, we argue, should provide
guidance as to what can be expected in more complex systems
and realistic potentials. The Sturmian technique has been
developed in Refs. [15–18] for applications in the theory of
atomic collisions. Similar approaches have been proven useful
in the theory of Brownian motion [19], quantum measure-
ments [20,21], and complex angular momentum analysis of
integral [22,23] and differential [24,25] cross sections.

The rest of the paper is organized as follows. In Sec. II we
estimate the loss of particles to the continuum by expanding
the state of the system in the adiabatic basis. Section III de-
scribes our δ-function potential model. Section IV reviews its
Sturmian eigenvalues and the associated analytical structure.
In Sec. V we obtain the exact analytical solution for the wave
function. In Sec. VI we formulate the appropriate adiabatic
condition. In Sec. VII we use the Sturmian technique to analyze
the AC for a zero range well confined in a box. Section VIII
contains our conclusions.

II. ADIABATIC LIMIT FOR THE NONESCAPE
PROBABILITY BY PERTURBATION THEORY

Consider a particle of mass μ in a one-dimensional potential
well of a finite range. The potential changes with time in such
a way that, when a particular bound state φ0 attains certain
energy, the evolution stops and we evaluate the probability
for a particle to remain in the level, provided it was put there
initially. Let the Hamiltonian (we use � = 1 throughout this
section)

H (t,v) = −∂2
x

/
2μ + V (vt) (1)

describe the evolution, whose speed is controlled by the
parameter v and that starts at ti = 0. For v = 1, at tf it takes
the chosen (ith) level to a desired depth within the modified
well, Ei(tf ) = E′

i < 0. We wish to know the conditions for the
particle, initially in the state i, to remain there at tf . Assume,
for simplicity, the well to be contained within a large box.
Expanding the wave function in the discrete adiabatic basis,

H (t,v = 1)φn(t) = En(t)φn(t), (2)
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we recover the standard adiabatic equations for the coefficients
am(t) which multiply φm(vt) exp[−i

∫ t

0 Em(vt ′)dt ′] [26],

ȧm(t/v) = −v
∑
n�=m

〈φm(t)|V̇ (t)|φn(t)〉
En(t) − Em(t)

×e− i
v

∫ t

0 [En(t ′)−Em(t ′)]dt ′an(t/v). (3)

These are to be solved with the initial condition (δmi is the
Kronecker δ)

am(0) = δmi. (4)

In the near-adiabatic limit, v → 0, replacing in the right-hand
side (RHS) of Eq. (3) an with δmi , yields

am�=i(tf /v) = −
∫ tf

0

〈φm(t ′)|V̇ (t ′)|φi(t ′)〉
Ei(t ′) − Em(t ′)

×e
−i
v

∫ t ′
0 [Ei (t ′′)−Em(t ′′)]dt ′′dt ′. (5)

Since the adiabatic levels cannot cross, the phase of the
exponential in (5) does not have stationary points on the real
axis, and as v → 0, the leading contributions to the integral
come from the end points, the times ti = 0 and tf , when the
evolution is started and stopped. If the evolution is turned
on gradually, or the initial well is so deep that the ith state
is efficiently decoupled from the rest of the spectrum, the
contribution from ti can be neglected, and for the probability
to leave the level by the time its energy is E′

i we have

δPleave(E′
i ,v) ≡

∑
m�=i

|am(tf /v)|2

= v2
∑
m�=i

|〈φm(tf )|V̇ (tf )|φi(tf )〉|2
|Ei(tf ) − Em(tf )|4 + o(v2). (6)

Thus the adiabatic limit for the population of the ith level is
reached provided

δPleave(E′
i ,v) � 1. (7)

A simple example is given in Fig. 1, which shows the adiabatic
spectrum of a potential �δ(x) placed in a box with infinite
walls at x = ±a, as � increases from large negative to large
positive values. A very deep δ well supports a bound state
at E0 ≈ � < 0, and divides the box −a � x � a into two
disjoint wells of a width a, each supporting the levels Em(� =
−∞) = (mπ/a)2/2μ > 0, m = 1,2, . . .. As � increases, E0

moves upwards, and crosses the threshold E = 0 for � =
−1/a. At the same time, symmetric positive energy states
Em also move upwards, while the antisymmetric states are
unaffected. By the time � > 0 is so large that an impenetrable
δ barrier divides the well, each positive-energy level will
have moved one notch up, Em(� = ∞) = [(m + 1)π/a]2/2μ,
letting the former bound state of the δ-well occupy the
symmetric ground state, E0(� = ∞) = (π/a)2/2μ.

As the box is made wider, a → ∞, the positive energy
levels become denser, and eventually form a continuum. In this
case, the sums in Eqs. (3)–(6) must be replaced by integrals,

δPleave(E′
i ,v) ∼ v2

∫ ∞

0

|〈φk(tf )|V̇ (tf )|φ0(tf )〉|2
|E0(tf ) − k2/2μ|4 dk, (8)
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FIG. 1. (Color online) Spectrum of a potential �δ(x) placed
between infinite walls at x = ±a as a function of the potential strength
�. The energies of symmetric states are shown by solid lines. The
energies of antisymmetric states, unaffected by the δ potential, are
indicated by dots.

where φk are the symmetric scattering states, φk(x) = φk(−x),
normalized by the condition 〈φk|φk′ 〉 = δ(k − k′).

Equations (6)–(8) have the advantage of giving a direct
estimate of the loss of particles from a moving level, provided
the loss is itself small. They contain, however, no information
about the phase of the evolved state. Neither do they suggest
a simple estimate for the degree of adiabaticity, based on the
level’s position and the speed at which the level is moving.
We will look for such an estimate by considering an exactly
solvable model.

III. LINEAR ZERO-RANGE MODEL

Consider, in one dimension, a particle of mass μ, trapped
in a zero width well, V (x) = W0vtδ(x), whose strength
varies linearly with time. Scaling the variables, x → x/x0,
t → t/t0, with x0 = �/μ2/3W

1/3
0 and t0 = μx2

0�, we obtain
the Schrödinger equation (SE)

i∂t�(x,t) = −∂2
x�

/
2 + vtδ(x)�, (9)

in dimensionless variables x, t , and v. As the strength of the
potential decreases, its single bound state at

E0(t) = −v2t2/2 ≡ −�2(t)/2

moves ever closer to the continuum. At some tf , �(tf ) =
�f < 0 the evolution is halted, and we check on the state of
the particle originally trapped in the bound state,

φ0(x,�f ) = |�f |1/2[θ (x) exp(−|�f |x)

+ θ (−x) exp(|�f |x)]. (10)
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[Here and below we use θ (x) = 1 for x > 0, 0 for x < 0 and
θ (0) = 1/2.]

Thus we need to solve the SE (9) with the initial condition

lim
t→−∞�(x,t) → exp

[
− i

∫ t

0
E0(t ′)dt ′

]
φ0(x,�). (11)

Note that no generality has been lost by choosing the
linear evolution, as long as one is interested in the level’s
population, and this level is close to the adiabatic regime.
In this limit the RHS of Eq. (6) only depends on the time
derivative of the potential at tf , while the dynamical phases∫ t

0 [En(t ′) − Em(t ′)]dt ′, which contain information about its
previous history, cancel. To proceed with the solution of Eq. (9)
we next define Sturmian eigenvalues and eigenfunctions.

IV. STURMIANS AND THEIR ANALYTIC STRUCTURE

To define the Sturmian basis required in what follows, we
first take the Fourier transform of Eq. (9) with respect to time.
We then fix the energy ω and look for a (possibly complex-
valued) potential strength ρ(ω), such that the Schrödinger
equation (SE),

ωS(x,ω) = −∂2
xS

/
2 + ρ(ω)δ(x)S, (12)

has a solution, which for ω > 0 contains only outgoing waves
emitted from the origin,

S(x,ω) = [θ (x) exp(i
√

2ωx) + θ (−x) exp(−i
√

2ωx)]. (13)

We choose to normalize the solution by the condition S(0,ω) =
1. Equations (12) and (13) define a Sturm-Liouville problem,
with a Sturmian eigenvalue ρ(ω) and the corresponding Stur-
mian eigenfunction S(x,ω), which, following Refs. [15], we
will call simply Sturmian. Typically, the boundary conditions
allow for only discrete values of ρ.

Our case is particularly simple: there is only one Sturmian
per zero-range potential (see, for example [18]). Indeed, the
presence of the Dirac δ in Eq. (12) requires that the log
derivative of S(x,ω) jump at x = 0 by 2ρ. Thus we have

ρ(ω) = i
√

2ω. (14)

For an energy ω, real or complex valued, Eqs. (13) and (14)
define ρ(ω) and S(x,ω), both single valued on the two-sheet
Riemann surface R cut along the real ω axis (see Fig. 2). On
the first sheet of R, with negative energy, ω < 0, the Sturmian
coincides (up to a normalization) with the adiabatic bound
state [cf. Eq. (10)],

φ0(x,�(t)) = |�|1/2S(x,−�2/2). (15)

For ω > 0, just above the cut, we have i
√

2ω = i|√2ω|, and
S(x,ω) contains only the waves propagating away from the
origin. This requires an emitting potential at x = 0, which is
the case since ρ(ω) = i|√2ω|. Just below the cut we have only
incoming waves converging on the origin, i

√
2ω = −i|√2ω|,

and an absorbing potential −i|√2ω|δ(x).
Also present in Fig. 2 are the Siegert states [14], defined

as the solutions of the SE (12) satisfying, for a real potential
strength ρ, the “outgoing boundary condition” with a complex
wave number k(ρ) = −iρ,

s(x,ρ) = {θ (x) exp[ik(ρ)x] + θ (−x) exp[−ik(ρ)x]}. (16)

Siegert

Sturmians

incoming

outgoing

bound

antibound

FIG. 2. (Color online) Two-sheet Sturmian Riemann surface of
ρ(ω) cut along the positive real axis. The Sturmians used in Eq. (24)
lie on the contour following the real axis above the cut on the first
sheet. The states above and below the cut contain only outgoing and
incoming waves, respectively. The Siegert states lie on the negative
semiaxis of the first and the second sheet, where they correspond to
the bound and antibound states of the δ well, respectively.

These can be found by following on R the path Imρ(ω) =
0, which runs up the negative semiaxis on the first sheet to
the branching point, and then continues down the negative
semiaxis on the second sheet (see Fig. 2). There is only one
Siegert state for each potential strength. On the first sheet such
a state coincides (up to a normalization) with the adiabatic
bound state (10), while on the second sheet it becomes an
antibound state which grows exponentially as |x| → ∞.

Alternatively, one can use the potential strength ρ as the
independent variable, thus defining for each ρ the energy ω(ρ)

ω(ρ) = −ρ2/2 (17)

and the Sturmian S(x,ω(ρ)), both single valued in the complex
ρ plane. In this plane the real-energy Sturmians (13) lie along
the contour consisting of positive real and positive imaginary
semiaxis, while the Siegert states inhabit all of the real ρ axis.

We note that in this case the use of the Siegert states, e.g., by
the method developed in [14], is problematic, since the width
of the inner region of the well, where the Siegert expansion
is performed, is zero. The use of the real energy Sturmians
allows us, however, to obtain a simple analytic solution.

V. SOLUTION

Following [15] to solve the SE (9), we change to the energy
representation

ω�(x,ω) = −∂2
x�

/
2 − ivδ(x)∂ω�, (18)

where

�(x,t) =
∫

dω exp(−iωt)�(x,ω), (19)

and make the ansatz

�(x,ω) = B(ω)S(x,ω), (20)
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where the coefficients B(ω) are to be determined. There is a
physical reason for choosing the set of all S(x,ω) with outgoing
boundary conditions. At any time there may only be particles
emitted from the rising bound state, and the Sturmians cover
all such possibilities. Inserting (20) into (18) and then adding
and subtracting ρ(ω)δ(x)B(ω)S(x,ω) in its RHS yields

[ivδ(x)∂ω + ρ(ω)δ(x)]B(ω)S(x,ω) = 0, (21)

so that after integrating over x we have

iv∂ωB + ρB(ω) = 0, (22)

and, explicitly,

B(ω) = C exp

[
i

v

∫ ω

0
ρ(ω′)dω′

]
= C exp

(
−23/2ω3/2

3v

)
,

(23)
where C is a yet unknown constant. We then have

�(x,t) = C

∫
dω exp

(
− iωt − 23/2ω3/2

3v

)
S(x,ω), (24)

where the integration contour runs above the cut on the first
sheet of the Riemann surface R shown in Fig. 1. The value of
C,

C = (2πiv)−1/2, (25)

is determined by sending t → −∞, evaluating the integral
in (24) by the stationary phase (SP) method, and comparing
the result with the initial condition (11) (for details, see the
Appendix).

Note that we have avoided solving the coupled equa-
tions (3), and obtained the exact solution of Eq. (9) in a form
of single quadrature (24). We will further comment on this
advantage of the Sturmian representation (20) in Sec. VII. Next
we use Eq. (24) in order to evaluate the adiabatic condition.

VI. ADIABATIC LIMIT FOR THE NONESCAPE
AMPLITUDE BY A STURMIAN EXPANSION

The amplitude to remain in the bound state whose energy
is Ef = −�2

f /2 < 0 at a time tf ,

Astay(Ef ,v) ≡ 〈φo|�(t)〉, (26)

can now be written as an integral

Astay(Ef ,v) = (2πiv)−1/2
∫ ∞

−∞
dω exp

[
i

v

(
ω

√
2|Ef |

− 23/2ω3/2

3i

)]
g(ω,Ef ), (27)

where the overlap between the bound state and a Sturmian,
g(ω,Ef ) ≡ 〈φo|S(ω)〉 is given by

g(ω,Ef ) = 2|2Ef |1/4

|2Ef |1/2 − i(2ω)1/2
. (28)

The probabilities to stay in the bound state are shown in Fig. 3
for various values of v. The integral has a SP point at ωs = Ef ,
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FIG. 3. (Color online) Probability to remain in the bound state
of the δ well as a function of the final dimensionless energy
Ef = −vt2

f /2t2
0 for various values of v. The amplitude Astay(Ef ,v)

is obtained by evaluating the integral (27) along a suitable contour in
the complex ω plane.

and the stationary phase result corresponds to the adiabatic
limit,

Aadiab
stay (Ef ,v) ∼ exp

[
−i

∫ tf

0
E0(t ′)dt ′

]
,

v → 0, ∀Ef < 0. (29)

Thus, no matter how close the level approaches the threshold
E = 0, it is possible to find an evolution slow enough for the
wave function to follow it adiabatically. This is the adiabatic
theorem.

One may ask a different question: given the values of v and
Ef , will the adiabatic result (29) hold? For the primitive SP
approximation (29) to be accurate, the stationary phase point
should be well isolated from all singularities of the integrand
of (28). That is, the width of the stationary region, �ωs ,
should be much smaller than the distance from ωs = Ef to
the branching point at ω = 0. From Eq. (A1), �ωs is just the
square root of the level’s velocity at t = tf ,

�ωs ∼
[
v/

dρ(ωs)

dω

]1/2

=
√

Ė0(tf ). (30)

Squaring the ratio �ωs/ωs we may say that the adiabatic
approximation for Astay is unlikely to be accurate unless the
speed, with which the level moves just before it stops, is much
smaller than the square of its final energy, i.e., unless [27]

γ ≡ Ėf /E2
f

∣∣
t=tf

= 4v/�3
f � 1. (31)

The validity of Eq. (29) is illustrated in Fig. 4(a) showing
the relative errors of the adiabatic approximation (29) as the
function of the parameter γ for v = 1.

However, Fig. 4(a) also shows that the condition (31), which
ensures adiabaticity for both the phase and the modulus of
Astay, may be too strict for someone interested only in the
probability to remain in the bound state, Pstay = |Astay|2. This
is because the phase of Astay becomes affected by the evolution
earlier than its modulus |Astay|, which can remain close to unity
for longer. Obtaining corrections to |Astay| from the oscillating
integral (27) is cumbersome [28], and to estimate Pstay we
return to Eq. (8). The results are shown in Fig. 4(b). For our
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FIG. 4. (Color online) (a) Relative errors of the adiabatic ap-
proximation (29) vs γ in Eq. (31) for a δ potential in free space:
|Astay − Aadiab

stay |/|Astay| (solid) and (|Aadiab
stay | − |Astay|)/|Astay|; (b) same

as Fig. 3 for v = 1. Shown are the exact probability in Eq. (27)
(solid), its quadratic approximation (6) (dashed), and the curve
0.0195 × (Ė0/E

2
0 )2|t=tf (filled dots). In the inset the region of validity

of the quadratic approximation (6) is magnified for better viewing.

simple model we find (v = 1)

Pstay(Ef ,v) ≈ 1 − Cγ 2, (32)

where C ≈ 0.0195. Equation (32) correctly describes the loss
of particles to the continuum to within 0.1%–0.2%, and
after that it overestimates the probability of nonadiabatic
transitions. Where Eq. (32) fails, the correct loss of particles
to the continuum can be evaluated by constructing a uniform
asymptotic approximation for the integral (32), allowing for
coalescence of ωs and the branching point at ω = 0. We will
not pursue this task further, and continue with another example,
providing an additional insight into the benefits of the method.

VII. ZERO-RANGE WELL IN A BOX

Next we put a δ well at x = 0 inside a potential box with
infinite walls at x = ±a

V (x) = vtδ(x) + Wθ (x − a) + Wθ (x + a), W → ∞.

(33)

The setup can be seen as a crude model of a narrow potential
well inside an anharmonic trap, which can be constructed for
cold atoms [2]. Rescaling the variables (� = 1, μ = 1),

x → x/a, t → t/2a2, v → 4a3v, a → 1, (34)

allows us to consider the box of width equal to 2 for various
values of the speed v. As before, we will assume that the
evolution stops at some Ef < 0 (�f < −1/a), and evaluate
the probability to remain in the negative energy bound state,

[φ0(x,Ef ) = φ0(−x,Ef )],

φ0(x � 0,Ef ) = N−1/2(Ef )

{
exp

[
− √

2|Ef |(x − a)

]

− exp

[√
2|Ef |(x − a)

]}
, (35)

where N (Ef ) ≡ 〈φ0(Ef )|φ0(Ef )〉 is the normalization con-
stant.

Now a Sturmian eigenstate [we need to consider only those
symmetric about the origin, S(x) = S(−x)] must vanish at
x = ±a, and at x = 0 its logarithmic derivative should jump
by ρ(ω). We, therefore, have

ρ(ω) = −k cot(ka), k ≡
√

2ω, (36)

and

S(x � 0,ω) = (e−ika − eika)−1

×{eik(x−a) − e−ik(x−a)}. (37)

Expanding the wave function in S(x,ω) as in Eq. (20), and
repeating the steps of Sec. V, for the amplitude to stay in
φ0(x,Ef ) we obtain

Astay(Ef ,v) = (2πiv)−1/2
∫



dω〈φ0(Ef )|S(ω)〉

× exp

{
− i

v

[
ω�′ −

∫ ω

0
ρ(ω′)dω′

]}
, (38)

where 〈φ0(Ef )|S(ω)〉 ≡ ∫ a

−a
φ0(x,�′)S(x,ω)dx.

The choice of the contour , which must run above the
positive real axis, may require an explanation. Both ρ(ω) and
S(x,ω) are single valued in the complex ω plane, and have
poles on the real ω axis at the energies corresponding to the
box divided in two by an infinite δ well or barrier, ωm =
(mπ/a)2/2, m = 1,2, . . .. (There Sturmians vanish at x = 0,
and an infinite ρ is required to ensure the correct discontinuity
in their log derivatives.) In the limit of the broad box, a → ∞,
the poles merge into a cut shown in Fig. 2. Above the cut we
have k(ω + iε) ∼ √

2ω + iε′, and recover Eqs. (12) and (13)
obtained in the continuum case,

ρ(ω + iε) ∼ i
√

2ω, S(x � 0,ω + iε) ∼ exp (i
√

2ωx),

as a → ∞, ε → +0, (39)

provided  runs along the negative and above the positive ω

axis.
Equation (36) provides some insight into the advantage

offered by the Sturmian representation (20). There is only one
(real) value of the potential strength ρ for a given real energy ω

(cf. Fig. 1). Conversely, for each value of ρ there are infinitely
many values of ω, corresponding to different branches of the
inverse cotangent. These are seen as different energy levels in
Fig. 1, and give rise to an infinite number of coupled equations
in Eq. (3) if we choose to expand the wave function in the
adiabatic basis (2) defined for each potential strength. If, on
the other hand, we choose energy as the independent variable,
there is only one state S(ω) in which to expand, and a single
equation (22), which later yields the analytical expressions (27)
and (38).
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FIG. 5. (Color online) (a) Relative errors of the adiabatic approx-
imation (29) as a function of the parameter γ in Eq. (31) for a δ

potential in a box of unit half-width: |Astay − Aadiab
stay |/|Astay| (solid)

and (|Aadiab
stay | − |Astay|)/|Astay|; (b) the probability to stay in the bound

state of a δ well approaching the threshold E = 0 for v/v0 = 5 and 10,
vs Ef /ε0, where v0 ≡ 1/4a3 and ε0 ≡ 1/2a2. Shown are the exact
probability in Eq. (27) (solid), and its quadratic approximation (6)
(dashed). The amplitude Astay(Ef ,v) is obtained by evaluating the
integral (38) along a suitable contour in the complex ω plane.

As in Sec. VI, the adiabatic limit for the amplitude
Astay(Ef ,v) is achieved provided the integral (38) is correctly
evaluated by the primitive SP approximation described in the
Appendix. This requires a sufficient separation between the
stationary phase region and the nearest singularity, the pole at
ω1 = π2/2a2, i.e., provided

γ ≡ Ėf /(ω1 − Ef )2 � 1. (40)

Relative errors of the adiabatic approximation for different
values of γ are shown in Fig. 5(a).

As in Sec. VI the condition (40) does not, alone, provide
an estimate for Pstay. This probability can be evaluated by
noting that for the parameters used in Fig. 5, the nonadiabatic
transitions occur only between the two lowest states in the
spectrum shown in Fig. 1. Restricting the summation in Eq. (6)
to the first (m = 1) term only, we have

Pstay ≈ 1 − γ 2

(
ω1 − Ef

E1(tf ) − Ef

)4∣∣∣∣φ1(x = 0,tf )

φ0(x = 0,tf )

∣∣∣∣
2

. (41)

The probability to leave the level vanishes, as it should as γ →
0. In addition, it is reduced by the fourth power of the ratio
(ω1 − Ef )/[E1(tf ) − Ef ], which is always less than unity,
since E1(tf ) > ω1 (cf. Fig. 1). The values of Pstay and its
two-level approximation (41) are shown in Fig. 5(b).

VIII. CONCLUSIONS AND DISCUSSION

In summary, the Sturmian representation allows one to
express the amplitude to remain in the initial bound state
of a time-dependent well, Astay, in the form of an oscillating

integral over the energy domain. The integrand has a stationary
region whose center coincides with the energy E0 of the
adiabatic state. The width of the region is determined by
the speed Ė0, with which the level moves as the potential
changes. The adiabatic limit is reached provided the integral
can be accurately evaluated by the primitive stationary phase
approximation. This happens when the stationary region is
well separated from the nearest singularity of the integrand at
some Esing, i.e., provided

γ = �Ė0/|E0 − Esing|2 � 1. (42)

In the case of a continuum, the relevant singularity is the
branching point at the origin, Esing = 0. The condition γ � 1
is, therefore, necessary for both the phase and the modulus of
Astay to reach the adiabatic limit.

There are, however, at least two reasons why the con-
dition (42) may prove to be too strict. First, it does not
specify how quickly the error will grow, as γ increases. This
depends on the type of the singularity, and must be determined
by evaluating the uniform asymptote of the corresponding
oscillatory integral, allowing the singularity to coalesce with
the stationary point. Figure 3(a) shows that this growth is slow
when the singularity is of the weak branching type. The growth
is faster for a stronger pole singularity, as is shown in Fig. 5(a).

Secondly, Eq. (42) may be too strict for someone interested,
for example, only in the probability to remain in the adiabatic
state, Pstay = |Astay|2. Figures 3(a) and 4(a) show that the
phase of Astay is more sensitive to the motion of the level
than its modulus, and Pstay may remain close to unity even
after the adiabatic approximation for the phase has failed.
Again, obtaining the exact adiabatic condition for Pstay requires
an analysis of the integral for Astay beyond the primitive SP
approximation.

Although in this paper we analyzed the exactly solvable
model, where only one Sturmian is required for expanding the
wave function |�(t)〉, one may expect the above conclusions to
apply also to more realistic potentials. For example, in the case
of a well of a finite width, there are infinitely many Sturmians
in the expansion of |�(t)〉. However, in the near-adiabatic
limit, only one Sturmian state remains populated, giving rise
to integrals similar to (27) and (38). A detailed analysis will
be given in our future work.

Finally, we note that if the potential’s evolution is not
linear in time, but sufficiently slow for Eq. (6) to hold, the
condition γ � 1 would guarantee that Pstay ≈ 1, although it
would almost certainly be too strict in the sense explained
above.
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APPENDIX: DERIVATION OF EQ. (25)

In the energy variable ω the Taylor expansion for the
phase �(ω) of the exponential in the integral (24) around its
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stationary point ωs , defined by ρ(ωs) = vt , takes the form

�(ω) = −ωst + v−1
∫ ωs

0
ρ(ω′)dω′

+ v−1
∞∑

n=2

ρ(n−1)(ωs)

n!
(ρ − ρs)

n. (A1)

Changing to the ρ variable as discussed in Sec. IV we obtain
an equivalent form of Eq. (24),

�(x,t) = C

{∫ 0

−∞
+

∫ i∞

0

}
dρ

×dω

dρ
exp

[
i(ρ/v − t)ω − i

v

∫ ρ

0
ω(ρ ′)dρ ′

]
S(x,ω).

(A2)

For a large negative t , the phase of the exponential in the first
integral, �(ρ), has a stationary phase point ρs = vt , In its

vicinity we have

�(ρ) = −
∫ t

0
E0(t ′)dt ′

+ v−1
∞∑

n=2

(n − 1)

n!

dn−1ω(ρs)

dρn−1
(ρ − ρs)

n, (A3)

where the first term coincides with the adiabatic phase in
Eq. (11). Evaluating the stationary phase result,

�(x,t) ∼ exp

[
−i

∫ t

0
E0(t ′)dt ′

]

×
√

2π

−i�′′(ρs)

dω(ρs)

dρ
S(x,ρs) (A4)

for t → −∞, and recalling from Eqs. (10), (13), and (17) that
φ0(x,t) = √

dω(ρs)/dρ S(x,ω(ρs)), we obtain Eq. (25).
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