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Localization of relativistic particles and their position-momentum uncertainty relations are not yet fully
understood. We discuss two schemes of photon localization that are based on the energy density. One scheme
produces a positive operator-valued measure for localization. It coincides with the number density operator and
reproduces an effective 3 × 3 polarization density matrix. Another scheme results in a probability distribution that
is conditioned on the detection. In both schemes the uncertainty relations for transversal position and momentum
approach the Heisenberg bound �p�z = 1
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I. INTRODUCTION

Localized detection events provide the experimental basis
of quantum field theory and quantum optics [1–3]. They are
critical for understanding relativistic aspects of quantum infor-
mation processing [4,5]. Nevertheless, analysis of localization
in the relativistic regime [6–22] is still incomplete. A stark con-
trast between our ability to manipulate single photons [23,24]
or trace molecules with subwavelength accuracy [25] and
the lack of clarity in describing the photon localization is
illustrated by a recent controversy [26,27].

One can consider localization in a space-time or on a given
time slice. The solution to the former problem is given by the
probability of detecting a particle during an interval of time
�t around time t in a volume �V around x. If the detection
time �t can be ignored (see [28]), the problem reduces to
describing localization on a time slice t . Through the paper
we consider a flat space-time, use the + − −− signature of
the metric, and set � = c = 1, unless specified otherwise. We
focus on single-particle states.

The complexity of relativistic localization is highlighted
by the absence of a self-adjoint time operator [29], and thus
absence of space-time localization operators X̂μ, μ = 0, . . . ,3
[9,17]. (For recent discussions see [30].) There is no unique
spatial position operator, and (depending on the imposed
requirements) there is no position operator for massless
particles with spin larger than 1

2 [8,9]. When the operator exists
its components may be noncommutative, [X̂k,X̂j ] �= 0 [31],
and the resulting probability distribution may lack a probability
current or have causality problems [8,9,12–14,16].

The Newton-Wigner wave function ψNW [1,8] is a popular
tool to describe localization of massive particles, but it is
only a partial remedy [16,32]. If |ψNW(t,x)|2 is taken to be a
spatial probability distribution, then there are states that violate
causality [33] in the spirit of the Hegerfeldt’s theorem [14]
(Sec. III). In the framework of the algebraic field theory [1,2], it
was shown that the localization description cannot be realized
by local or quasilocal operators [17,34].

Absence of a priori preferable descriptions of localization
motivates an operational approach. A way to substantiate the
notion of particles and to reconcile it with the local quantum
field theory is to analyze the (model) detectors’ excitations.
Investigating the space-time localization, one considers a
response rate of such a detector [35–37], which leads to a
Lorentz-invariant detection rate w(t,x|ρ) ≡ w(x|ρ), where

the detection probability for a state ρ in the space-time
four-volume dtdV near the space-time point x is

dP (x,d�|ρ) = w(x|ρ)dtdV . (1)

Localization on a time slice selects a Lorentz frame that is
associated with the detector(s). In this case the quantities of
interest are the probability density p(t,x|ρ) and its current.
Their interpretation as describing the evolution of the particle’s
position in time is not straightforward. In particular, unavoid-
able dark counts (response of a local detector to vacuum) that
give “false positives” and a finite probability of failure, when
the detectors do not “fire” even if a particle is present, should
be taken into account.

In this article we focus on localizing single-particle states on
a time slice. The associated probability density is constructed
using three ingredients: the energy density of a quantized
field, the particle’s momentum-space wave function, and its
energy. Two possible solutions satisfy the constraints that are
imposed by quantum field theory, fulfill many of the desired
properties suggested by nonrelativistic quantum mechanics,
and relate to familiar objects in quantum optics. We apply
these constructions to the photonic uncertainty relations and
discuss possible experiments.

The rest of the paper is organized as follows. We review the
general properties of localization in the next section. Section III
deals with properties of energy density and two possible
methods of constructing normalized probability distributions.
This general theory is applied to photons in Sec. IV, and
the uncertainty relations are derived in Sec. V. Section VI
discusses the implications of our results, their limitations, and
future directions.

II. GENERAL PROPERTIES OF LOCALIZATION

Mathematical difficulties with orthogonal projections and
detection analysis led to discussion of localization in terms
of positive operator-valued measures (POVMs) [16,18]. A
POVM constitutes a nonorthogonal decomposition of the iden-
tity by means of positive operators �̂(x), resulting in detection
probabilities P (x) = trρ�̂(x) for the events {x} [38,39].

In a given Minkowski frame, the sets � ⊂ R3 correspond
to the statements that the system is located in � at time t . Each
set is associated with a positive operator �̂(�). The operators
are not assumed to be local or quasilocal. The operators form
a decomposition of identity, �̂(R3) = 1. For the disjoint sets
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�1 and �2, the resulting operator satisfies

�̂(�1∪�2) = �̂(�1) + �̂(�2). (2)

Behavior under rotations and translations is the hallmark
of a position observable. Let g ·� = R� + b denote the
action of the Euclidean group (the rotation R followed by the
translation b) on � and by Û (g), its unitary representation.
Then

�̂(g ·�) = U (g)�̂(�)U (g)†. (3)

Several intuitively attractive features of position will not
be realized. We do not require a sharp localizability [18]: for
the disjoint �1 and �2 the product �̂(�1)�̂(�2) �= 0. Instead
of position operators X̂l we have the first statistical moment
operators,

Q̂l(t) =
∫

d3xxl�̂(t,x), l = x,y,z, (4)

where we abuse the notation by denoting the measures �̂(d3x),

�̂(�) =
∫

�

�̂(d3x),

as �̂(x)d3x. The operators Q̂l do not commute. However, since
the measurement is described by a single measure �̂, they are
evaluated jointly:

〈Q̂l(t)〉 =
∫

d3xxl p(t,x), p(t,x) = tr[ρ�̂(t,x)], (5)

where ρ is density matrix of the system.
If the probability distribution p(t,x) is interpreted as a time-

dependent indicator of the approximate position of a particle,
it is reasonable to expect the conserved current,

∂p(t,x)

∂t
= −∇j(t,x), (6)

and a causal evolution of p(t,x). Probability density should
propagate causally. Both requirements are realized below.

The localization scheme should be Lorentz covariant.
However, there are different levels at which it can be
realized. Consider an inhomogeneous Lorentz transformation
x→�x + a, where a is a four-dimensional translation and
� some proper Lorentz transformations that connect two
reference frames. For a POVM that results in the detection
rate

w(x|ρ) = trρ�̂w(x), (7)

the invariance of probabilities requires a unitary transformation
of the POVM operators, and the state transformation law,

|	〉→Û (a,�)|	〉, (8)

implies [28]

�̂w(x)→�̂′
w(x ′) = Û (a,�)�̂w(x)Û (a,�)†. (9)

The constant time slice in one frame does not transform into
a constant time slice in another frame, so no such manifest
covariance can be required for �̂(t,x). Instead, we expect it
to be constructed in the same way in both frames, where the
constituent operators transform according to their appropriate
laws. The probability conservation Eq. (6) should hold true in
any frame. However, there is no reason to demand that (ρ,j)
form a four-vector and transform accordingly.

III. ENERGY DENSITY AND DETECTION PROBABILITY

A. Properties

Energy density broadly agrees with our intuition of “where
the particle is.” Moreover, it propagates causally [32] and is
directly related to photodetection [3,11,19,20]. If the electrons
in a detector interact with the electric field of light, then
a leading-order detection probability is proportional to the
expectation value of the normal-ordered electric-field intensity
operator [3], and the latter is proportional to the energy density.

In this section we discuss the resulting normalized prob-
ability distributions. We use a real scalar field for simplicity.
Consider a one-particle state,

|	〉 =
∫

dμ(p)ψ(p)|p〉, dμ(p) = d3p
(2π )32p0

, (10)

where p0 = Ep =
√

m2 + p2, 〈p|q〉 = (2π )3(2p0)δ(p − q),
and

∫
dμ(p)|ψ |2 = 1. The inner product of two states is

calculated in the momentum representation,

〈	|�〉 =
∫

dμ(p)ψ∗(p)φ(p). (11)

For a state |	〉 the energy density equals

T00(t,x) = 〈	|T̂00(t,x)|	〉 = |∇ψ(t,x)|2
+ |∂tψ(t,x)|2 + m2|ψ(t,x)|2, (12)

where T̂00 is the normal-ordered Hamiltonian density, and
ψ(t,x) is the configuration space wave function (Appendix A).
The energy density is positive and the Lorentz transformation
properties are built into this quantity by definition.

Let us consider possible causality violations. The
Hegerfeldt’s theorem in its strongest version proves a super-
luminal speed for an exponentially localized particle. If the
probability of finding it outside a sphere of radius R is bounded
by

Prob �∈R < C2 exp(−2γR), (13)

where C is some constant and γ > m, then the state will spread
faster than light. However, it was shown in [32] that no physical
state can satisfy this bound. If T00(t,x) satisfies it, then both
|ψ(t,x)| and |∂tψ(t,x)| are bounded by C exp(−γR). It implies
that both ψ(p) and ψ(p)/Ep are analytic functions in the strip
of the complex plane that is bounded by at least |Im(p)| � m,
which is inconsistent with the branch cuts in Ep at |p| = ±im.
Therefore the energy density cannot be “localized” enough to
violate causality.

B. Normalization

If the probability to detect a particle in some volume �

is proportional to the integral of the energy density over
this volume, then the probability that a detection happened
somewhere is

P (R3|	) = K

∫
T00(t,x)d3x ≡ K〈	|Ĥ |	〉 < 1, (14)

for some constant K . As a result, one way to obtain a
probability density for the particle’s position is to rescale the
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detection probability,

P E(�|	) =
∫

�
T00(t,x)

〈	|Ĥ |	〉d
3x, 0 � P (�|	) � 1. (15)

In other words, this is a probability to find a particle
in a region �, given that a detection occurred at all. In
contrast with the POVM outcomes [4,40], this quantity is not
convex [41]. Consider a state ρ which is a mixture of two pure
states |	1〉 and |	2〉,

ρ = aρ1 + (1 − a)ρ2, 0 < a < 1. (16)

According to Eq. (15), probability densities for the states
ρi = |	i〉〈	i | are

pE
i (t,x) = tr ρiT̂00(t,x)

tr ρiĤ
. (17)

By using either the above definition or the convexity property
we reach

pE
ρ (t,x) = tr ρT̂00(t,x)

tr ρĤ

�= atr ρ1T̂00(t,x) + (1 − a)tr ρ2T̂00(t,x)

atr ρ1Ĥ + (1 − a)tr ρ2Ĥ
, (18)

and these two expressions are generally different. This behav-
ior is typical for postselected quantities [42].

Linearity is restored if normalization of the probability
distribution follows the operator-valued measure. We construct
a POVM element as

�̂(t,x) = Ĥ−1/2T̂00(t,x)Ĥ−1/2. (19)

The action of Ĥ−1 is is well defined when we restrict it to the
nonvacuum states. It was shown in [21] that the Born-Infeld
position operator [7] that is obtained from the first moment of
the energy distribution N̂ = ∫

d3x xT̂00 equals the first moment
of this operator density,

1

2
(Ĥ−1N̂ + N̂Ĥ−1) =

∫
d3x x�̂(t,x). (20)

The probability density 〈	|�̂(t,x)|	〉 can be written as the
energy density of a classical field,

p(t,x) := 〈	|�̂(t,x)|	〉 = [|∇ψ̃(t,x)|2
+ |∂t ψ̃(t,x)|2 + m2|ψ̃(t,x)|2], (21)

where the additional E
−1/2
p factor is added to ψ(p),

ψ̃(t,x) =
∫

dμ(p)
ψ̃√
Ep

(p)ei(p·x−Et). (22)

The probability current j l(t,x) = 〈T̂ 0l〉 is obtained similarly
(Appendix A). Working in the momentum space representa-
tion, it is easy to see that indeed,

p � 0,

∫
p(t,x)d3x = 1, ṗ = −∇ · j, (23)

where the energy-momentum conservation ∂μT̂ 0μ = 0 results
in the continuity equation for the probability density.

The arguments of [32] for the energy density are equally
well applied to our probability distribution p, so Hegerfeldt’s

theorem does not present a paradox. We note that the presence
of the Hamiltonian makes �̂ a nonlocal operator, in agrement
with [17,34]. A nonrelativistic limit is obtained by expanding
p(t,x) in powers of p/m (Appendix A).

IV. LOCALIZATION OF PHOTONS

Following [21,26] we use the Riemann-Silberstein vector

F := E + iB. (24)

The classical energy density in a free space is then

T00 = 1
2 (E2 + B2) = 1

2 F∗ ·F. (25)

We work in the radiation gauge (so E = −Ȧ and B = ∇ × A)
and write the solutions of the wave equation with the help of
right and left polarization vectors ε±

p ,

p × ε±
p = ∓i|p|ε±

p , (26)

that satisfy the convention

εp := ε+
p = ε−∗

p = ε∗
−p, ε∗

p · εp = 1, ε2
p = 0. (27)

We adapt Wigner’s construction of the massless representation
of the Poincaré group to the construction of the polarization ba-
sis vectors ε±

p [4,44]. For p = p(sin θ cos ϕ, sin θ sin ϕ, cos θ ),

εp = 1√
2
(cos θ cos ϕ − i sin ϕ, cos θ sin ϕ + i cos ϕ,−sin θ ).

(28)

Writing the quantum field as

Â(t,x) =
∫

dμ(p)
∑
λ=±1

(
ελ

pαpλe
−ip·x + ελ∗

p α
†
pλe

ip·x), (29)

we obtain the standard commutation relations (Appendix B),
and the Riemann-Silberstein operator,

F̂ = Ê + iB̂ = 2i

∫
dμ(p)Epεp

× (αp+e−ip·x/� + α
†
p−eip·x/�). (30)

Energy density then becomes

T̂00 = 1

2
:: F̂† ·F̂ :: = 2

∑
λ=±1

∫
dμ(p)dμ(q)EpEq ε∗

p ·εq

×α
†
pλαqλe

i(p−q)·x/�, (31)

where the terms that annihilate one-particle states are dropped.
A straightforward calculation leads to a POVM,

�̂(t,x) = Ĥ−1/2T̂00(t,x)Ĥ−1/2

= 2
∑
λ=±1

∫
dμ(p)dμ(q)

√
EpEqε

∗
p ·εq

×α
†
pλαqλe

i(p−q)·x/�. (32)

For a generic one-photon state

|	〉 =
∑
λ=±1

∫
dμ(p)ψλ(p)a†

pλ|0〉, (33)
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the energy density can be compactly written with the three-
vector wave function [3]

φλ(t,x) = 1

(2π )3

∫
d3pελ

pψλ(p)e−ip·x/�, (34)

as

T00(x) = 〈	|T̂00(x)|	〉 = 1

2

∑
λ=±1

|φλ(x)|2. (35)

On the other hand, the probability density is given by the
Newton-Wigner wave function,

p(t,x) = 〈	|�̂(t,x)|	〉 =
∑
λ=±1

|fλ(t,x)|2, (36)

where

fλ(t,x) =
∫

d3p
(2π )3

fλ(p)e−ip·x/� =
∫

d3p
(2π )3

ελ
p
ψλ(p)√

2Ep
e−ip·x/�.

(37)

Several observations are in order. The configuration space
wave function has the Newton-Wigner form (see, e.g., [43]),
even if it is not an eigenfunction of the position operator.
The POVM �̂ is identical with Mandel’s number density
operator [10]. The two wave functions are related as

φλ(p) = √
2Ep fλ(p). (38)

The effective polarization density matrix was introduced on
the formal grounds [4,44] as an analog of the 3×3 classical
correlation matrix [3]. It results in the probabilities Pa(ρ) =
tr �aρ for a class of POVMs {�a} that are based on a
simple photodetection model [45]. This density matrix is given
by [4,45]

ρmn =
∫

dμ(p)
∑

λ,λ′=±1

ψλ(p)ψλ′(p)∗
(
ελ

p

)
m

(
ελ′

p

)∗
n
. (39)

Introducing the vectorial components of the wave function as
fm = (f+)m + (f−)m, we see from Eq. (37) that

ρmn =
∫

d3p
(2π )3

fm(p)fn(p)∗ =
∫

d3xfm(t,x)fn(t,x)∗, (40)

again, similarly to the nonrelativistic quantum mechanics.

V. UNCERTAINTY RELATIONS

The uncertainty relations that involve the position operator
were analyzed by Bialynicki-Birula and Bialynicka-Birula
in [26]. Here instead we consider the statistics derived
from the probability density of Eq. (36) and show that
the variances saturate the Heisenberg bound �q�p � �/2.
Consider a one-photon state with Gaussian profiles in both
x (the average propagation direction) and the transversal (y
and z) components of the momentum, which is built as a
superposition of the right-polarized components only:

f (p) = ψ+(p)√
2Ep

= 2π3/4w√
σ

exp

(
−w2

(
p2

y + p2
z

)
4

)

× exp

(
− (px − p0)2

2σ 2

)
. (41)

For a classical beam w is the radius at which the intensity
falls off to 1/2e2 of its maximum value on the axis of
symmetry [3,25], and we take 1/w,σ � p0. Having in mind
the actual experimental setups, we consider the transversal
uncertainty relations.

The momentum space wave function has the standard
probabilistic interpretation, i.e., for any power k,〈

pk
l

〉 =
∫

dμ(p)pk
l |ψ+(p)|2 =

∫
d3p pk

l |f (p)|2, (42)

where l = x,y,z. The first moments are 〈py〉 = 〈pz〉 = 0,
〈px〉 = p0, and the second moments of the transversal mo-
mentum are 〈

p2
y

〉 = 〈
p2

z

〉 = 1/w2. (43)

We expand the polarization vector εp in Eq. (37) in the
inverse powers of p0 and perform the Gaussian integrations,
obtaining

p(t,x) = p0(t,x)

(
1 + 4(y2 + z2) − 2w2

p2
0w

4
+ O

(
p−4

0

))
, (44)

where p0(t,x) = |f (t,x)|2 is the scalar Gaussian probability
density. As a result, in 〈y〉 = 〈z〉 = 0 and

〈z2〉 = 〈y2〉 = w2

4
+ 1

2p2
0

+ O
(
p−4

0

)
, (45)

approaching the usual nonrelativistic bound,

�z�pz � �

2

(
1 + �

2

p2
0w

2
+ O

(
p−4

0

))
, (46)

with the identical expression for the y component, and we
restored the use of �.

Interpretation of fλ(t,x) as the position probability ampli-
tude faces a difficulty when contrasted with the detection
probability of Eq. (14). Because of Eq. (38) the photon
that is “localized” in a bounded region � (i.e., fλ(t,x) = 0
for x ∈ R3\�) has a nonzero detection probability outside
it [3,11]. Therefore it is useful to estimate the uncertainty
using the normalized counting statistics that is represented by

pE(t,x) = |φ+(t,x)|2 + |φ−(t,x)|2
2E

, (47)

where the expectation of energy is

E = 1

2

∫
d3x[|φ+(t,x)|2 + |φ−(t,x)|2]. (48)

Expanding√
Ep = (

[p0 + (px − p0)]2 + p2
y + p2

z

)1/4
(49)

in the inverse powers of the momentum p0 allows one to obtain
the series expansion of φ(t,x) and E. Statistical moments can
be obtained either from the resulting probability density pE or
by the techniques of Appendix A. The uncertainty for the state
ψ+ of Eq. (41) becomes

〈y2〉E = 〈z2〉E = 1

4

(
w2 + 1

p2
0

+ O
(
p−4

0

))

= 1

4

(
w2 + λ2

0

4π2
+ O

(
λ4

0

))
, (50)
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where λ0 = h/p0 is the peak wavelength. Transversal momen-
tum measurements are performed with he same detectors that
are positioned behind a suitably arranged lens system [23,46].
The latter implements the Fourier transform between φ(x) and
φ(p). Using φ(p) to calculate the statistical moments leads to

〈
p2

z

〉
E

= 〈
p2

y

〉
E

= 1

w2

(
1 + 1

p2
0w

2
+ O

(
p−4

0

))

= 1

w2

(
1 + λ2

0

4π2w2
+ O

(
λ4

0

))
. (51)

VI. DISCUSSION

Within the domain of validly of a single-particle picture,
the energy density provides a satisfactory description of
localization. By dropping the insistence on local operators,
we not only conform to the general results of the quantum
field theory, but break a vicious cycle where the only operator
that satisfies all the “reasonable” requirements of localization
is identically zero.

For photons the resulting POVM �̂(t,x) coincides with
the photon density operator. The resulting probability density
shows a curious property: it is given by the absolute value
squared of the configuration space wave function of the
Newton-Wigner form, even if the Newton-Wigner position
operator for photons does not exist. The effective density
matrix is a necessary mode of polarization description if the
wave packet spread is important. Our scheme provides a direct
link between the momentum space and configuration space
descriptions of polarization.

We can settle the controversy about the photon uncertainty
relations. Our scheme results in the expressions for probability
density that are identical with that of [26], but by accepting
the standard definitions of the statistical analysis approach the
nonrelativistic Heisenberg bound �q�p = �/2. It is remains
to be seen how close it is possible to reach this limit by
optimizing the state ψ .

The one-particle picture has a limited validity. Particles
cannot be confined into a volume with a typical dimension
smaller than

3
√

� >
1

〈E〉 , (52)

where 〈E〉 is the particle’s expected energy [6]. The very con-
cept of particles takes a somewhat “nebulous character” [35]
in field theories in a curved space-time or for accelerated
observers. A simple example of when this construction is not
applicable is the Unruh effect [36]. An accelerated detector
that moves in the Minkowski vacuum responds as an inertial
detector would if immersed into a thermal bath of temperature

T = a/(2πkB), (53)

where kB is Boltzmann’s constant and a the proper acceler-
ation. However, the expectation of the renormalized stress-
energy tensor is zero in both inertial and accelerated frames.

In more complicated settings the question of positivity
becomes acute. Classical energy density is always positive,
which is to say that the stress-energy tensor for the scalar
field satisfies the weak energy condition (WEC) Tμνu

μuν � 0,
where uμ is a causal vector. In quantum field theory [1,2]

it is impossible. There are states |ϒ〉 that violate WEC,
namely, 〈ϒ |Tμνu

μuν |ϒ〉 � 0 holds [47], where Tμν now is a
renormalized stress energy operator. For example, squeezed
states of electromagnetic [3] or scalar field have negative
energy densities [48–50]. It is known that even if WEC is
violated the average WEC still holds when the averaging
is done over the world line of a geodesic observer (inertial
observer in the Minkowski space-time) [51]. There are also
more stringent quantum inequalities that limit the amount
of the WEC violation. Instead of an infinite time interval
they deal with a sampling that is described by a function
with a typical width t0 [50]. The behavior of fields subjected
to boundary conditions is more complicated, but similar
constraints exist also in these cases [50]. To meet our ends we
need the analogous inequalities to hold for a spatial averaging.
This is, however, impossible. A class of quantum states was
constructed for a massless, minimally coupled free scalar
field (superposition of the vacuum and multimode two-particle
states). These states can produce an arbitrarily large amount of
negative energy in a given finite region of space at a fixed
time [52]. In this and similar cases, the spatial averaging
over part of a constant time surface does not produce a
positive quantity. An interesting line of research is to trace
the emergence of well-defined particles in these complicated
situations.
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APPENDIX A: REAL SCALAR FIELD

We adapt the following normalization convention for the
sates and operators:

|p〉 = α†
p|0〉, [αq,α

†
p] = (2π )3(2Ep)δ(3)(q − p), (A1)

so the scalar field is written as

φ̂ =
∫

dμ(p)(αpe
−ip·x + α†

pe
ip·x). (A2)

For a one-particle state of Eq. (10), its wave function in
the configuration space is defined by a generalized Fourier
transform as

ψ(x,t) =
∫

dμ(p)ψ(p)ei(p·x−Et). (A3)

The normal-ordered energy density is

T̂00(t,x) = ::H(t,x):: = 1

2

∫
dμ(p)dμ(q)(EpEq + p · q + m2)

× (α†
pαqe

i(p−q)·x + α†
qαpe

−i(p−q)·x) + · · ·

=
∫

dμ(p)dμ(q)(EpEq + p · q + m2)α†
pαqe

i(p−q)·x,

(A4)
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where . . . terms have zero matrix elements between the states
with the same definite number of particles. Similarly, the
normal-ordered momentum density is

T̂0k(t,x) = ::
∂φ̂

∂x0

∂φ̂

∂xk
:: =

∫
dμ(p)dμ(q)Epqk

× (α†
pαqe

i(p−q)·x + α†
qαpe

−i(p−q)·x) + · · · . (A5)

The expectation values are

〈	|T̂00|	〉 =
∫

dμ(k)dμ(k′)(EkEk′ + k · k′ + m2)

×ψ∗(k)ψ(k′)ei(k−k′)·x

= |∇ψ(t,x)|2 + |∂tψ(t,x)|2 + m2|ψ(t,x)|2 (A6)

and

〈	|T̂0j |	〉 = −2
∫

dμ(k)dμ(k′)Ekkjψ
∗(k)ψ(k′)ei(k−k′)·x,

(A7)

respectively. Hence the Hamiltonian and its inverse square root
are given by

Ĥ =
∫

T̂00dV =
∫

dμ(p)Epα
†
pαp,

(A8)

Ĥ−1/2 =
∫

dμ(p),
1√
Ep

α†
pαp,

respectively, and the POVM element �̂ is given by

�̂(t,x) = Ĥ−1/2T̂00(t,x)Ĥ−1/2 =
∫

dμ(p)dμ(q)
1√

EpEq

× (EpEq + p · q + m2)α†
pαqe

i(p−q)·x . (A9)

This results in the following probability density:

p(t,x) = 〈	|�̂(t,x)|	〉 =
∫

dμ(k)dμ(k′)
1√

EkEk′

× (EkEk′ + k · k′ + m2)ψ∗(k)ψ(k′)ei(k−k′)·x

= |∇ψ̃(t,x)|2 + |∂t ψ̃(t,x)|2 + m2|ψ̃(t,x)|2. (A10)

Similarly, the probability current is

ĵl(t,x) = Ĥ−1/2T̂0l(t,x)Ĥ−1/2. (A11)

Introducing

f (p,q) := 1

4E
3/2
p E

3/2
q

(EpEq + p · q + m2), (A12)

we express the expectation of x at time t = 0 as

〈x(0)〉 = −i

∫
d3x

d3p
(2π )3

d3q
(2π )3

ei(p−q)·x∇p

× [f (p,q)ψ∗(p)ψ(q)] (A13)

and the second moment as

〈
x2

l (0)
〉 =

∫
d3x

d3p
(2π )3

d3q
(2π )3

ei(p−q)·x∂pl
∂ql

× [f (p,q)ψ∗(p)ψ(q)]. (A14)

These may be more conveniently expressed as

〈x〉 = i

∫
d3p

(2π )3

(
p

4E3
p
|ψ(p)|2 − 1

2Ep
ψ(p)∇pψ(p)∗

)

(A15)

and

〈
x2

l

〉 =
∫

d3p
(2π )3

(
2E2

p − p2
l

8E5
p

|ψ(p)|2

− pl

2E3
p
∂pl

|ψ(p)|2 + 1

2Ep
|∂pl

ψ(p)|2
)

. (A16)

For t �= 0 we make the substitution

i
∂f

∂pk

→
(

−∂Ep

∂pk

t + i
∂

∂pk

)
f, (A17)

hence, e.g.,

〈x(t)〉 = −i

∫
d3x

d3p
(2π )3

d3q
(2π )3

ei(p−q)·x∇p[f (p,q)ψ∗(p)ψ(q)]

+ t

∫
d3p

(2π )3

p
Ep

f (p,p)ψ∗(p)ψ(p)

= 〈x(t = 0)〉 + 〈v〉t. (A18)

To obtain the nonrelativistic identification of a wave
function we expand Eq. (A10) in powers of p/m, and find
that the leading term agrees with the following nonrelativistic
value:

lim
|p|�m

ψ(p)/
√

2m = ψ(p)nonrel. (A19)

APPENDIX B: ELECTROMAGNETIC FIELD

In the section we restore the factors � and c. The classical
gauge-invariant Lagrangian is

L = 1
4FμνF

μν, (B1)

where Fμν = ∂μAν − ∂νAμ is the electromagnetic tensor. We
quantize the canonical variables A (configuration variables)
and −E (momenta) in the radiation gauge. The creation and
annihilation operators satisfy

[αpλ,α
†
qλ′ ] = (2π )3(2Ep)δλλ′δ(3)(q − p). (B2)

Hence

Â(t,x) = c√
�

∫
dμ(p)

∑
λ=±1

(
ελ

pαpλe
−ip·x/� + ελ∗

p α
†
pλe

ip·x/�
)
,

(B3)

dμ(p) = 1

(2π )3

d3p
(2Ep)

,

and the field commutation relations are

[Âm(t,x),Ên(t,y)] = −i�cδmnδ(3)(x − y),
(B4)

[B̂k(t,x),Êl(t,y)] = i�c εklm∂xmδ(3)(x − y),

where εklm is the totally antisymmetric symbol.
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Energy density takes the form

T̂00 = 1

2
:: F̂† ·F̂ :: = 2

�3

∫
dμ(p)dμ(q)EpEq ε∗

p ·εq

× (α†
p+αq+ei(p−q)·x/� + α

†
q−αp−e−i(p−q)·x/�), (B5)

where the terms that annihilate states with a fixed number of
particles are dropped.

Similarly, momentum density is

T̂0k/c = 1

2ic
:: F̂†×F̂ :: = 2

�3c

∫
dμ(p)dμ(q)EpEq ε∗

p

× εq(α†
p+αq+ei(p−q)·x/� + α

†
q−αp−e−i(p−q)·x/�

)
(B6)

and the Hamiltonian is

Ĥ =
∫

dμ(p)Ep

∑
λ=±1

α
†
pλαpλ. (B7)

The probability density p(t,x) = 〈	�̂(t,x)|	〉 equals

p(t,x) = 2

�3

∫
dμ(k)dμ(k′)

√
EkEk′ [ε∗

k · εk′ψ∗
+(k)ψ+(k′)

+ εk · ε∗
k′ψ

∗
−(k)ψ−(k′)]ei(k−k′)·x/�. (B8)

Similarly, the probability current is given by

ĵm(t,x) = 〈	|Ĥ−1/2T̂0m(t,x)Ĥ−1/2|	〉/c. (B9)
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