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Optimal extraction of information from two spins
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We revisit the issue of extracting information from parallel and antiparallel spins, as initiated by Gisin and
Popescu [Phys. Rev. Lett. 83, 432 (1999)], from the viewpoint of parameter estimation. By comparing two
fundamental figures of merit based on fidelity and quantum Fisher information for assessing information quality,
we demonstrate that these criteria yield different strategies for optimally extracting spin information. A surprising
observation is that while for a single spin, as well as for parallel spins, quantum Fisher information cannot be fully
extracted by any uniform measurement, this is not the case for antiparallel spins. A simple uniform measurement
fully extracting quantum Fisher information in antiparallel spins is identified. This reveals a significant feature
of antiparallel spins from the perspective of Fisher information and provides an alternative illustration of the idea
that antiparallel spins carry more information than parallel spins.
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I. INTRODUCTION

Information has to be encoded in physical systems and
can be extracted via measurements. With the emergence of
quantum information theory, many quantum characteristics for
information processing differing from the classical scenario
have been revealed [1–5]. A remarkable result in this line is
that antiparallel spins may carry more information than parallel
spins when the information quality is assessed by fidelity
[6–12]. In this work, we will address this information ex-
traction issue from an alternative viewpoint by use of quantum
Fisher information.

Consider a spin-1/2 particle, whose state

ρ = 1

2
(1 + �n�σ ) = 1

2

(
1 + n3 n1 − in2

n1 + in2 1 − n3

)

in the Bloch sphere representation takes the vector form
�n = (n1,n2,n3) ∈ R3. Here σj are the Pauli spin operators.
It is well known that |�n|2 := ∑

j n2
j < 1 corresponds to

mixed states, while |�n|2 = 1 corresponds to pure states,
and in this latter case, we may parametrize the direction
vector �n as �n = (sin θ cos φ, sin θ sin φ, cos θ ),θ ∈ [0,π ),φ ∈
[0,2π ). The corresponding pure state is ρ = |�n〉〈�n|. The
flipped direction of �n is −�n, and the corresponding flipped
(orthogonal) spin state is |−�n〉. Spins are natural quantum
objects for encoding direction information, and for a single
spin, it makes no essential difference for using |�n〉 or |−�n〉 for
many information tasks.

Now consider a two-spin system. It is naive to regard,
at least from a mathematical point of view, that the parallel
spins |�n,�n〉 and the antiparallel spins |�n, − �n〉 share similar
properties in quantum information tasks. However, since there
is no universal spin-flip operation [7,13,14], the parallel spins
and antiparallel spins differ substantially from the physical
point of view. Then the natural problem arises: Which is better
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for some particular information task? This line of study was
initiated by Gisin and Popescu [7]. Following their seminal
work, we will investigate this issue in terms of quantum
Fisher information and compare it with the Gisin-Popescu
approach based on fidelity. We highlight several interesting
features: First, we show that the optimal strategy (in terms
of maximum fidelity) for extracting information in parallel
spins is not optimal when the quality is evaluated by use of
quantum Fisher information. Second, we provide a simple
example to illustrate the superiority of antiparallel spins over
parallel spins in carrying direction information when the
quality is quantified by use of quantum Fisher information, and
an optimal measurement is identified. This corroborates the
results of Gisin and Massar [7]. Third, we show that although
quantum Fisher information encoded in a general single spin
cannot be fully extracted by any uniform measurement (in
the sense that the measurement does not depend on the state
parameters), quantum Fisher information in antiparallel spins
can be fully extracted by a uniform measurement.

The work is organized as follows. In Sec. II, we review
and elucidate the remarkable results of Gisin and Popescu [7],
which show the superiority of antiparallel spins over parallel
spins in carrying information within the fidelity framework. In
Sec. III, we show that the optimal strategy (in terms of fidelity)
for extracting information from parallel spins is not optimal in
extracting Fisher information and illustrate the advantage of
antiparallel spins in encoding direction information when the
quality is quantified by quantum Fisher information. Finally,
we conclude with a discussion in Sec. IV.

II. FIDELITY

In this section, to motivate our approach and to supply some
missing phase details in Ref. [7], we review and recapitulate
the seminal results in Refs. [7,8] for the convenience of
comparison with the approach based on quantum Fisher
information in Sec. III. For information extraction strategies,
we restrict ourselves to von Neumann measurements.
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Suppose that Alice wants to communicate to Bob
the parameter information about the space direction �n =
(sin θ cos φ, sin θ sin φ, cos θ ) which is encoded in the pure
spin state ρ = |�n〉〈�n| = 1

2 (1 + �n�σ ). If only one spin is avail-
able, then by the symmetric characteristics of the problem
and under the condition of no prior knowledge, the optimal
strategy for Bob is to measure the spin along any direction with
a von Neumann measurement {| �mk〉 : k = 0,1}. If the result
corresponds to k occurs, whose probability is pk = |〈�n| �mk〉|2,
Bob then guesses the direction to be �mk . The fidelity for such a
method is |〈�n| �mk〉|2 = 1+�n· �mk

2 , and, consequently, the optimal
mean fidelity is [7]

F̄ =
∫ 1∑

k=0

pk

1 + �n · �mk

2
d� = 2

3
,

where d� = sin θ
4π

dθdφ is the uniform probability measure on
the unit sphere parameterized by θ ∈ [0,π ),φ ∈ [0,2π ). This
result is quite simple and straightforward.

Some interesting and unusual phenomena manifest when
two spins, rather than a single spin, are used to encode the
information. Now Alice has two natural and simple ways to
encode the information, i.e., by sending two parallel spins
|�n,�n〉, both polarized along �n, or by sending two antiparallel
spins |�n, −�n〉, with the first spin polarized along �n but
the second polarized in the opposite direction. To simplify
notation, let us put

ρ‖ = |�n,�n〉〈�n,�n|, ρ⊥ = |�n, −�n〉〈�n, −�n|,
which are the corresponding density matrices.

In the framework of maximizing fidelity between the
original states and the guessed states after measurements,
it was shown by Massar and Popescu that the optimal
strategy for extracting information from ρ‖ = |�n,�n〉〈�n,�n| is
via the following von Neumann measurement � = {|�j 〉 :
j = 0,1,2,3} with [6,7]

|�j 〉 =
√

3

2
|�nj ,�nj 〉 + 1

2
|	−〉, (1)

where |	−〉 = (|01〉 − |10〉)/√2 denotes the singlet state, and

|�n0〉 =
(

1
0

)
, |�n1〉 = i√

3

(
1√
2

)
,

|�n2〉 = i√
3

(
1√

2ei2π/3

)
, |�n3〉 = i√

3

( −1√
2eiπ/3

)
.

The corresponding Bloch vectors �n0 = (0,0,1), �n1 =
1
3 (

√
8,0, − 1), �n2 = − 1

3 (
√

2, − √
6,1), �n3 = − 1

3 (
√

2,
√

6,1)
actually point to the four vertices of a tetrahedron. Note that
the phases of |�nj 〉 are so chosen such that |�j 〉 defined by
Eq. (1) are mutually orthogonal.

Bob’s task is to identify the direction information �n as
well as possible. When he performs the measurement �,
and if the measurement result corresponding to j occurs,
which happens with probability uj = |〈�j |�n,�n〉|2, then he
guesses the direction �nj . The postmeasurement average state is
�(ρ‖) = ∑3

j=0 uj |�j 〉〈�j |. The mean fidelity after perform-
ing the measurement � on the parallel spin ρ‖ = |�n,�n〉〈�n,�n|

is [7]

F̄ (�(ρ‖)) =
∫ 3∑

j=0

uj

1 + �n · �nj

2
d� = 3

4
,

which has been proved to be the optimal fidelity [8].
Next, consider encoding the direction information �n via

the antiparallel spins ρ⊥ = |�n, −�n〉〈�n, −�n|, and Bob’s task
is still to extract as much of the direction information �n
as possible from ρ⊥ = |�n, −�n〉〈�n, −�n|. How much fidelity
can he achieve? Can he surpass the above optimal fidelity
3/4 for the parallel spins? Gisin and Popescu constructed a
strategy which indeed outperforms the optimal measurement
for parallel spins [7]. Before reviewing their results, let us first
proceed in a direct and simple way. Analogously to Eq. (1),
it seems natural to consider an alternative von Neumann
measurement 
 = {|
j 〉 : j = 0,1,2,3} with

|
j 〉 =
√

3

2
|�j 〉 + 1

2
|	−〉, (2)

where |�j 〉 = (|�nj , −�nj 〉 + | −�nj ,�nj 〉)/
√

2, and |�nj 〉 are as
the above, while

|−�n0〉 =
(

0
1

)
, |−�n1〉 = i√

3

(√
2

−1

)
,

|−�n2〉 = i√
3

(√
2e−2iπ/3

−1

)
,

|−�n3〉 = i√
3

(√
2e−iπ/3

1

)
,

which guarantee that |
j 〉 defined by Eq. (2) are mutually
orthogonal.

The above measurement 
 actually coincides with the
measurement � = {θj } defined by Eq. (4) in Ref. [7], which is
shown to be optimal for extracting information from antipar-
allel spins within the fidelity framework [8]. To establish that

 = �, first noting that 1√

2
(|�nj , −�nj 〉 − | −�nj ,�nj 〉) = |	−〉

for any j (which can be directly checked), it follows that

|
j 〉 =
√

3

2
|�j 〉 + 1

2
|	−〉

=
√

3

2
√

2
(|�nj , − �nj 〉 + |−�nj ,�nj 〉)

+ 1

2
√

2
(|�nj , − �nj 〉 − |−�nj ,�nj 〉)

=
√

3 + 1

2
√

2
|�nj , − �nj 〉 +

√
3 − 1

2
√

2
|−�nj ,�nj 〉.

On the other hand, the measurement in Eq. (4) of Ref. [7] is
given by

θj = α|�nj , −�nj 〉 − β
∑
k 	=j

|�nk, −�nk〉,

where α = 13
6
√

6−2
√

2
,β = 5−2

√
3

6
√

6−2
√

2
. By direct calculation, we

have

1

2

3∑
k=0

|�nk, −�nk〉 = |�nj , −�nj 〉 − |−�nj ,�nj 〉
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for j = 0,1,2,3. It then follows, after some direct algebraic
manipulations, that

θj = α|�nj , −�nj 〉 − β
∑
k 	=j

|�nk, −�nk〉

= (α − β)|�nj , −�nj 〉 + 2β|−�nj ,�nj 〉

=
√

3 + 1

2
√

2
|�nj , −�nj 〉 +

√
3 − 1

2
√

2
|−�nj ,�nj 〉,

which coincides with |
j 〉.
The postmeasurement average state after the measurement


 on ρ⊥ is 
(ρ⊥) = ∑3
j=0 tj |
j 〉〈
j | with tj = |〈
j |�n, −

�n〉|2. The mean fidelity can be evaluated as [7,8]

F̄ (
(ρ⊥)) =
∫ 3∑

j=0

tj
1 + �n · �nj

2
d� = 3 + √

3

6

 0.7886,

which is larger than the optimal mean fidelity F̄ (�(ρ‖)) =
0.75 for parallel spins. This means that encoding the direction
information in antiparallel spins will yield larger extractable
information as long as the quality is quantified by fidelity.

III. QUANTUM FISHER INFORMATION

Now we turn to quantum Fisher information and compare
different ways to encode the direction information by parallel
and antiparallel spins.

Fisher information arises from statistics [15], quantifies
the estimation precision of parameters, as shown by the
Cramér-Rao bounds, and determines the asymptotically op-
timal rate at which neighboring states can be distinguished
based on measurements. Its quantum extensions are playing
an increasingly important and ubiquitous role in quantum
detection and estimation theory [16–30] and, in particular in
quantum metrology [31,32].

Recall that quantum Fisher information of parameterized
quantum states ρ = ργ (we suppress the subscript γ for latter
convenience) is defined as [17–19]

Qγ (ρ) = trρL2
γ ,

with the symmetric logarithmic derivative Lγ determined by
∂
∂γ

ρ = 1
2 (Lγ ρ + ρLγ ), and can be evaluated as [20,27]

Qγ (ρ) =
∑
jk

2

λj + λk

∣∣∣∣〈j | ∂

∂γ
ρ|k〉

∣∣∣∣
2

(3)

by means of the spectral decomposition ρ = ∑
j λj |j 〉〈j |.

Quantum Fisher information sets a fundamental bound to the
estimation precision via the celebrated Cramér-Rao inequality.
In this work, we will employ quantum Fisher information as a
basic concept in information extraction.

If M = {|mj 〉} is a von Neumann measurement independent
of the parameter, then quantum Fisher information of the post-
measurement average state M(ρ) = ∑

j pj (γ )|mj 〉〈mj | turns
out to be the measurement-induced Fisher information [28],

Qγ (M(ρ)) =
∑

j

pj (γ )

(
∂

∂γ
lnpj (γ )

)2

,

which is the classical Fisher information of the measurement-
induced probability distribution pj (γ ) = 〈mj |ρ|mj 〉.

For the single spin state |�n〉〈�n| (recall that �n =
(sin θ cos φ, sin θ sin φ, cos θ )), it can be easily evaluated that
the quantum Fisher information of this original state with
respect to the parameters θ and φ is, respectively,

Qθ (|�n〉〈�n|) = 1, Qφ(|�n〉〈�n|) = sin2θ.

If the von Neumann measurement M = {| �m〉,| − �m〉} with
�m = (sin θ0 cos φ0, sin θ0 sin φ0, cos θ0) is performed on |�n〉,
then the quantum Fisher information of the postmeasurement
state can be evaluated as

Qθ (M(|�n〉〈�n|)) = 1 − Asin2θ0sin2(φ − φ0),

Qφ(M(|�n〉〈�n|)) = Asin2θ0sin2(φ − φ0)sin2θ,

where 1/A = 1 − [cosθcosθ0 + cos(φ − φ0)sinθsinθ0]2.

From the above expressions, we readily see that if θ0 = 0,
then Qθ (M(|�n〉〈�n|)) = 1 for any φ and θ, i.e., such a
measurement extracts the full quantum Fisher information
about the parameter θ . However, Qφ(M(|�n〉〈�n|)) = 0 for such
a measurement, and we cannot gain any information about the
phase parameter φ. Alternatively, if θ0 = π

2 and φ0 = φ − π
2 ,

then Qφ(M(|�n〉〈�n|)) = sin2 θ but Qθ (M(|�n〉〈�n|)) = 0. These
relations are apparently manifestations of the uncertainty
principle. In general, we have the following Fisher information
conservation relation:

Qθ (M(|�n〉〈�n|)) + 1

sin2θ
Qφ(M(|�n〉〈�n|)) = 1, (4)

which in turn implies a simple uncertainty relation,

Qθ (M(|�n〉〈�n|)) + Qφ(M(|�n〉〈�n|)) � 1. (5)

Equation (4) is special to the current parametrization of spin
states and is reminiscent of the Fisher information conservation
relation for the Husimi distribution [33]. Inequality (5) is also
special to the present setup and differs markedly from the
general Cramér-Rao inequality.

For the flipped spin |−�n〉〈−�n|, we have similar results,

Qθ (|−�n〉〈−�n|) = 1, Qφ(|−�n〉〈−�n|) = sin2θ,

for quantum Fisher information before measurements, and

Qθ (M(|−�n〉〈−�n|)) = 1 − Asin2θ0sin2(φ − φ0),

Qφ(M(|−�n〉〈−�n|)) = Asin2θ0sin2(φ − φ0)sin2θ,

after the measurement M.

After presenting some aspects for one spin, we move to
two spins. In the following two subsections, we will study
quantum Fisher information for the postmeasurement average
states after performing the measurements � and 
 on the
parallel and antiparallel spins (rather than a single spin) and
will reveal new features with respect to information extraction
in terms of quantum Fisher information.

A. Parallel spins

For parallel spins ρ‖ = |�n,�n〉〈�n,�n|, the original quantum
Fisher information can be readily evaluated, via Eq. (3), as

Qθ (ρ‖) = 2, Qφ(ρ‖) = 2sin2θ. (6)
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FIG. 1. (Color online) Quantum Fisher information Qθ (
(ρ‖)) and Qφ(
(ρ‖)) as functions of θ ∈ [0,π ),φ ∈ [0,2π ). This should be
compared with the quantum Fisher information Qθ (�(ρ‖)) = 1 and Qφ(�(ρ‖)) = sin2θ. Their average values (with respect to the uniform
probability measure on the Bloch sphere) have the following relations: Q̄θ (�(ρ‖)) = 1 < Q̄θ (
(ρ‖)) 
 1.1357, Q̄φ(�(ρ‖)) = 2

3 = Q̄φ(
(ρ‖)).
The measurement 
 performs better than the measurement � in extracting Fisher information from parallel spins.

Now consider how much information can be extracted
from parallel spins. After the fidelity-optimal measurement
� = {|�j 〉}, the postmeasurement average state turns out
to be �(ρ‖) = ∑3

j=0 uj |�j 〉〈�j |,uj = |〈�j |�n,�n〉|2, with the
quantum Fisher information (see the Appendix for detailed
calculations) as follows:

Qθ (�(ρ‖)) = 1, Qφ(�(ρ‖)) = sin2 θ.

Both are half of the amounts for the original parallel spins in
view of Eq. (6). Thus the measurement � destroys half of the
original quantum Fisher information.

However, after performing the measurement 
 = {|
j 〉}
defined by Eq. (2) on the parallel spins, the postmea-
surement average state is 
(ρ‖) = ∑3

j=0 vj |
j 〉〈
j |, vj =
|〈
j |�n,�n〉|2, whose quantum Fisher information Qθ (
(ρ‖))
and Qφ(
(ρ‖)) can be evaluated straightforwardly by use
of Eq. (3). Since the expressions are rather complicated and
lengthy, we content ourselves by depicting their graphs in
Fig. 1, which illustrate clearly their characteristics. This should
be compared with Qθ (�(ρ‖)) = 1 and Qφ(�(ρ‖)) = sin2θ.

The maximum and minimum values for Qθ (
(ρ‖)) are 2
and 0.25, respectively, when θ and φ vary: Qθ (
(ρ‖)) = 2
for θ = arcsin(

√
3/3) = 0.6155, φ = π ; Qθ (
(ρ‖)) = 0.25

for θ = arcsin(2
√

2/3) = 1.2310, φ = π. The maximum and
minimum values for Qφ(
(ρ‖)) are 1.5556 and 0, respectively:
Qφ(
(ρ‖)) = 1.5556 for θ = arcsin(2

√
2/3) = 1.2310, φ =

π ; Qφ(
(ρ‖)) = 0 for θ = 0 and any φ. We see that
Qθ (
(ρ‖)) > Qθ (�(ρ‖)), at least for some θ . Moreover, when
the direction |�n〉 is randomly and uniformly distributed over
the Bloch sphere, we calculate the mean quantum Fisher
information as follows:

Q̄θ (�(ρ‖)) =
∫

Qθ (�(ρ‖))d� = 1,

Q̄θ (
(ρ‖)) =
∫

Qθ (
(ρ‖))d� 
 1.1357,

Q̄φ(�(ρ‖)) =
∫

Qφ(�(ρ‖))d� = 2

3
,

Q̄φ(
(ρ‖)) =
∫

Qφ(
(ρ‖))d� = 2

3
.

Accordingly, on average the measurement 
 performs bet-
ter than � for estimating the parameter θ , although they
are equally good for estimating the phase parameter φ.
This stands in sharp contrast to the Gisin-Popescu result,
which states that the measurement � is optimal (and thus
is better than the measurement 
) in extracting fidelity
information.

B. Antiparallel spins

For the antiparallel spins ρ⊥ = |�n, −�n〉〈�n, −�n|, quantum
Fisher information of the original states can be evaluated, via
Eq. (3), as

Qθ (ρ⊥) = 2, Qφ(ρ⊥) = 2sin2θ. (7)

To investigate how much information can be extracted
form the antiparallel spins, consider the measurement � and

 on the antiparallel spins. The postmeasurement average
states are �(ρ⊥) = ∑3

j=0 sj |�j 〉〈�j | with sj = |〈�j |�n, −
�n〉|2 and 
(ρ⊥) = ∑3

j=0 tj |
j 〉〈
j | with tj = |〈
j |�n, −�n〉|2,
respectively.

Quantum Fisher information Qθ (�(ρ⊥)) and Qφ(�(ρ⊥))
can be evaluated straightforwardly by use of Eq. (3). We
omit the lengthy expressions and depict their graphs in
Fig. 2, which display their basic features. The maximum and
minimum values for Qθ (�(ρ⊥)) are 2 and 0, respectively,
when θ and φ vary: Qθ (�(ρ⊥)) = 2 for θ = 2.1860, φ = π ;
Qθ (�(ρ⊥)) = 0 for θ = arcsin(

√
6/3) = 0.9553, φ = 0. The

maximum and minimum values for Qφ(�(ρ⊥)) are 1.5793
and 0, respectively: Qφ(�(ρ⊥)) = 1.5793 for θ = 1.5269,
φ = 0.7861 or 2π − 0.7861 = 5.4971; Qφ(�(ρ⊥)) = 0 for
θ = 0 and any φ.
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FIG. 2. (Color online) Quantum Fisher information Qθ (�(ρ⊥)) and Qφ(�(ρ⊥)) as functions of θ ∈ [0,π ),φ ∈ [0,2π ). This should be
compared with the quantum Fisher information Qθ (
(ρ⊥)) = 2 and Qφ(
(ρ⊥)) = 2sin2θ. Their average values (with respect to the uniform
probability measure on the Bloch sphere) have the following relations: Q̄θ (�(ρ⊥)) 
 0.9025 < Q̄θ (
(ρ⊥)) = 2,Q̄φ(�(ρ⊥)) 
 0.6026 <

Q̄φ(
(ρ⊥)) = 4
3 . The measurement 
 performs better than the measurement � in extracting Fisher information from antiparallel spins.

Quantum Fisher information of 
(ρ⊥) can be evaluated as
(see the Appendix)

Qθ (
(ρ⊥)) = 2, Qφ(
(ρ⊥)) = 2 sin2 θ,

which, surprisingly, turns out to be equal to the original
quantum Fisher information, which are maximally possible
in view of the Braunstein-Caves relation [20]. Thus 


is an optimal measurement for extracting quantum Fisher
information in antiparallel spins, and the upper bounds for
both the parameters θ and φ are attained simultaneously.

In sharp contrast, there is no measurements (even enlarging
the von Neumann measurements to POVMs) which can extract
the full quantum Fisher information about the parameters θ

and φ simultaneously in the parallel spins case, and thus
the quantum Fisher information for the parallel spins is not
attainable.

To establish this, suppose that, on the contrary, there
is a POVM E = {Ej } (i.e., Ej are nonnegative operators
satisfying

∑
j Ej = 1) which extracts the full quantum Fisher

information about both the parameters θ and φ, then by the
results in Refs. [25,26], it holds that

E
1
2
j Lθρ

1
2
|| = aj,θ,φE

1
2
j ρ

1
2
|| , (8)

E
1
2
j Lφρ

1
2
|| = bj,θ,φE

1
2
j ρ

1
2
|| . (9)

Here aj,θ,φ and bj,θ,φ are real numbers depending on j,θ and
φ, while Lθ and Lφ are the symmetric logarithm derivatives of
ρ|| with respect to the parameters θ and φ, respectively. From
Eqs. (8) and (9), we have

trρ||LθEjLφ = aj,θ,φbj,θ,φ trEjρ||.

Noting
∑

j Ej = 1, we obtain

trρ||LθLφ =
∑

j

aj,θ,φbj,θ,φ trEjρ||.

Since ρ|| and Ej are non-negative operators, it follows that
trEjρ|| is a real number. We conclude that a necessary
condition for the existence of an optimal measurement si-
multaneously extracting the full quantum Fisher information
of both the parameters θ and φ is that trρ||LθLφ must be
real for any θ and φ. This term (rather than its real part, as
is usually taken) may be defined as an off-diagonal element
of the quantum Fisher information matrix and quantifies
the interference associated with the two parameters from an
estimation perspective.

Now by direct calculation, we have

trρ||LθLφ = −i sin θ, (10)

which is always imaginary except for θ = 0. Consequently,
a measurement (independent of the parameters) that can
simultaneously extract the full quantum Fisher information
of both the parameters θ and φ in the parallel spins case does
not exist, that is, a measurement whereby the measurement-
induced Fisher information coincides with the quantum Fisher
information does not exist. The purely imaginary nature of the
term in Eq. (10) may be interpreted as an interference obstacle
to the full extraction of the quantum Fisher information. In
particular, neither � nor 
 can extract the full quantum Fisher
information in the parallel spins.

In contrast, the antiparallel spins satisfy the necessary
condition, since trρ⊥LθLφ = 0 indeed is real (here Lθ and Lφ

are the symmetric logarithmic derivatives of ρ⊥ with respect
to the parameters θ and φ, respectively). This is consistent
with the fact that there exists an optimal measurement (i.e.,
the measurement 
) that extracts the full quantum Fisher
information in the antiparallel spins.

To gain an overall understanding and to make a fair com-
parison, we evaluate the mean quantum Fisher information as

Q̄θ (�(ρ⊥)) =
∫

Qθ (�(ρ⊥))d� 
 0.9025,

Q̄θ (
(ρ⊥)) =
∫

Qθ (
(ρ⊥))d� = 2,
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Q̄φ(�(ρ⊥)) =
∫

Qφ(�(ρ⊥))d� 
 0.6026,

Q̄φ(
(ρ⊥)) =
∫

Qφ(
(ρ⊥))d� = 4

3
.

Finally, we summarize our main results in a table and come
to the following observations.

�(ρ‖) 
(ρ‖) �(ρ⊥) 
(ρ⊥)

F̄ 3
4

1
2

1
2 0.7886

Q̄θ 1 1.1357 0.9025 2
Q̄φ

2
3

2
3 0.6026 4

3

(a) For parallel spins ρ‖, although the measurement �

extracts more fidelity information than the measurement 
,
F̄ (�(ρ‖)) = 3/4 > F̄ (
(ρ‖)) = 1/2, the contrary is true for
the criteria based on quantum Fisher information since the
measurement 
 extracts more quantum Fisher information
about the parameter θ than the measurement �: Q̄θ (�(ρ‖)) =
1 < Q̄θ (
(ρ‖)) 
 1.1357. However, they extract the same
amount of quantum Fisher information about the parameter
φ: Q̄φ(�(ρ‖)) = Q̄φ(
(ρ‖)) = 2/3.

(b) For antiparallel spins ρ⊥, the measurement 
 extracts
both more fidelity and more quantum Fisher information than
�. This means that antiparallel spins carry more information
than parallel spins for both the criteria based on fidelity and
on quantum Fisher information.

(c) There is a simple uniform measurement 
 which fully
extracts quantum Fisher information encoded in antiparallel
spins. This result is quite surprising since this is not the
case for parallel spins. Moreover, for a single spin, there
is no measurement which can fully extract quantum Fisher
information encoded in the original single spin, and quantum
Fisher information encoded in antiparallel spins is just twice as
quantum Fisher information of a single spin. The underlying
reason may lie in the special structure of antiparallel spins
and the entanglement in the measurement elements (in fact,
each |
j 〉 is an entangled state) since the antiparallel spins are
product states, and any product measurement on antiparallel
spins reduces the overall quantum Fisher information in
general. This instance provides a significant demonstration
of the roles of antiparallel spins and entanglement in encoding
and decoding information.

IV. DISCUSSION

We have addressed the issues of encoding and decoding
direction information in parallel and antiparallel spins. It turns
out that the optimal strategy for extracting information depends
on the criteria. We have employed two natural and widely used
figures of merits in quantifying the quality of information
extraction: one is fidelity and the other is quantum Fisher
information. We have shown that for parallel spins, the optimal
measurement for fidelity is not optimal for quantum Fisher
information. Moreover, the antiparallel spins have advantages
in carrying direction information in terms of both the criteria

based on fidelity and on quantum Fisher information. We
have identified an optimal von Neumann measurement for
extracting quantum Fisher information in antiparallel spins.
Our results reveal new aspects of information extraction and
complement the pioneering results of Gisin and Popescu [7].
We remark that in the present setup, if we employ the Fisher
information matrix, the comparison analysis and results are
similar, and we omit the details, which are straightforward
calculations.

Some interesting problems remain to be investigated. For
example, for general multiple spins, what are the optimal
strategies for extracting quantum Fisher information? What
is the situation if we allow prior knowledge and more
general POVMs rather than von Neumann measurements?
How can we design general procedures to determine optimal
measurements which achieve a certain trade-off of quantum
Fisher information for different parameters? How can we
quantify the interplay between Fisher-information uncertainty
relations and information extraction? How will these results
guide future and practical measurement strategies? It will also
be interesting to explore the relations between information
extraction and quantum Fisher information broadcasting and
cloning [29,30].
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APPENDIX

Here we present some detailed calculations of the quantum
Fisher information.

First, for computational convenience, we express the
parallel and antiparallel spins in the standard base
{|00〉,|01〉,|10〉,|11〉} as (up to global phases)

|�n,�n〉 =

⎛
⎜⎜⎜⎝

cos2 θ
2

1
2eiφsinθ

1
2eiφsinθ

e2iφsin2 θ
2

⎞
⎟⎟⎟⎠ = 1

2
eiφsinθ

⎛
⎜⎜⎜⎝

1
t
e−iφ

1

1

teiφ

⎞
⎟⎟⎟⎠ ,

|�n, −�n〉 =

⎛
⎜⎜⎜⎝

− 1
2 sinθ

eiφcos2 θ
2

−eiφsin2 θ
2

1
2e2iφsinθ

⎞
⎟⎟⎟⎠ = 1

2
eiφsinθ

⎛
⎜⎜⎜⎝

−e−iφ

1
t

−t

eiφ

⎞
⎟⎟⎟⎠ ,

where t = tg θ
2 .

Next, we write down explicitly the measurement vectors
for both � and 
. The von Neumann measurement � =
{|�j 〉} with mutually orthogonal |�j 〉 =

√
3

2 | �nj , �nj 〉 + 1
2 |	−〉
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are explicitly given by (in the standard base)

|�0〉 = 1

2
√

2

⎛
⎜⎜⎜⎝

√
6

1

−1

0

⎞
⎟⎟⎟⎠ , |�1〉 = −1

2
√

3

⎛
⎜⎜⎜⎜⎝

1
2−√

3√
2

2+√
3√

2
2

⎞
⎟⎟⎟⎟⎠ ,

|�2〉 = 1√
3

⎛
⎜⎜⎜⎜⎜⎝

−1/2
e−iπ/3+

√
3

2√
2

e−iπ/3−
√

3
2√

2

eiπ/3

⎞
⎟⎟⎟⎟⎟⎠

, |�3〉 = 1√
3

⎛
⎜⎜⎜⎜⎜⎝

−1/2
eiπ/3+

√
3

2√
2

eiπ/3−
√

3
2√

2

e−iπ/3

⎞
⎟⎟⎟⎟⎟⎠

.

The von Neumann measurement 
 = {|
j 〉} with mutually
orthogonal |
j 〉 are explicitly given by

|
0〉 = 1

2
√

2

⎛
⎜⎜⎜⎝

0√
3 + 1√
3 − 1

0

⎞
⎟⎟⎟⎠ , |
1〉 = −1√

3

⎛
⎜⎜⎜⎜⎜⎜⎝

1
1−√

3
2
√

2
1+√

3
2
√

2
−1

⎞
⎟⎟⎟⎟⎟⎟⎠

,

|
2〉 = −1√
3

⎛
⎜⎜⎜⎜⎝

e−i2π/3

1−√
3

2
√

2
1+√

3
2
√

2

e−iπ/3

⎞
⎟⎟⎟⎟⎠ , |
3〉 = 1√

3

⎛
⎜⎜⎜⎜⎝

e−iπ/3

−1+√
3

2
√

2
−1−√

3
2
√

2

e−i2π/3

⎞
⎟⎟⎟⎟⎠ .

To evaluate the quantum Fisher information Qθ (�(ρ‖))
and Qφ(�(ρ‖)) of the parallel spins after the measurement
�, note that the postmeasurement average state is �(ρ‖) =∑3

j=0 uj |�j 〉〈�j | with uj = |〈�j |�n,�n〉|2. Explicitly, u0 =
3
4 cos4 θ

2 and

uj = 1

12

{
1 + sin2 θ

2
+

√
2 sin θ cos

[
φ − 2(j − 1)π

3

]}2

for j = 1,2,3. From Eq. (3) and

∂�(ρ‖)

∂θ
=

3∑
j=0

∂uj

∂θ
|�j 〉〈�j |

we obtain, by direct manipulation, that the quantum Fisher
information of �(ρ‖) with respect to the parameter θ is
Qθ (�(ρ‖)) = ∑3

j=0
1
uj

( ∂uj

∂θ
)2 = 1.

Similarly, the quantum Fisher information of �(ρ‖) with
respect to the parameter φ can be evaluated as Qφ(�(ρ‖)) =∑3

j=0
1
uj

( ∂uj

∂φ
)2 = sin2 θ.

To evaluate the quantum Fisher information Qθ (
(ρ‖)) and
Qφ(
(ρ‖)) for the parallel spins after the measurement 
, note

that the postmeasurement average state after performing the
von Neumann measurement 
 is 
(ρ‖) = ∑3

j=0 vj |
j 〉〈
j |
with vj = |〈
j |�n,�n〉|2. Explicitly, v0 = 3

8 sin2 θ and

vj = 3

8
− 1

3

{
sinθcos

[
φ − (j − 1)2π

3

]
− cosθ

2
√

2

}2

for j = 1,2,3. It follows from Eq. (3) that quantum Fisher
information Qθ (
(ρ‖)) and Qφ(
(ρ‖)) can be similarly
evaluated. We omit the complicated expressions. The graphs
are depicted in Fig. 1.

To evaluate the quantum Fisher information Qθ (�(ρ⊥)) and
Qφ(�(ρ⊥)) for the antiparallel spins after the measurement
�, note that the postmeasurement average state is �(ρ⊥) =∑3

j=0 sj |�j 〉〈�j | with sj = |〈�j |�n, −�n〉|2. Explicitly,

s0 = 1

16
(2 + 3 sin2 θ − 2

√
6 sin θ cos φ),

s1 = 1

48
(sin θ cos φ + 2

√
2 cos θ −

√
6)2

+ 3

16
sin2 θ sin2 φ,

s2 = 1

48

[
sin θ cos

(
φ + π

3

)
− 2

√
2 cos θ −

√
6

2

]2

+ 3

16

[
sin θ sin

(
φ + π

3

)
+

√
2

2

]2

,

s3 = 1

48

[
sin θ cos

(
φ − π

3

)
− 2

√
2 cos θ −

√
6

2

]2

+ 3

16

[
sin θ sin

(
φ − π

3

)
−

√
2

2

]2

.

It follows from Eq. (3) that the quantum Fisher information
Qθ (�(ρ⊥)) and Qφ(�(ρ⊥)) can be directly evaluated. We omit
the complicated expressions, and the graphs are depicted in
Fig. 2.

To evaluate the quantum Fisher information Qθ (
(ρ⊥))
and Qφ(
(ρ⊥)) after performing measurement 
 on the
antiparallel spins, note that the postmeasurement average
state is 
(ρ⊥) = ∑3

j=0 tj |
j 〉〈
j | with tj = |〈
j |�n, −�n〉|2.
Explicitly, t0 = 1

8 (
√

3 cos θ + 1)2 and

tj = 1

3

{
sin θ cos

[
φ − (j − 1)2π

3

]
−

√
2

4
cos θ +

√
6

4

}2

for j = 1,2,3. It follows from Eq. (3) and direct calculation
that

Qθ (
(ρ⊥)) = 2, Qφ(
(ρ⊥)) = 2 sin2 θ.
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