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Unified approach to contextuality, nonlocality, and temporal correlations
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We highlight the existence of a joint probability distribution as the common underpinning assumption behind
Bell-type, contextuality, and Leggett-Garg-type tests. We then present a procedure to translate contextual scenarios
into temporal Leggett-Garg-type and spatial Bell-type ones. To demonstrate the generality of this approach we
construct a family of spatial Bell-type inequalities. We show that in the Leggett-Garg scenario a necessary
condition for contextuality in time is given by a violation of consistency conditions in the consistent histories
approach to quantum mechanics.
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I. INTRODUCTION

Classical physical theories such as general relativity,
electrodynamics, and thermodynamics describe a universe
where acts of observation merely reveal underlying reality.
For instance, an electromagnetic field or a black hole exists
objectively at all times independently of whether or not we
choose to observe it. Quantum theory of matter is different.
It was theoretically demonstrated by Bell in 1964 [1] and
by Kochen and Specker (KS) in 1967 [2] that quantum
mechanical predictions depend on the act of observation. Both
of these predictions found confirmation in experiments: Bell
inequalities were violated in numerous laboratories [3–7],
as were certain inequalities encapsulating KS ideas [8,9].
In 1985 Leggett and Garg (LG) presented a related notion
of macroscopic realism [10] asserting that a macroscopic
system should at all times be in one of its macroscopically
distinguishable states that do not change if a measurement is
performed on the system.

Although the theorems by Bell, KS, and LG seem different,
they are in fact based on the same underlying hypothesis. They
all contrast quantum mechanical predictions with predictions
of theories that assume the existence of a joint probability
distribution for the outcomes of all possible measurements one
can perform on a physical system. More precisely, consider
measurements from the set S = {X1,X2, . . . ,XN }, such that
measurement Xj yields outcomes xj , with j = 1,2, . . . ,N . For
some of these measurements a joint probability distribution, of
the type pexp(xi,xj ), can be experimentally obtained, while for
other subsets such experimental joint probability distributions
cannot be measured. For example, according to quantum
theory it is impossible to construct a device capable of
simultaneously measuring two noncommuting observables on
a single system. Objective reality assumes that, nevertheless,
there exists a joint probability distribution for the full set
of these observables, p(x1,x2, . . . ,xN ). Depending on the
physical scenario considered, the lack of such joint probability
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is called quantum nonlocality, contextuality, or violation of
macroscopic realism.

In Bell-type experiments the set S is divided into two or
more groups of measurements S = A ∪ B ∪ . . . , such that
each group represents a set of measurements performed by spa-
tially separated observers. If one arranges a situation in which
the measurements are space-like separated, special relativity
dictates the natural assumption that the outcomes obtained for
individual systems do not depend on the parameters in distant
laboratories. In this case the existence of the joint probability
distribution is known as the assumption of local realism [11],
first formulated in 1935 in the important paper by Einstein,
Podolsky, and Rosen [12]. The fact that quantum mechanical
predictions cannot be described in this way is sometimes
phrased as quantum nonlocality.

In KS-type experiments there are no spatially separated
systems. For instance, the simplest KS scenario introduced
by Klyachko et al. [13] contains a set of five measurements
for which one can experimentally establish joint probabilities
pexp(x1,x2),pexp(x2,x3), . . . ,pexp(x5,x1). If the joint probabil-
ity distribution for the outcomes of all these observables exists,
p(x1,x2, . . . ,x5), such a model is known as the noncontextual
realistic theory. In this sense, each Bell-type experiment
is a special case of KS experiment where the context of
measurements is provided by spatial separation of observers.

LG-type scenarios are similar to KS-type experiments in
that a single physical system is being examined. In the LG
setting there is a single physical property Xt that evolves in
time. This property is measured at different times t1,t2, . . . ,
and probabilities pexp(xti ,xtj ) are estimated for suitable time
slices. The existence of the joint probability distribution for the
outcomes at all times, p(xt1 ,xt2 , . . . ), whose marginals agree
with pexp(xti ,xtj ), is known as the assumption of macroscopic
realism. In quantum mechanics the lack of this joint probability
distribution is due to intermediate quantum evolution and the
invasive nature of quantum measurements.

Since all these cases share the same mathematical back-
ground one expects to find a correspondence between them.
The fact that Bell-type scenarios and KS-type scenarios have
a common underlying structure was known before [14], and
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a topological interpretation of this fact was found [15]. Here
we give a simple description of the correspondence among
all three scenarios and use it to derive new inequalities. First,
we review a simple test of contextuality of a single system
and then explain how it can be extended to both a temporal
scenario and a spatial scenario in two subsystems. Next, we
discuss how to translate between general correlations of two
measurements realized in three different scenarios: contextual,
nonlocal, and temporal. We conclude with observations relat-
ing our correspondence to consistent histories and quantum
cryptography.

II. COMPATIBLE MEASUREMENTS
ON A SINGLE SYSTEM

We first study the scheme proposed by Klyachko-
Can-Binicioglu-Shumovsky (KCBS) [13]. Consider five di-
chotomic ±1 measurements Xj on a single system where
each Xj is compatible with Xj−1 and Xj+1 for j = 0, . . . ,4,
and sums are modulo 5. Compatible, here, means, from
the operational point of view, that these observables can
be measured jointly or sequentially, with the assumption
that sequential measurements do not affect each other. More
precisely, if Xj is measured first, then the measurement
of Xi does not change the outcome of Xj , which can be
confirmed by a subsequent measurement of Xj , i.e., the
measurement sequence is Xj → Xi → Xj . This property
guarantees noninvasiveness of measurements.

The possibility of a joint probability distribution of the
outcomes of all physical observables in a single system can
be tested by the following KCBS inequality proposed by
Ref. [13]:

4∑

j=0

〈XjXj+1〉 � −3. (1)

For completeness we present a proof of this inequality. By
definition each correlation function is given by

〈XiXj 〉 =
∑

xi ,xj =±1

xixjp(xi,xj ). (2)

By assumption there exists a joint probability distribution for
all variables Xi , e.g.,

〈X0X1〉 =
∑

x0,...,x4=±1

x0x1p(x0,x1,x2,x3,x4). (3)

Note that for a noncontextual assignment of values xj = ±1
we have

∑4
j=0 xjxj+1 � −3, which can be directly verified.

Combining all the above expressions we get

〈X0X1〉 + 〈X1X2〉 + 〈X2X3〉 + 〈X3X4〉 + 〈X4X0〉

=
∑

x0,...,x4=±1

p(x0,x1,x2,x3,x4)
4∑

j=0

xjxj+1

�
∑

x0,...,x4=±1

p(x0,x1,x2,x3,x4)(−3) = −3.

In quantum mechanics the compatibility is provided by
[Xj,Xj±1] = 0. The maximal quantum violation of the above

inequality (the so-called Tsirelson bound) within this frame-
work is known to be [16,17]

Tcontext = 5 − 4
√

5 ≈ −3.94. (4)

III. TEMPORAL KCBS INEQUALITY

Instead of studying contextuality using the KCBS in-
equality we investigate a temporal noncontextual inequality
whose construction roughly parallels seminal work done
by LG [10] and continued in [18] and [19]. Consider a
dichotomic ±1 measurement, Xt , which is conducted at time
t = {t0,t1, . . . ,t4}. If we make successive measurements at two
sequential times, then we can construct two point temporal cor-
relations 〈Xt0Xt1〉,〈Xt1Xt2〉,〈Xt2Xt3〉,〈Xt3Xt4〉,〈Xt0Xt4〉. These
two-point temporal correlations naturally lead to a temporal
analog of the KCBS inequality:

〈Xt0Xt1〉 + 〈Xt1Xt2〉 + 〈Xt2Xt3〉 + 〈Xt3Xt4〉 + 〈Xt0Xt4〉 � −3.

(5)

This inequality will be satisfied whenever there is a joint prob-
ability distribution which ascribes predetermined outcomes to
the measurements Xt at all times t0, . . . ,t4.

The existence of the joint probability distribution in this
scenario is tantamount to LG’s “macrorealism” condition
[10]. Conversely, violation of inequality (5) can be called
contextuality in time.

In quantum mechanics inequality (5) can be violated
using a single spin- 1

2 particle. We stipulate that in each run
of the experiment we make precisely two measurements,
corresponding to a pair of observables Xti and Xti±1 . For
definiteness, we specify the observable Xt to be represented
by a σz Pauli operator measured at one of five distinct times,
t ∈ {t0, . . . ,t4}. We initialize the spin in a completely mixed
state and allow it to evolve under the unitary operator

U = ei 8
5 πtσy . (6)

For this scenario, the left-hand side of inequality (5) attains
the minimal value of ≈−4.045 if we choose the time instances
t ∈ {t0, . . . ,t4} = {0, 1

4 , 1
2 , 3

4 ,1}. It has recently been proved
by Gühne et al. [17] that this is the maximum possible
violation of inequality (5) by a qubit when pairs of sequential
measurements do not commute. In order to calculate temporal
correlations of ±1 measurements we use the formula

〈Xt1Xt2〉 = p+1q+1|+1 + p−1q−1|−1

−p+1q−1|+1 − p−1q+1|−1, (7)

where pk denotes the probability of outcome k in the first
measurement (at instant t1), and ql|k denotes the probability of
outcome l in the second measurement (at t2) on the condition
that outcome k occurred in the first one. In quantum mechanics
this formula reduces to [20]

〈Xt1Xt2〉 = 1
2 Tr (ρ{Xt1 ,Xt2}), (8)

where {Xt1 ,Xt2} denotes the anticommutator.
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IV. NEW SPATIAL INEQUALITY AND
ITS QUANTUM VIOLATION

Finally, inequality (5) can be transformed into a Bell-
type inequality testing the existence of a joint probability
distribution for spatially separated local measurements. Within
this framework 〈XiXj 〉 = 〈AiBj 〉 are correlations obtained on
space-like separated systems A and B. Inequality (5) takes the
form

〈A0B1〉 + 〈A1B2〉 + 〈A2B3〉 + 〈A3B4〉 + 〈A4B0〉 � −3, (9)

with the additional constraint

〈AiBi〉 = 1 for all i, (10)

which means that Ai and Bi always have the same outcomes.
Inequality (9) together with the assumption 〈AiBi〉 = 1

resembles the original Bell scenario for three ±1 qubit
measurements, A, B, and C [1],

1 + 〈B ⊗ C〉 � |〈A ⊗ B〉 + 〈A ⊗ C〉|, (11)

where it was assumed that 〈B ⊗ B〉 = −1 due to correlations
of the singlet state. The additional assumption of the outcome
correlation of pairs of spatially separated measurements is
often considered as a weakness of this type of nonlocality tests.
In real experimental scenarios other tests that do not require
this assumption are preferred. Nevertheless, inequality (9) can
be used as a theoretical tool to refute a local realistic description
of quantum measurements and, what is more important,
to establish a unified framework to describe contextuality,
nonlocality, and contextuality in time as different physical
manifestations of the violation of the same mathematical
property.

The optimal violation of (9) can be obtained for
the state ρ ′ = |φ+〉〈φ+|, with |φ+〉 = 1√

2
(|00〉 + |11〉), and

for measurements Ai = σi ⊗ 11, Bi = 11 ⊗ σi , where i =
0, . . . ,4 and σi = ei 2πi

5 σy σze
−i 2πi

5 σy . Note that state |φ+〉
has the property that for qubit measurements in the xz

plane, M(α) = cos α σz + sin α σx , one has 〈φ+|M(α) ⊗
M(α)|φ+〉 = 1. Therefore, the assumption 〈AiBi〉 = 1 is
fulfilled by this state.

On the level of quantum mechanics the link between
temporal and spatial correlations was noticed before [20].
This is a direct consequence of an extension of Tsirelson’s
theorem on different representations of correlation matrices
for quantum observables [21]. It says that the following two
statements are equivalent:

(1) There exists a Hilbert space H together with Hermi-
tian operators A1, . . . ,Am,B1, . . . ,Bn ∈ B(H) fulfilling A2

k =
1, B2

l = 1, and a density matrix ρ such that

〈AkBl〉 = 1
2 Tr (ρ{Ak,Bl}). (12)

(2) There exist Hilbert spaces HA and HB together
with Hermitian operators A1, . . . ,Am ∈ B(HA), B1, . . . ,Bn ∈
B(HB) fulfilling A2

k = 1, B2
l = 1, and a density matrix ρ ′ on

HA ⊗ HB such that

〈AkBl〉 = Tr (ρ ′(Ak ⊗ Bl)). (13)

What is very important and is omitted in [20] is that state
ρ ′, due to Tsirelson’s construction, has a very specific form.

Namely, it has to fulfill the following relations:

〈AiBi〉 = Tr (ρ ′Ai ⊗ Bi) = 1, for i = 1, . . . , min(m,n).

Equivalence between the two above statements implies that the
Tsirelson bound of the Bell-type inequality, (9), is the same as
that of the temporal inequality, (5).

V. GENERALIZATION TO AN ARBITRARY
NUMBER OF MEASUREMENTS

The approach to the KCBS scenario discussed above can
be generalized in a straightforward manner to any test of
contextuality that utilizes two-point correlations. Up to now
we have discussed scenarios involving five measurements. In
general, if one can experimentally evaluate pexp(xi,xi+1) for N

dichotomic ±1 measurements i = 0, . . . ,N − 1, the existence
of a joint probability distribution p(x0, . . . ,xN−1) implies that
the following inequality is satisfied [17,22]:

N−2∑

i=0

〈XiXi+1〉 + (−1)N−1〈XN−1X0〉 � −N + 2. (14)

Using our framework this inequality can be tested in three
physical settings.

The first is the contextuality test on a single system where
comeasurability is provided by compatibility of measure-
ments; i.e., there exists a device for which the outcomes of
both measurements are always independent of the order in
which they are performed. In the second, temporal, setting one
can treat the two-point correlations entering (14) as expectation
values of two measurements performed at different times. The
measurements here are no longer required to be compatible
and the comeasurability is provided by temporal separation.

The implementation of the third, spatial, scenario depends
on the parity of N . If N is an even number, there exists a natural
bipartition of measurements, X2i = Ai and X2i+1 = Bi , and
the inequality is transformed to

〈A0B0〉 + 〈A1B0〉 + 〈A1B1〉 + · · · + 〈A(N−2)/2B(N−2)/2〉
− 〈A0B(N−2)/2〉 � −N + 2. (15)

However, in the case of odd N , such bipartition does not exist,
and to bypass this problem we propose to double the number
of measurements; i.e., Alice (Bob) has N measurements
A0, . . . ,AN−1 (B0, . . . ,BN−1). In addition, we require perfect
correlations between the corresponding local measurements;
i.e., 〈AiBi〉 = 1 for all i. This implies that the outcome of
observable Ai and Bi is always the same. Consider now the
following inequality:

N−2∑

i=0

〈AiBi+1〉 + (−1)N−1〈AN−1B0〉 � −N + 2. (16)

The local realistic bound of −N + 2 follows from the fact
that although 〈AiAi+1〉 is not directly measurable, due to our
assumptions 〈AiAi+1〉 = 〈AiBi+1〉, and one can rewrite this
spatial inequality using only the measurements of Alice, in
which case the inequality has the form of (14).

The Bell inequalities, (15) and (16), are violated by
quantum measurements on a |φ+〉 state for arbitrary N . In
the case of (15) Alice measures N/2 observables Am, given
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by the corresponding Bloch vectors,

�am = (− sin(2mπ/N ),0, cos(2mπ/N )),

whereas Bob’s observables Bm are given by Bloch vectors,

�bm = ( sin[(2m + 1)]π/N ),0, − cos[(2m + 1)]π/N ).

In the case of odd N , Alice and Bob measure N observables
Am and Bm given by Bloch vectors:

�am = �bm = ( sin[(π − π/N )m],0, cos[(π − π/N )m]).

These settings give rise to violation for any N :

N cos[π (N − 1)/N] < −N + 2. (17)

In this section we have shown that generalized KCBS tests
based on inequalities (14) can be translated into temporal and
spatial scenarios for an arbitrary number of measurements.
The question arises whether such a map among all three
scenarios exists for any contextuality test based on two-
point correlations. We can always obtain the map between
contextual and temporal scenarios (since it relies on relaxation
of compatibility criteria), however, we do not know any
conclusive argument for the existence of a map between such
obtained temporal inequalities and some spatial ones.

We also note that although the bounds resulting from the
existence of a joint probability distribution are, by construc-
tion, the same in all three scenarios, the quantum Tsirelson
bounds may be different. Indeed, the contextual Tsirelson
bound Tcontext is not larger than the temporal bound Ttemporal,
which stems from the fact that the compatibility conditions in
the case of the contextual scenario are always more restrictive
than those in the temporal scenario. Whenever there exists
a map between the temporal and the spatial scenario, the
corresponding Tsirelson bounds Ttemporal and Tspatial are always
equal due to the equivalence between condition (12) and
condition (13). Therefore we obtain the following hierarchy of
Tsirelson bounds:

Tcontext � Ttemporal = Tspatial. (18)

For example, in the case of the KCBS scenario we have shown
that the quantum contextual bound is strictly lower than the
quantum temporal and nonlocal bounds. We leave as an open
question the problem of classifying all contextual tests for
which the inequality in (18) is strict.

VI. CONSISTENT HISTORIES APPROACH TO
TEMPORAL INEQUALITIES

The violation of local realism and noncontextuality is the
result of nonclassical correlations between subsystems or be-
tween local observables. In quantum theory these correlations
stem from entanglement or from commutation properties of
local operators that are used to test noncontextuality. On the
other hand, nonclassical temporal correlations result from
the lack of commutativity between the observables (in the
Heisenberg picture) that are sequentially measured. We now
show that these correlations can also be interpreted as resulting
from inconsistency of histories describing the measurement
scenario. This is done within the consistent histories approach
to quantum theory [23,24]. The result might be anticipated,

as satisfying the consistency conditions allows ordinary prob-
abilistic reasoning [23,24] and guarantees noninvasiveness of
intermediate measurements [25]. Nevertheless, it is instructive
to see how the consistency condition naturally emerges in the
context of temporal inequalities.

Consider two sequences of events, (e1,e2, . . . ,eN ) and
(f1,f2, . . . ,fN ). We assume that these events are ordered in
time; i.e., ei happens before ej if i < j (similarly for fi).
We refer to these sets as “history e” and “history f .” In
quantum theory these events correspond to the projectors
P e

1 ,P e
2 , . . . ,P e

N and P
f

1 ,P
f

2 , . . . ,P
f

N . Next, consider the op-
erators Ce = P e

N . . . P e
2 P e

1 and Cf = P
f

N . . . P
f

2 P
f

1 . It is said
that the two histories measured on a state ρ are consistent if
and only if [24]

Re[Tr (CeρC
†
f )] = 0. (19)

This condition assures the validity of ordinary probabilistic
reasoning about joint events without arriving at any contradic-
tions.

Next, consider the LG inequality in the form

〈X1X2〉 + 〈X2X3〉 + 〈X1X3〉 � −1, (20)

where Xi (i = 1,2,3) are ±1 observables. We associate the
corresponding measurement events with the projectors P

(i)
k ,

where k = ±1. Let us define a probability distribution for all
three measurement outcomes p(X1 = k,X2 = l,X3 = m) ≡
p(k,l,m) as

p(k,l,m) = Tr
(
P (3)

m P
(2)
l P

(1)
k ρP

(1)
k P

(2)
l P (3)

m

)
. (21)

Note that this probability distribution does not necessarily
reproduce marginal probabilities, therefore it may not be a
joint probability distribution that guarantees a classical model.
It rather provides us with a link to the consistent histories
formalism, where p(k,l,m) are the probabilities of histories
(k,l,m). Each quantum correlation function entering (20) can
be expressed in analogy to

〈X2X3〉 =
∑

k

[p(∗,k,k) − p(∗,k, − k)], (22)

where, e.g., p(∗,k,k) = Tr(P (3)
k P

(2)
k ρP

(2)
k P

(3)
k ) is calculated by

considering a hypothetical measurement at time t1, and using∑
k P

(1)
k = 1,

p(∗,k,k) = p(+,k,k) + p(−,k,k) + I (∗,k,k), (23)

where we have introduced the interference term I (∗,k,k) =
2Re(Tr(P (3)

k P
(2)
k P

(1)
+ ρP

(1)
− P

(2)
k P

(3)
k )). We therefore arrive at the

following form of inequality (20),
∑

k

[4p(k,k,k) + I (∗,k,k) + I (k, ∗ ,k)

− I (∗,k, − k) − I (k, ∗ , − k)] � 0, (24)

where we have also used the fact that I (k,k,∗) = I (k, −
k,∗) = 0. A necessary condition for the violation of inequality
(24) is that at least one of the terms I (∗,k,k), I (k, ∗ ,k),
I (∗,k, − k), or I (k, ∗ , − k) is nonzero. This, however, implies
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FIG. 1. (Color online) Pictorial description of the histories
related to the interference terms in Eq.(24): (a) histories
{(+,k,k),(−,k,k)}, related to the term 〈X2X3〉, can give rise to a
nonzero interference term I (∗,k,k); (b) histories {(k, + ,k),(k, −
,k)}, related to the term 〈X1X3〉, can give rise to a nonzero interference
term I (k, ∗ ,k); and (c) histories {(k,k,+),(k,k,−)}, related to the
term 〈X1X2〉, are always consistent, therefore there is no interference
of the form I (k,k,∗).

that at least one pair of the histories,

{(+,k,k),(−,k,k)},{(k,+,k),(k,−,k)}{(+,k,−k),

× (−,k,−k)},{(k,+,−k),(k,−,−k)}, (25)

contains inconsistent ones, which follows directly from (19).
A direct validation of this statement that does not utilize

inequalities comes from noting that p(k,l,m) provides a valid
marginal probability in (23) only if I (∗,k,k) = 0, ergo the
histories (+,k,k) and (−,k,k) are consistent.

It is worth mentioning that the vanishing interference terms
I (k,k,∗) and I (k, − k,∗) are related to the term 〈X1X2〉.
Therefore only the terms 〈X1X3〉 and 〈X2X3〉 directly give rise
to the quantum violation of the LG inequality, (20) (Fig. 1).

Intuitively, the consistency conditions assure that the addi-
tivity of the probabilities of single events is compatible with the
additivity of the squared quantum probability amplitudes [24].
On the contrary, violation of these conditions implies that some
interference terms between the probability amplitudes arise.

VII. CONCLUSIONS

We have discussed the Bell, KS, and LG experiments and
shown that they are all different physical manifestations of
the violation of the same underlying mathematical property—
the existence of a joint probability distribution for all
possible measurements that can be performed on the sys-
tem. We have introduced a correspondence between these
scenarios.

Note that this correspondence can be used to establish
a link between the two acclaimed quantum key distribution
protocols, the BB84 [26] protocol and the Ekert protocol
[27]. Although the security of both protocols relies on
different fundamental physical principles, mathematically
speaking their security stems from the lack of a joint
probability distribution. The Ekert protocol utilizes quantum
nonlocality, whereas BB84 relies on invasiveness of quantum
measurements, effectively contradicting the assumptions of the
macrorealism.

Utilizing the consistent histories approach to sequential
measurements we have found that a necessary condition for
violation of temporal Bell inequalities is the existence of
interference effects between probability amplitudes related to
sequences of events.

We are confident that this general framework will find
further applications. For instance, one can easily approach
the problem of mixed space and time quantum correlations
[28], and the framework has the attractive feature that it can be
implemented numerically using standard modules for linear
programming.

Note Added in Proof. Recently two independent papers
covering similar topics appeared [17,28].
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