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Instantaneous rest-frame transformation method for temporally induced pair creation
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We introduce a computational method to determine the rate of the electron-positron pair creation triggered by a
time-dependent subcritical external field. It is based on constructing a Lorentz transformation to an instantaneous
rest frame, for which the pair-creation rate can be determined by standard techniques. We will discuss the accuracy
and efficiency of this method by comparing its predictions with exact time-dependent quantum field theoretical
solutions to the Dirac and Klein-Gordon equations for various space-time dependent external fields.
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I. INTRODUCTION

One of the most intriguing predictions of quantum elec-
trodynamics is the creation of electron-positron pairs from
the vacuum due to an extremely strong electric field [1].
Experimental attempts to verify this prediction have been made
beginning in the 1980s with heavy ion collisions [2,3], but the
observed positrons were likely due to the unavoidable nuclear
processes and not triggered by the combined supercritical
Coulomb field of both ions. However, in the coming years [4]
it might become possible to break down the vacuum by using
laser fields with extremely high intensity, which would provide
a first and unambiguous evidence of this important quantum
field theoretical prediction [5].

There are mainly two intrinsically different mechanisms
to create electron-positron pairs from the vacuum. The first
one dating historically back to Sauter [6] and Schwinger [7] is
based on a time-independent external field that is supercritical,
i.e., the associated electric potential times the electronic charge
exceeds twice the electron’s rest mass energy. Formally it is
related to the energy degeneracy between states that (without
any interaction) are associated with the positive and negative
energy continuum. While many theoretical works focus on
predictions for suitable laboratory conditions [8–14], others,
including our own, are devoted to the fundamental study
of the general principles underlying particle pair creation
[15–18].

In addition to the Schwinger mechanism, it is predicted
that particles can also be created even for a subcritical field,
if the field has a suitable temporal dependence instead. Here
the creation process can be associated with induced transitions
between states of both energy continua. However, the corre-
sponding calculations are much too challenging for general
fields that vary in time in addition to their spatial dependence.
As a result of this difficulty, a complete understanding of
the precise condition for the temporal dependence to create
particles is generally lacking but rather desired in view of the
planned laboratory experiments that are naturally based on
time-dependent fields.

So far both mechanisms were studied separately and
the linkage between these pair-creation criteria is presently
not understood. In this work we have chosen a simple
model system to bring these two mechanisms together, by

proposing an approximate computational method that tries to
establish a connection between the pair-creation thresholds for
time-dependent subcritical and time-independent supercritical
potentials.

The purpose of this work is threefold: First we examine the
simplest case of a subcritical electric potential barrier moving
at constant velocity and show that the usual supercriticality
condition for static fields (q�V > 2mc2) leads to a sharp
threshold law for a “supercritical” speed. This is based on
the fact that two observers in the lab frame and the field’s
rest frame detect the same number of created particles. Here
the predictions in the field’s rest frame can be obtained
exactly by a suitable Lorentz transformation. Second, we
will generalize this approach to compute the pair-creation
rates for more general but still simple time-dependent sys-
tems. Finally, we generalize the pair-creation criterion to the
case of a moving potential well to gain a deeper under-
standing of the time-dependent effects in the more general
setting.

This paper is organized as follows: In Sec. II we discuss the
Dirac and Klein-Gordon equations and the numerical solution
of quantum field theories for fermions and bosons in an
external potential. In Sec. III we describe the basic idea behind
the instantaneous rest-frame transformation (IRFT) method. In
Sec. IV we test this method by investigating the pair production
rates for various time-dependent potential barriers and also
moving potential wells. Finally, in Sec. V we conclude with a
discussion and an outlook.

II. THE MODEL SYSTEMS AND THE
COMPUTATIONAL METHOD

A. Pair creation from the Dirac and Klein-Gordon equations

If we neglect the mutual interaction between electrons
and positrons, the creation of the particle-antiparticle pairs
by an external field V (x,t) can be described by the Dirac
equation [19] (in atomic units where m = � = 1 a.u., q = −1,
and c = 137.036 a.u.), with the one-dimensional Hamiltonian,

h = cσ1px + c2σ3 + qV (x,t). (2.1a)

Here σ i are the usual 2 × 2 Pauli matrices. In order to
keep the problem numerically tractable, we have reduced
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the dynamics to one dimension assuming spatial uniformity
in the other two dimensions. This reduction allows us to
describe the states by two-component wave functions φ(x,t) =
[φ1(x,t),φ2(x,t)]T instead of the usual ones based on four
components.

Similarly, the creation of boson-antiboson pairs can be
modeled in the Feshbach-Villars representation [20] by the
Klein-Gordon Hamiltonian,

hB = (σ3 + iσ2)p2
x

/
2 + c2σ3 + qV (x,t). (2.1b)

As the quantum field theoretical approach to deter-
mine the pair-creation rate numerically for any external
potential is rather standard by now, we briefly review it
in Appendix A. The space-time dependent external fields
that we study below are based on a Sauter potential
barrier V (x) ≡ V0S(x) with the smooth unit-step function
S(x) � [1 + tanh(x/w)]/2. Here w denotes the spatial turn-
on width, which is identical to the spatial extension of
the associated electric field pulse, E(x) = −dV(x)/dx. In
Sec. IV we also study a moving potential well, modeled by

V (x) = V0[S(x + D
2 ) − S(x − D

2 )], where the distance D is
the total extension of the well.

B. The pair-creation rate for the time-independent potentials

As our proposed method is based on relating the space-time
dependent potentials V (x,t) to a time-independent one, we
review here first a solution technique for constant force fields.
For this special case, there are numerous techniques available
to calculate the pair-creation rate. For example, according to
Hund’s rule [21] the pair-creation rate in the long-time limit
can be expressed as

� = 1/(2π )
∫

T (E)dE, (2.2)

where T (E) is the transmission coefficient as a function
of energy and the integral is over the range of energies,
c2 � E � −c2 + V0, where Klein tunneling [22–26] occurs
when V0 > 2c2. For the special case of the smooth barrier
V (x) ≡ V0S(x) the transmission coefficients can be computed
analytically for the Dirac equation (2.1a) as well as the
Klein-Gordon equation (2.1b). They take the form

TF (E) = sinh[πp(E)w] sinh[πq(E)w]

sinh{π [V0/c + p(E) − q(E)]w/2} sinh{π [V0/c − p(E) + q(E)]w/2} , (2.3a)

TB(E) = cosh{π [p(E) − q(E)]w} − cosh{π [p(E) + q(E)]w}
cosh[π

√
(wV0/c)2 − 1] + cosh{π [p(E) − q(E)]w}

, (2.3b)

for fermions (TF ) and bosons (TB), respectively [27]. Here
p(E) and q(E) are the momenta of the particles at a
point where V (x) = 0 and V (x) = V0 and are equal to
p(E) =

√
(E2/c2) − c2 and q(E) =

√
[(E − V0)2/c2] − c2.

Systematic tests of predictions of these two expressions were
made in Ref. [27].

III. THE PROPOSED INSTANTANEOUS
REST-FRAME METHOD

The general interaction of either fermions or bosons with
an external force of arbitrary spatial and temporal dependence
is modeled here by the scalar potential V (x,t). At a particular
instant in time, denoted by ti , we can define an instantaneous
velocity vi via the ratio of the temporal and spatial deriva-
tive of the potential, vi ≡ −[∂V (x,ti)/∂ti]/[∂V (x,ti)/∂x].
For example, when applied to the special case of a
shape-invariant moving potential, V (x,t) = U [x − X(t)], this
definition would predict a position-independent velocity,
vi = ∂X/∂ti , as expected.

We then perform formally a Lorentz transformation of the
system into a new frame with coordinates (x ′, t ′) that is
moving with this velocity vi along the positive x direction
relative to the original lab frame. Thus the γ parameter for
the Lorentz transformation between the two frames is given
by γ ≡ [1 − (vi/c)2]−1/2 at that time. In general, a Lorentz
transformation rule characterized by an arbitrary γ would
lead to a nonvanishing vector potential A′

x(x ′,t ′) along the
x direction. However, due to the special relationship of γ

with vi in the original potential, the curl and the temporal
derivative of A′

x(x ′,t ′) vanish identically, such that it only
affects the definition of the canonical momentum and therefore
can be neglected. Equivalently, there is no magnetic field in
one spatial direction. The Lorentz transformed scalar potential
is given by V ′(x ′,t ′) = γV (x,t) where x � γ (x ′ + vt′) and
t � γ (t ′ + vx′/c2). We refer to this potential V ′ as the (instan-
taneous rest-frame transformed) IRFT potential from now on.

For the simplest case of a uniformly moving potential
V (x,t) = U (x – vt), we would obtain the IRFT potential
V ′(x ′,t ′) = γU (x ′/γ ) that is exactly at rest and therefore
independent of time t ′. This is consistent with the fact that
an electric field is invariant under a Lorentz transforma-
tion along the field direction, i.e., E′(x ′,t ′) = −�V ′(x ′,t ′)/
�x ′ = −γ�U (x ′/γ )/�x ′ = −�V (x,t)/�x = E(x).

In order to interpret our data in the next sections it is rather
important to note that the formal Lorentz transformation rule,
V ′(x ′,t ′) = γV (x,t), would predict the potential seen by a true
observer (that moves with the potential U [x − X(t)]) only
for the very special case where �X/�t does not depend on
time. Once the potential (and correspondingly the observer)
accelerates, the above formalism does not predict correctly
what an actual (accelerated) observer would measure in her
frame. However, as we argue below, this loss of a possible
interpretation does not necessarily hinder the application of
this transformation formalism as a computational technique
to approximate the pair-creation rate for a general space-time
dependent potential. We will establish its accuracy for several
time dependencies in the sections below.
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To have concrete working models, we choose in these
examples below a potential that evolves as V (x,t) =
V0/2(1 + tanh{[x − X(t)]/w}) in the lab frame. This par-
ticular form leads to the instantaneous Lorentz transformed
potential V ′(x ′) ≡ γV0/2{1 + tanh[x ′/(γw)]}, where γ ≡
[1 − (vi/c)2]−1/2 with vi = ∂X/∂ti . In other words, we can
use the transformed amplitude (γV0) and width (γw) in
Eqs. (2.3a) and (2.3b) to determine the transmission coeffi-
cients and Hund’s rule to obtain the pair-creation rate in this
“instantaneous” frame as �′ = dN(t ′i )/dt ′i .

Although the lab frame observer who sees a moving
potential V and an observer who is at rest with respect to it
must agree on how many particles are created, N (ti) = N ′(t ′i ),
they would not agree on the magnitude of the pair production
rate, dN ′(t ′i )/dt ′i �= dN(ti)/dti . The pair production rate is the
number of particles per unit time, which the two observers
experience differently. Thus, if the Lorentz transformation
leads to a potential for which the pair-creation rate can be
determined as dN ′(t ′i )/dt ′i = �′ as calculated by Hund’s rule
(2.2), then the original observer in the lab frame observes
a pair-creation rate � = (dt ′i /dti)�′ = �′/γ as we have to
compensate for the time dilation effect.

This leads also to different threshold laws for supercritical-
ity for both observers. The general threshold condition for the
onset of the pair creation for a potential at rest reads V0 > 2c2.
For the moving observer our moving potential appears at rest
and of strength γV0. As a result, the correct threshold for pair
production of a moving potential is γV0 > 2c2. If an observer
moving with the potential is able to detect pairs, all other
inertial observers must also observe the pair production. It
is worth noting here that this fact is nontrivial, and in fact
noninertial observers will not, in general, agree about the
number of particles in a state, since noninertial observers will
observe Rindler quanta [28].

IV. EXAMPLES OF VARIOUS TIME-DEPENDENT
FORCE FIELDS

In order to study the IRFT method we will examine below
several space-time dependencies. We begin in Sec. IV A with
a uniformly moving barrier X(t) = vt, which is more than
just a consistency check and a test of the expected accuracy.
This will also introduce the concept of a critical velocity for
pair creation and predict in the limit of large velocities drastic
differences between the fermionic and bosonic pair-creation
rates. We will then show in Sec. IV B that the IRFT method
works well for adiabatically changing velocities but fails to
predict the observed oscillatory pair-creation rates for too large
accelerations. In Secs. IV C and IV D we will study oscillatory
potentials for which the velocity is reversed abruptly and
finally one where the velocity changes continuously. In order
to model the binding potential of a moving nucleus, we
combine the two barriers to form a moving binding well in
Sec. IV E.

A. Constantly moving force field, X(t) = vt

We will begin our numerical analysis of the accuracy of the
proposed method for the simplest case of a potential that moves
shape invariant with a constant velocity v, V (x,t) = U (x – vt).

In this case the instantaneous rest-frame transformation
method is supposed to be exact. The usual condition for the
permanent pair creation in a supercritical potential at rest
[V0 > 2c2] leads directly to a corresponding critical threshold
velocity for the onset of temporally induced pair creation trig-
gered by a moving potential. The corresponding (instantaneous
rest-frame) IRFT potential V ′(x ′) has an effective amplitude
of V ′

0 = γV0. In other words, in this frame this condition
for supercriticality (V ′

0 > 2c2) translates to γV0 > 2c2. This
means that the very motion of an otherwise subcritical potential
(with V0 < 2c2) can produce pairs, if the velocity v just
exceeds the sharp threshold value,

vcrit = [
1 − V 2

0

/
(4c4)

]1/2
c. (4.1)

We will show below, that while according to Eq. (4.1)
these critical velocities are obviously identical for the Dirac
and Klein-Gordon equations, the corresponding pair-creation
rates in the limit of v → ∞ are rather different for fermions
and bosons. As we have argued in the Introduction, the
temporally induced pair creation is usually associated with
transitions between states of the positive and negative energy
continuum. We presently do not understand how this sharp
velocity threshold could be predicted from a picture that
is based on transitions based on photons. Apparently there
must be a complete shutoff of any couplings (including all
multiphoton processes) between these states as soon as we have
v < vcrit.

To give a specific numerical example, we choose the
subcritical potential height V0 = 1.9c2 with a width of
w = 0.5/c in all cases below. If this force field does
not change in time, we would not observe any particles.
According to Eq. (4.1) the threshold velocity for this V0 is
vcrit = 0.31c. In Fig. 1 we monitor the time dependence of
the number of created fermions and bosons N (t) for three
potentials that evolve with three speeds v = 0.4c, 0.5c, and
0.6c.

We see that after a short time period the number of particles
for both systems grows linearly in time with characteristic rates
that depend on the magnitude of the potential’s velocity. As
expected the rate increases with the velocity of the potential
barrier.

In Fig. 2 we have graphed by the dots the numerically deter-
mined slopes of N (t) for the long-time limit for the fermionic
and bosonic simulations as a function of the potential’s velocity
v. The slope was obtained from the numerical data N (t) by
the least-squares fitting method of a straight line using the
closest ten temporal grid points at each side of the time t . It is
clear that particles can only be created if the velocity exceeds
v > 0.31c, in full agreement with Eq. (4.1). The two curves are
based on the IRFT method using Hund’s formula of Eq. (2.2).

The agreement is excellent. However, this is expected as
the IRFT method should be exact in the special case where the
potential moves with a constant velocity.

While the bosonic and fermionic pair-creation rates seem
to follow a similar pattern, they have a rather different
behavior if the potential’s speed v approaches c. In fact,
for a velocity close to c the two graphs even cross. This
is related to the formally different expressions for the
transmission coefficient in Eq. (2.3). In the limit of v → ∞
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FIG. 1. The number of particle pairs N (t) as a function of time
t that were created by a moving potential barrier V (x,t) = U (x – vt)
moving with three velocities v. The top (bottom) is for fermions
(bosons). V0 = 1.9c2, w = 0.5/c, the numerical box of length
L = 1.0 a.u. was discretized into Nx = 1024 grid points, and the
time was sampled at Nt = 8000 grid points.

(corresponding to γ → ∞) we have γV0 → ∞. In this
limit the fermion transmission coefficient (and therefore
the fermion pair-creation rate) tends to infinity while the
bosonic coefficient approaches a finite value. As γ → ∞,
w → ∞, |q(E) − p(E)| is nearly the same as |q(E) + p(E)|
in this limit, the numerator in Eq. (2.3b) approaches zero, and
as a result the boson creation rate approaches a constant value
close to 566.7.

B. Force field moving with an adiabatically
changing velocity, X(t) = v(t)t

While the perfect agreement between the IRFT method and
the exact rates was expected for a potential that moves with
a constant velocity, the validity of this approach is not at all
clear if the potential accelerates. We have therefore studied a
force field V (x,t) = U [x − v(t)t] where the instantaneous
velocity v(t) was increased very slowly from v = 0 to
v(t) = 0.8c sin2[tπ/(2Tv)].

In Fig. 3 we show the corresponding rate computed as the
derivative of the numerical data for N (t) for a slowly and more
rapidly increasing velocity, corresponding to the time Tv =
0.0048 a.u. In order to avoid any pairs that were solely triggered
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FIG. 2. The pair-creation rate � as a function of velocity of
the potential barrier V (x,t) = U (x – vt). When the barrier’s speed
exceeds the critical velocity (0.312 25c), the creation rate increases
with velocity. The exact rates are obtained from the slopes of the
numerically obtained N (t), while the IRFT method is based on Hund’s
rule. V0 = 1.9c2, w = 0.5/c, the numerical box of length L= 1.0 a.u.
was discretized into Nx = 1024 grid points, and the time was sampled
at Nt = 8000 grid points.

due to a too abrupt turn on, the overall amplitude of the poten-
tial was turned on slowly from V0 = 0 to V0 = 1.9c2 during the
early time interval from −0.0005 a.u. < t < 0 a.u., while the
velocity was ramped up from v = 0 only after time t = 0 a.u.

We have also included in the figure the prediction due to
the IRFT method. The differences are due to two competing
mechanisms: A nonzero acceleration always leads to higher-
frequency components that would naturally increase the pair-
creation rate �. As the IRFT method is solely based on the
instantaneous velocity, it cannot account for this mechanism
and we would expect �IRFT < � in this regime. The early time
regime seems to be dominated by this mechanism. For longer
times a second (rate-suppressing) mechanism sets in. It is based
on the fact that the accelerating force field is able to catch up
with the particles that were created before. These particles can
inhibit the pair-creation process. As the IRFT method assumes
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FIG. 3. The creation rate � of electron-positron pairs as a function
of time t that were created by a moving potential barrier V (x,t) =
U (x – vt) whose velocity v increased slowly from v = 0 to v = 0.8c

during a time interval of duration Tv , as shown by the top curve. For
comparison, the prediction due to the IRFT method is shown by the
dashed line. Tv = 0.0024 a.u., V0 = 1.9c2, w = 0.5/c, the numerical
box of length L = 2.0 a.u. was discretized into Nx = 1024 grid points,
and the time was sampled at Nt = 16 000 grid points.
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that the front edge of the potential does not encounter these
particles, it naturally predicts a higher rate, � < �IRFT. The
data in the figures suggest that this is the dominant mechanism
for longer times. Overall, it is clear that in the adiabatic case the
method works fine, while for a rapidly changing velocity the
exact rate has an oscillatory behavior that cannot be predicted
from the approximate IRFT method. The latter predicts always
a monotonic dependence between the instantaneous velocity
and the pair-creation rate �. It is interesting to note, however,
that the temporally asymptotic rate after the oscillations have
damped out agrees very well again with the IRFT prediction.

C. Force field with sudden velocity reversals, X(t) = ±vt

We will now study the applicability of our method for a
potential that moves with constant speed, but reverses period-
ically its direction of motion instantly after time intervals of
length T each. We stress here again that due to the (infinite)
accelerations at specific times tn = nT (n = 1,2,3, . . . ) the
Lorentz transformation based formalism does not correctly
describe the pair-creation rate that a true (periodically acceler-
ated) noninertial observer (moving with the potential) would
detect.

In Fig. 4 we show the pair-creation rate as a function of time
for a simple case where the velocity changed instantaneously
from v = 0.8c to v = −0.8c. After the initial turn-on dependent
behavior, the instantaneous rate �(t) settles to a constant value
�∞, corresponding to approximately 254 particles per unit
time. This value agrees roughly with the one predicted by
the IRFT method for v = 0.8c, as indicated by the constant
dashed line.

At the moment the velocity reverses, the rate is momen-
tarily reduced even below zero, suggesting that the created
pairs are annihilated again. After a small delay of roughly
5 × 10−5 a.u. the acceleration dip is then followed by a drastic
spike, suggesting a strongly enhanced rate. The rate oscillates
and damps out from below to a constant value, approximately
�∞. As this transient behavior cannot be predicted by the
IRFT method, it is important to understand the mechanisms
responsible for this transient behavior. We should note that it
is not possible to predict the acceleration burst by the IRTF
method, as the Lorentz based technique only describes inertial
observers. In order to analyze the acceleration bursts we are
therefore confined to the lab frame, in which the barrier moves
to the right during the first half cycle. In order to test the
conjecture if the suppression is related to the Pauli blocking
for fermions, we have repeated the same simulation for bosons
and found that the pattern here is exactly opposite. Here the
velocity reversal is accompanied first by a spike in the rate,
and the IRFT rate is then approached from above.

In order to better estimate the time it takes for the true
creation rate � to approach the one predicted by the IRFT
method, we have shown in Fig. 5 the corresponding spatial
densities of the electron as well as positrons. We have outlined
in Appendix B how the corresponding densities ρ(e−; x,t)
and ρ(e+; x,t) can be computed. We just mention here that
for consistency, the area under these densities corresponds to
the total number of created particle pairs,

∫
ρ(e−; x,t)dx =∫

ρ(e+; x,t)dx = N (t).
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FIG. 4. The creation rate � of electron-positron pairs as a function
of time t that were created by a moving potential barrier V (x,t) =
U (x – vt) whose velocity v was reversed at time Tv , as shown by the
top curve. For comparison, the prediction due to the IRFT method
is shown by the dashed line. (a) reversal at time Tv = 0.0009 a.u.;
(b) reversal at time Tv = 0.0019 a.u. V0 = 1.9c2, w = 0.5/c, the
numerical box of length L = 2.0 a.u. was discretized into Nx = 1024
grid points, and the time was sampled at Nt = 16 000 grid points.

There are four distinct time regimes. The density in Fig. 5(a)
taken at time t = 2.0 × 10−4 a.u. (before the velocity reversal)
shows that the electronic and positronic densities have entirely
different shapes. This can be understood from the point of
view of a rest-frame observer that evolves with the potential
to the right with velocity v = 0.8c. In this frame the two
types of particles are ejected equally to both sides of the
potential, the electrons to the left and the positrons to the
right. The associated velocity distribution is a complicated
convolution of the velocity density at the moment of the
particles’ creation with the distribution due to the (almost
classical) after-acceleration in the force field [30]. If we
assume for simplicity that the majority of the particles are
created with vanishing speeds in the spatial region where the
force is maximum [corresponding to the potential V ′(x ′ =
0) = γV0/2], the energy conservation for a particle inside
and outside the force region, c2 + γV0/2 = (c4 + c2p′2)1/2

would predict the gained outgoing momentum p′ = ±{γV0 +
[γV0/(2c)]2}1/2. For our specific parameters (v = 0.8c and
V0 = 1.9c2) these particular momenta correspond to p′ =
±2.38c and correspondingly the particles’ velocities v′

p =
c2p′/[c4 + c2p′2]1/2 = ±0.922c. If we now transform these
two velocities back to the original frame (in which the potential
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FIG. 5. Temporal snapshots of spatial density of the electrons (solid) and positrons (dotted line) at four moments in time. The vertical
dashed line is the location of the force field. (a) t = 2.0 × 10−4 a.u.; (b) t = 8.9 × 10−4 a.u., the time when the velocity of the potential 0.8c

was reversed; (c) t = 1.02 × 10−3 a.u., after the reversal; (d) t = 2.51 × 10−3 a.u., after the force field has caught up with the priorly created
electrons. V0 = 1.9c2, w = 0.5/c, the numerical box of length L = 2.0 a.u. was discretized into Nx = 1024 grid points, and the time was
sampled at Nt = 16 000 grid points.

moves with a speed of v = 0.8c) via the usual velocity addition
rule, we find vp(e±) = (±v′

p − v)/(1 + v′
pv/c2), leading to

vp(e−) = −0.07c and vp(e+) = 0.99c. In other words, the
(right-going) positrons move with nearly the speed of light,
while the electrons are left behind almost at rest.

This drastic difference with respect to the emission veloc-
ities has also significant consequences for the corresponding
spatial densities. While the densities ρ ′(e±; x ′,t ′) are (except
for a mirror symmetry around x ′ = 0) identical, the Lorentz
transformed densities ρ(e±; x,t) (as seen in the lab frame) are
drastically different. We note that the area under both densities
is identical and also agrees with the corresponding area
observed in the rest frame of the potential,

∫
ρ(e±; x,t)dx =∫

ρ ′(e±; x ′,t ′)dx ′.
Figures 5(a) and 5(b) show that the electronic density

ρ(e−; x,t) that is left behind develops a quasitriangular shape
with a height max[ρ(e−; x,t)] = ρmax(e−) that does not depend
on time and whose location agrees with the position of the
maximum of the moving force. This constant value reflects
the steady-state ejection rate (particle number flux) from the
potential region. The length of the basis of the triangular
density increases in time and matches roughly the distance the
(maximum of the) force field has passed, L = 0.8ct + 0.07ct. It
is clear that therefore the area of this triangle increases linearly
in time as expected for the total number of particles.

While the electronic density is left behind to the left of
the potential, the created positrons are ejected faster than the

moving potential. As a result the corresponding density is
much higher as it is concentrated only in the smaller spatial
domain between the potential at x = 0.8ct and the light front
x = ct. In other words, the positronic density is about four and
a half times narrower than the electronic density, reflecting
the ratio of the extensions of the permitted spatial domains,
(0.8ct–0.07ct)/(0.99ct–0.8ct).

Figures 5(c) and 5(d) show the densities after the force
has reversed its velocity. The force “plows” through the for-
merly created triangular electronic density. This corresponds
precisely to the temporal region in Fig. 4 where the rate of
particle creation � is much below the rate �IRFT as predicted
by the IRFT method. The reason for this suppression is
obvious. The priorly created electrons could suppress the
pair-creation process due to Pauli blocking [26]. This is rather
interesting (and possibly even unexpected) as the existing
electrons occupy states with rather low momentum, while
the left-moving potential would generate new electrons with
a very large momentum (p = −2.38c) as we have shown
above. On the other hand, the left-moving potential leaves now
rather slowly moving positrons behind (on the right side of the
potential) that could annihilate directly with the (much earlier
created) electrons. This second mechanism would suggest
that the overall observed decrease of the rate is associated
with an annihilation of the newly created slow positions with
existing slow electrons rather than a direct reduction of the
pair-creation rate. But certainly a much more detailed analysis
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would be required to settle these interesting fundamental
questions.

The last snapshot [Fig. 5(d)] is taken close to a time when
the front edge of the left-going force field has caught up with
all slowly moving electrons. If we denote with tr the time the
potential has moved in one direction and tc the duration of the
additional time interval needed for the reversed force to catch
up, we can equate the two positions, −0.07c (tr + tc) = 0.8c

(tr − tc), and obtain tc = 1.2tr . At this moment t = 2.2tr the
suppression process comes to a halt and the rate is identical
to the value of the IRFT method, which is instantaneous and
always assumes that there are no priorly created particles in the
path of the moving force field. This mechanism gives us now an
estimate for the characteristic time scale after which the IRFT
method is accurate again. So the longer the time interval the
potential has to move in one direction, the longer it takes for the
IRFT method to be accurate again after the velocity reversal.
This scaling is fully consistent with the scales displayed
in Fig. 4.

In order to determine which parameters affect these tran-
sient sequences of acceleration caused bursts, we have varied
the velocity v of the potential below.

In Fig. 6 we show the rates for two velocity reversals for the
barrier. When the velocity changes between 0.64c and −0.64c,
the sudden spike in creation rate is higher as expected. After
this spike the creation rate settles down to a value (97.92),
which is within 1.95% of that given by the IRFT method.
When the velocity changes between 0.4c and −0.4c, after
the spike in the creation this rate also settles back down to a
value (4.49) also close to that predicted. When the velocity
changes between 0.08c and −0.08c, it is always significantly
less than the critical value of 0.312 25c and the IRFT method
fails completely to predict the acceleration burst in the rate.

In Fig. 7 we have kept the speed constant at ±0.5c, but
varied the spatial length of the barrier w where particles can
be created. As we kept the total potential height V0 unchanged,
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FIG. 6. The creation rate � of particle pairs as a function of time
t that were created by a moving potential barrier V (x,t) = U (x – vt)
whose velocity alternates instantly at times T = 0.0009n between
±0.08c (bottom), ±0.4c (middle), and ±0.64c (top). For comparison,
the prediction due to the IRFT method is shown by the dashed line.
V0 = 1.9c2, w = 0.5/c, the numerical box of length L = 1.0 a.u. was
discretized into Nx = 1024 grid points, and the time was sampled at
Nt = 8000 grid points.
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FIG. 7. The creation rate � of particle pairs as a function of time
t that were created by a moving potential barrier V (x,t) = U (x – vt)
whose velocity alternates instantly at times T = 0.0009n between
0.5c and −0.5c. The widths of the potentials are w = 0.55/c (top),
0.75/c (middle), and 1/c (bottom). For comparison, the prediction
due to the IRFT method is shown by the dashed line. V0 = 1.9c2, the
numerical box of length L = 1.0 a.u. was discretized into Nx = 1024
grid points, and the time was sampled at Nt = 8000 grid points.

an increase of the width w leads to a decreased electric field,
which then would decrease the pair-creation rate. The graphs
suggest that the change in the width of the electric potential
has no major effect on the delay of the creation rate spike, nor
on the overall shape of the graph, but narrower potentials do
create more particles.

D. Periodically oscillating force field, V (x,t) = U[x + v(t)t]

In the above cases, the velocity of the potential was instantly
reversed. We will now examine the validity of the IRFT method
for a force field that oscillates continuously back and forth,
v(t) = vsinωt . In the simulation displayed in Fig. 8, where the
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FIG. 8. The creation rate � of particle pairs as a function of time
t that were created by a potential barrier V (x,t) = U (x – vt) whose
velocity oscillates periodically with frequency ω = 0.836c2 between
±0.35c (bottom), ±0.55c (middle), and ±0.8c (top). For comparison,
the prediction due to the IRFT method is shown by the dashed line.
V0 = 1.9c2, w = 0.5/c, the numerical box of length L = 1.0 a.u. was
discretized into Nx = 1024 grid points, and the time was sampled at
Nt = 8000 grid points.
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v=0.6c+0.2c.sin(ωt)

v=0.6c+0.3c.sin(ωt)
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FIG. 9. The creation rate � of particle pairs as a function of time
t that were created by a potential barrier V (x,t) = U (x – vt) whose
velocity oscillates periodically with frequency ω = 0.836c2 with a
constant background velocity. For comparison, the prediction due to
the IRFT method is shown by the dashed line. V0 = 1.9c2, w = 0.5/c,
the numerical box of length L = 1.0 a.u. was discretized into Nx =
1024 grid points, and the time was sampled at Nt = 8000 grid points.

barrier’s velocity oscillates as a sine function, it is clear that
the creation rate has no sudden spike but instead increases and
decreases smoothly. In addition, the amplitude of the creation
rate graph increases as the amplitude of the velocity function
increases.

Unlike the graph of a creation rate for a potential that has a
constant velocity, the creation rate does not seem to approach
the value given by Fig. 2 or predicted by the IRFT method.
The pair-creation rate appears to oscillate with a frequency
which is twice the frequency of the velocity function, which
makes sense as positive and negative velocities lead to the
same creation rate.

We conjecture that the mismatch between the exact rate and
the one predicted by the IRFT method is due to the unavoidable
existence of priorly created particles that come in and out of the
interaction zone. We have demonstrated in the spatial density
graphs of Fig. 5 that this “catch-up” mechanism leads to a
smaller rate than predicted by the IRFT method.

In order to distinguish between the competing effects due
to the acceleration and the importance of the catch-up phe-
nomenon (described previously), we have performed a similar
simulation as in Fig. 8, but this time the oscillatory motion
is superimposed by a constant velocity, v(t) = v1 + v2 sin ωt

in order to simulate a forward drift. If v1 > v2 the force field
cannot return to those spatial regions in which particles where
created in the past. In this way we can minimize the interaction
of the front edge of the force field and priorly created particles.

In Fig. 9 we see an overall rather good agreement between
the IRFT method and the exact data. The agreement is best
for v1 = 0.6c and v2 = 0.2c shown by the upper panel.
Here the true rate � is positive at nearly all times. It is
rather interesting to observe that precisely during those time
intervals when the velocity decreases from its maximum value
the IRFT method overestimates the rate, whereas during most
of the positive acceleration phases it underestimates the rate.
At those instants of time when the velocity is maximum, the
acceleration vanishes and the IRFT method overestimates the

maximum rate. The fact that the IRFT method and the exact
rate predict the precise times when the rates are maximum also
suggests that the pair-creation mechanism responds without
any appreciable delay to the changes in the velocity.

The middle panel shows the dynamical response for the two
velocities v1 = 0.6c and v2 = 0.3c, where there are moments
in time when the total velocity is below critical as indicated by
the time intervals when �IRFT = 0. While the moments in time
at which the rate peaks are still rather accurately predicted by
the IRFT method, it overestimates the rates when v = 0.9c.

In the situation depicted in the bottom panel (v1 = 0.4c and
v2 = 0.4c) the potential can come to a complete stop. These
extended regions are characterized by a negative rate � < 0. As
the IRFT method is not able to predict a negative rate �IRFT for
any velocity, it is not surprising that it is not valid here. But it
works still qualitatively well in cases where the true dynamics
has a positive rate �. We also note that the true maximum
rate is not observed to occur at those times when the speed is
maximum (v = 0.8c).

It is worth mentioning that the adiabatic parameter [29]
defined as χ = eE/(mcω) comes out to be roughly 4.5 for
the runs presented in Figs. 8 and 9. This means that indeed
we are in the adiabatic rather than the multiphoton limit. In
this estimate we assumed E � V/w = 1.9c2/(0.5/c) = 3.8c3,
which may not be an accurate estimation as the potential
determines the dynamics for a localized field and not nec-
essarily the electric field. It is also interesting to note that
while the numerical value for χ in Figs. 8 and 9 is the same,
the match with the IRFT method is much better for Fig. 9.
The introduction of the drift in this figure is thus important in
addition to parameter χ .

E. Uniform motion of a binding force field

In the sections above, we focused on a time-dependent
barrier and found that even a subcritical potential can trigger
the pair creation if it moves with a sufficiently large speed.
In this section we will show that the pair creation triggered
by a force field that represents a binding potential well is
surprisingly rather different than that associated with a moving
barrier. We will see that here the threshold behavior for the
critical velocity differs for fermions and bosons, in fact there
are multiple thresholds, and also their long-time pair creation is
different. As we restrict our analysis here on a binding potential
that moves with a constant velocity, the IRFT method is exact.
The Hund rule, however, is no longer applicable and we could
use numerical diagonalization techniques instead.

The pair creation associated with a moving binding
potential has been studied in the past in the context of
the collisions of two relativistic heavy ions [1]. Here the
phenomenological Hamiltonian describes a moving Coulomb
potential to model the motion of the two ions. In our numerical
study below, we choose a one-dimensional localized well
V (x) = V0[S(x + D

2 − vt) − S(x − D
2 − vt)], where D is the

extension of the potential well and v is its velocity. The
function S(x) is again the smooth step function (Sauter
potential) as we used in the prior sections. Even though our
model is simple, it can give us some insight into how the
motion affects the pair production process. To be specific, we
have chosen a subcritical peak potential value V0 = 1.6c2 and
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FIG. 10. The number of particle pairs N as a function of time t

that were created by a potential well V (x,t) = U (x – vt) moving with
three velocities. The top (bottom) is for fermions (bosons). The inset
shows the long-time behavior of the boson on a logarithmic scale.
V0 = 1.6c2, w = 0.3/c, D = 6.4/c, the numerical box of length
L = 1.0 a.u. was discretized into Nx = 1024 grid points, and the time
was sampled at Nt = 8000 grid points.

a width of each edge equal to w = 0.3/c. In this case any pair
production is entirely induced by the time dependence of the
potential.

To get started, we display in Fig. 10 the time dependence of
the number of created particles for three velocities, v = 0.664c,
0.746c, and 0.828c for fermions and v = 0.664c, 0.729c, and
0.773c for bosons.

The graphs reveal a qualitative difference between the
fermionic and bosonic behavior.

While for fermions the signal N (t) rises, its slope reduces
and after a very long time it saturates to a constant value; for
bosons the particle number increases exponentially [31] after
the initial phase. To confirm this long-time exponential feature,
we display in the inset of Fig. 10 N (t) for v = 0.773c on a
logarithmic scale.

The saturation for fermions and the exponential growth for
bosons in Fig. 10 is well expected from previous works on
time-independent, but supercritical, potential wells [31,32].
For fermions the Pauli blocking prohibits the continued
creation of fermions as the bound states associated with the
potential get occupied [33]. For bosons a kind of inverse
process is observed. The spontaneous-emission-like process
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FIG. 11. The final number of particle pairs N as a function of
the velocity v of the moving potential well V (x,t) = U (x – vt). The
top (bottom) is for fermions (bosons) at final time t = 0.008 a.u.
(t = 0.0065 a.u.). The parameters are the same as in Fig. 10.

for bosons enhances the pair creation. Here the occupation of
bosonic bound states actually induces an even more rapid pair
creation. This leads to an exponential-like growth of the pair
creation where the exponent is a function of the single barrier
creation rate and the edge to edge separation as was discussed
in Ref. [31].

In order to find out the factors that affect the long-time
creation behavior for different velocities v of the potential
well more systematically, we display the particle number at
the final time as a function of the velocity v in Fig. 11 for both
systems. We see that the particle number is rather small and
practically negligible for small velocities but then increases
after v exceeds a critical value. This behavior is similar to that
shown in Fig. 2 for the moving barrier. However, the critical
values for fermions and bosons are different. For our choice
of parameters (V0 = 1.6c2) the critical velocity (for a single
barrier) according to Eq. (4.1) would amount to vcrit = 0.6c.
As we will show below for both systems the true onset of pair
creation occurs at slightly larger velocities, vcrit = 0.623c (for
fermions) and v = 0.616c (for bosons). This suggests that the
corresponding criteria for a potential barrier and potential well
are different and also differ for fermions and bosons.

In addition to the different onset, both graphs also reveal
a stepwise growth of N (t), suggesting that there is more than
just a single relevant characteristic velocity. We have marked
the corresponding discrete velocity values by the arrows in
the figure. We note that the pair-creation rate increases very
sharply after these velocities.
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Due to the (temporally) constant velocity for each sim-
ulation, the IRFT method is exact and we can analyze our
potential in its own rest frame where it is given by γV (x ′/γ ).
To develop the criterion for the onset of supercriticality and to
understand the step structure of Fig. 11, we analyze below the
spectrum for the corresponding full Hamiltonians based on the
static potential γV (x ′/γ ).

In contrast to the barrier where the onset of supercriticality
is given by the height of the barrier (V0 > 2c2) a binding
potential can generate pairs if the energy of its lowest-lying
bound state is below −c2; i.e., it is embedded into the negative
energy continuum. This is referred to as bound state “diving”
into the Dirac sea [33].

In Fig. 12 we display the lower-energy spectrum of the
Hamiltonian with the potential γV (x ′/γ ) as a function of
the velocity. As we increase v the parameter γ increases
leading to an increasing binding strength γV0 as well as a
spatial widening of the IRFT potential. As the potential gets
deeper and wider, more discrete bound states can dive into
the negative energy continuum. For example, in the case
of the fermionic system, starting at vcrit = 0.629c, 0.694c,
and 0.746c, we have one, two, and three bound states in
the continuum, whereas the bosonic system requires the
velocities 0.621c, 0.677c, and 0.732c, respectively. We note
that while the IRFT potential is identical for each system,
the stationary Dirac and Klein-Gordon Hamiltonians of
Eqs. (2.1a) and (2.1b) predict different spectra.

The numerical values for the four lowest critical velocities
read of the spectra match very well the onset velocities for an
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FIG. 12. The energy spectrum as a function of the velocity v

for the fermionic (top) and bosonic (bottom) systems. V0 = 1.6c2,
w = 0.3/c, D = 6.4/c, and the numerical box of length L = 0.5 a.u.
was discretized into Nx = 512 grid points.

increased number of particle pairs as displayed in Fig. 11 by
the arrows. It is therefore clear that the step structure of N (t)
as a function of the velocity is directly related to the additional
bound states that have dived into the negative continuum.

V. DISCUSSION AND OUTLOOK

The purpose of this work has been to introduce a com-
putational method to calculate the pair-creation rate caused
by arbitrary external force fields and to examine its accuracy.
It is based on mapping the time-dependent potential onto an
approximate but static one, for which various computational
methods (such as Hund’s rule or numerical diagonalization)
are available. While it is, in principle, approximate in nature
it can provide access to estimating the pair creation yield for
any three-dimensional electromagnetic configuration. In this
paper we have focused on two special cases of potentials.
They were assumed to be subcritical at rest and their time
evolution was assumed to be shape invariant; i.e., V (x,t) =
U [x − X(t)]. While these constraints are not severe with
respect to describing the fields of moving nuclei, studies for
more general space-time dependencies should be performed.

In principle, any general time-dependent (even subcritical)
force should be able to trigger the creation of electron and
positron pairs due to unavoidable transitions of the negative to
the positive energy states. However, the IRFT method when
applied to the special case of a uniformly moving potential
predicts a sharp threshold velocity below which no pairs are
created. It is presently not clear how this threshold could be
predicted from an (equivalent) picture that is based on the
energy spectrum of the potential, which should be sufficiently
broad to contain frequencies that could trigger multiphoton
transitions. In future work it would be interesting to explore
whether a general condition can be found to determine whether
a completely general potential V (x,t) has the capacity to
produce particle pairs.

We also point out that it is nontrivial to obtain the
most effective instantaneous velocity that is required for the
IRFT method. The special case of shape-invariant poten-
tials of the form U [x − X(t)] leads to a unique velocity
vi = ∂X/∂ti at this particular instant in time ti . Similarly,
if the total potential was characterized by two different
velocities, U [x − X1(t)] + U [x − X2(t)], we would formally
obtain the average vi = [∂(X1 + X2)/∂ti]/2 for the effective
instantaneous speed. However, it should be obvious that
this collective choice for vi would not be suitable for the
IRFT method, which would significantly underestimate the
true pair-creation rate. In an ideal situation, one could try
to decompose the potential into individual shape-invariant
portions, V (x,t) = ∑

α Uα[x − Xα(t)], and then apply to the
IRFT method to each component Uα[x − Xα(t)] separately.
But from a mathematical point of view, it is very challenging
to construct the corresponding transformation schemes to
decompose a general space-time dependent potential V (x, t)
into its shape-invariant contributions Uα[x − Xα(t)].

Alternatively, in the more general case for V (x, t)
the instantaneous velocity is defined via the ratio of the
temporal and spatial derivative of the potential, vi(x) ≡
−[∂V (x,ti)/∂ti]/[∂V (x,ti)/∂x], as we argued in Sec. III. This
potential is characterized by a position-dependent velocity.
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The majority of the particles are usually created in those spatial
regions where the corresponding amplitude of the electric
field E(x,ti) = −∂V (x,ti)/∂x is largest, max[|E(x,ti)|] =
|E(xmax,ti)|. We might therefore select vi(xmax) as the effective
instantaneous velocity required for the IRFT method, but much
more systematic studies to test these conjectures are necessary.
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APPENDIX A: NUMERICAL SOLUTIONS OF QED

The quantum field for a particle can be expressed as a sum
(or integral) over the force-free plane wave states:


̂(x,t) =
∑

p

b̂p(t)Wp(u; x) +
∑

p

d̂†
p(t)W−p(d; x). (A1)

Here the states Wp(u; x) and Wp(d; x) are the positive
and negative energy solutions to the Dirac or Klein-Gordon
equation in the absence of any potential, i.e., the plane
wave solutions. b̂p and d̂p are the annihilation operators
for the particle and antiparticle, respectively. Together with
the respective creation operators b̂

†
p and d̂

†
p they satisfy the

anticommutator relations {b̂p, b̂
†
p′ } = δpp′ and {d̂p, d̂

†
p′ } =

δpp′ for electrons and positrons, and commutator relations
[b̂p, b̂†p′ ]= δpp′ and [d̂p, d̂†

p′ ]= δpp′ for bosons and antibosons,
where for our numerical discretized system the delta functions
δpp′ are Kronecker deltas.

The quantum field theoretical Hamiltonian Ĥ of a particle
coupled to an external field is expressible in terms of the first-
quantized Dirac Hamiltonian h as Ĥ = ∫

dx
̂(x,t)†hF 
̂(x,t)
for fermions and Ĥ= ∫

dx
̂(x,t)†σ3hB
̂(x,t) for bosons. It
should be noted that, while this Hamiltonian fully accounts
for the interaction of the particle to the external field through
the minimum coupling principle, which is contained in h, it
neglects all internal forces between particles and antiparticles.

The particle annihilation operator b̂p(t) must satisfy the
Heisenberg equation i�b̂p(t)/�t = [b̂p(t),Ĥ ], and similarly
for the antiparticle operator d̂p(t). It follows that the field
operator 
̂(x,t) must also follow the Heisenberg equation,
i�
̂(x,t)/�t = [
̂(x,t),Ĥ ]. Furthermore, since the field
operator 
̂(x,t) also contains states Wp(u; x) and Wp(d; x),
it also satisfies the Schrödinger-like equation i�
̂(x,t)/�t =
h
̂(x,t). The time dependence in the field operator Eq. (A1)
may therefore be transferred from the creation and annihilation
operators to the states,


̂(x,t) =
∑

p

b̂pWp(u; x,t) +
∑

p

d̂†
pWp(d; x,t), (A2)

where we have b̂p(t) =∑
p′ b̂p′ 〈u; p|U (e−,t)|u; p′〉 + ∑

p′ d̂
†
p′

〈u; p|U (e−,t)|d; p′〉 and similarly for d̂
†
p(t). The field

operator 
̂(x,t) can therefore be constructed from the solutions
Wp(u; x,t) and Wp(d; x,t) with 〈u; p|U (t)|d; p′〉 for fermions
and 〈u; p|σ3U (t)|d; p′〉 for bosons.

As a side comment, we note that the Hamiltonian for the
bosonic system is non-Hermitian, but we can generalize the
definition of a Hermitian conjugate for the Klein-Gordon
equation. If we redefine the left-hand side eigenvector as
〈Ē|g = (σ3|E〉)†, then the Hamiltonian hB is generalized
Hermitian as hB = h̄B , where h̄B = σ3h

†
Bσ3.

APPENDIX B: THE TIME EVOLUTION OF THE SPATIAL
PROBABILITY DENSITIES ρ(e±; x, t)

We note that the total charge density would not allow us
to distinguish between the density of the individual electrons
and positrons. For example, if an electron and a positron have
identical spatial probability densities, then the total charge
density could be zero, as if there were no particles at all. It
is also therefore not possible to compute the total number
of created electron-positron pairs directly from the charge
density. In order to be able to distinguish both cases, we have
to compute also a spatial probability density for both particles.
Consistent with prior works [34], we propose here to define
spatial probability densities that are based on the assumption
that we can separate the total electron-positron field operator
into a positronic and electronic portion,


(t) = 
(e−; t) + C
(e+; t). (B1)

We would obtain 
(e−; t) ≡ �u
 and 
(e+,t) ≡ �uC
C,
where �u is the positive energy subspace projector and where
C is the charge conjugation operator. This definition allows
us also to compute the total number of particles. If we insert
the time evolution of the creation and annihilation operators
and use their action on the Fock-space operators Cb−p(t) =
b
†
−p(t)C and Cd

†
−p(t) = d−p(t)C, we obtain


(e−; t) =
∑

p

bp(t)Wp(u)

=
∑

p

∑
p′

[bp′ 〈u; p|U (e−,t)|u; p′〉

+ d
†
−p〈u; p|U (e−,t)|d; p′〉]Wp(u), (B2a)


(e+; t) =
∑

p

d−p(t)W−p(d)

=
∑

p

∑
p′

[b†p′ 〈d; p|U (e−,t)|u; p′〉∗

+ d−p′ 〈d; p|U (e−,t)|d; p′〉∗]W−p(d), (B2b)

where U (e−,t) is the time evolution operator based on
the electronic Hamiltonian (2.1a). In order to construct the
probability densities associated with these definitions from an
initial field theoretical (second-quantized) state |�〉 we would
compute

ρ(e−; x,t) = 〈�(t = 0)|
(e−; t)†
(e−; t)|�(t = 0)〉, (B3a)

ρ(e+; x,t) = 〈�(t = 0)|
(e+; t)†
(e+; t)|�(t = 0)〉. (B3b)
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It is now straightforward to compute the elec-
tronic probability density ρ(e−;x,t) for the vacuum state
|�(t = 0)〉 = |vac〉 and obtain

ρ(e−; x,t) =
∑
p′

∣∣∣∣∣
∑

p

〈u; p|U (e−,t)|d; p′〉Wp(u; x)

∣∣∣∣∣
2

, (B4a)

and similarly for the positronic density ρ(e+;x,t),

ρ(e+; x,t) =
∑
p′

∣∣∣∣∣
∑

p

〈d; p|U (e−,t)|u; p′〉∗W−p(d; x)

∣∣∣∣∣
2

.

(B4b)

Here we have used 〈u; p′|CU (e−,t)|u; p〉 =
〈d; −p|U (e−,t)|u; p〉 = −〈u; p|U (e−,t)|d; −p〉∗.

As a last consistency check we note that the total
number of particles, given by N (t) = ∑

p 〈b†p(t)bp(t)〉 =∑
p 〈d†

p(t)dp(t)〉 can also be obtained from the integral over

both spatial densities,

N (t) =
∫

dxρ(e−; x,t) =
∫

dxρ(e+; x,t)

=
∑

p

∑
p′

|〈u; p′|U (e−,t)|d; −p〉|2. (B5)

From this quantity, the instantaneous rate of pair production
can be defined as �(t) = dN(t)/dt.

According to Eq. (B5), the total number of particle-
antiparticle pairs produced as a function of time by a
potential V (x, t) can be found easily as long as the initial
states of the system are given. We have therefore solved
the Dirac equation for fermions and Klein-Gordon equation
with a split-operator algorithm [35–37] with a numerical
box of length L with periodic boundary conditions, and
we have used up to Nx = 2014 and Nt = 10 000 space-
and time-grid points. For our parameters this discretization
scheme gave converged results with a numerical error of less
than 1%.
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