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Kochen-Specker set with seven contexts
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The Kochen-Specker (KS) theorem is a central result in quantum theory and has applications in quantum
information. Its proof requires several yes-no tests that can be grouped in contexts or subsets of jointly measurable
tests. Arguably, the best measure of simplicity of a KS set is the number of contexts. The smaller this number is,
the smaller the number of experiments needed to reveal the conflict between quantum theory and noncontextual
theories and to get a quantum vs classical outperformance. The original KS set had 132 contexts. Here we
introduce a KS set with seven contexts and prove that this is the simplest KS set that admits a symmetric parity
proof.
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I. INTRODUCTION

The Kochen-Specker (KS) theorem [1,2] underlies a subtle
but fundamental difference between classical and quantum
theories. It shows that when describing systems with more
than two distinguishable states quantum theory, unlike its
classical counterpart, is incompatible with the assumption of
outcome noncontextuality. This means that there are quantum
tests whose outcomes cannot be predefined prior to the actual
tests in a way that they do not depend on the test’s context,
that is, on the choice of jointly measurable tests which might
be performed together.

A standard proof of the theorem relies on a construction
of a so-called KS set of quantum yes-no tests. The tests
of a KS set are represented by rank-one projectors (or by
the corresponding vectors), which are designed in a way
making an assignment of the outcomes satisfying outcome
noncontextuality impossible. More precisely, a KS set in
dimension d is defined as a set S of d-dimensional complex
vectors, with d � 3 and with the property that there is no map
f : S → {0,1} such that, for any context (represented by an
orthogonal basis in S), one and only one of the vectors is
mapped to 1 [3].

Besides KS sets, there are two other ways of proving the
KS theorem. One uses general operators instead of rank-one
projectors [4,5]. Proofs of this type can be expressed in terms
of KS sets [6,7]. The other way is based on sets of vectors
that permit one to derive a noncontextuality (NC) inequality
violated by any quantum state [8–10]. These sets of vectors
are either KS sets or subsets of them (see Ref. [11] for details).
In other words, KS sets are behind all types of proofs of the
KS theorem.

The construction of KS sets is highly relevant for the
foundations of physics, not only because KS sets provide a
proof by contradiction of the incompatibility between quantum
theory and noncontextual realism (the KS theorem) but also
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because, assisted with maximally entangled states, KS sets pro-
vide a proof by contradiction of the incompatibility between
quantum theory and local realism (the so-called KS theorem
with locality [12] or free-will theorem [13,14]). KS sets can
also be used to design experimental tests to show the quantum
state independent violation of NC inequalities [15–19] and
to design experimental tests for detecting fully nonlocal
correlations [20]. In quantum information, KS sets are used in
quantum pseudotelepathy nonlocal games [21,22]; in games
with quantum state independent advantage [19], for providing
security against classical attacks to quantum cryptographic
protocols based on complementarity [23,24]; and for single-
shot entanglement-assisted zero-error communication [25,26].

The KS set in the original proof of the KS theorem [2]
contains 117 vectors. This number is too high for a proof of
such a fundamental result and also for practical applications.
This motivated the search for more economical KS sets and
simpler proofs of the KS theorem. Recently, it has been
shown [3,27,28] that the KS set with the smallest number of
vectors has 18 vectors in d = 4. A set like that was introduced
in Ref. [29]. It has also been proven [11] that the simplest proof
of the KS theorem with a set of vectors which is not a KS set
needs 13 vectors in d = 3. A proof like that was introduced in
Ref. [8].

Nevertheless, it has been frequently pointed out [3,30,31]
that the above assessments of the proof’s simplicity are not
the most relevant, since the proofs of the KS theorem tacitly
refer to many more vectors than those explicitly stated. This is
so because the traditional way of counting vectors only takes
into account those vectors that do not admit a KS valuation (in
the case of KS sets) or that explicitly appear as variables in
the state independent NC inequality (in the case of proofs with
sets that are not KS sets). As remarked in Ref. [31], “[t]his
question of the actual size of a concrete KS set is important
not so much for determining the record of the smallest such
set, but for an experimental realisation, which actually involves
procedures equivalent to basis.” According to this observation,
the physically relevant measure of simplicity of a proof of the
KS theorem is the number of bases, which corresponds to the
number of contexts in the KS set.
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In this sense, the original proof of the KS theorem
required 132 contexts in d = 3 [2]. The KS sets in d =
3 with the smallest number of vectors require 40 [6],
37 [32], and 36 contexts [33], respectively. The 13-vector
proof of Ref. [8] requires 16 contexts. The KS set with
the smallest number of vectors requires nine contexts [29].
No other known proof requires a smaller number of con-
texts. Significantly, these last two sets are, so far, the only
ones that have been implemented in experiments [19,34].

A fundamental open question is, Which is the proof of the
KS theorem with the smallest number of bases? The aim of this
article is to answer this question. In Sec. II we show that there
is a KS set requiring only seven bases in d = 6. In Sec. III,
we prove that, up to two natural assumptions, there is no KS
set or proof of the KS theorem with yes-no tests requiring a
smaller number of contexts. In addition, in Sec. IV, we use the
KS set introduced in Sec. II to derive a NC inequality which
is violated by any quantum state in d = 6.

II. A SEVEN-CONTEXT KS SET

Consider the following seven orthogonal bases in d = 6:

B1 = {(1,0,0,0,0,0),(0,1,0,0,0,0),(0,0,1,0,0,0),(0,0,0,1,0,0),(0,0,0,0,1,0),(0,0,0,0,0,1)}, (1a)

B2 = {(1,0,0,0,0,0),(0,0,1,1,1,1),(0,1,0,1,ω,ω2),(0,1,1,0,ω2,ω),(0,1,ω,ω2,0,1),(0,1,ω2,ω,1,0)}, (1b)

B3 = {(0,1,0,0,0,0),(0,0,1,1,1,1),(1,0,0,1,ω2,ω),(1,0,1,0,ω,ω2),(1,0,ω2,ω,0,1),(1,0,ω,ω2,1,0)}, (1c)

B4 = {(0,0,1,0,0,0),(0,1,0,1,ω,ω2),(1,0,0,1,ω2,ω),(1,1,0,0,1,1),(ω,ω2,0,1,0,1),(ω2,ω,0,1,1,0)}, (1d)

B5 = {(0,0,0,1,0,0),(0,1,1,0,ω2,ω),(1,0,1,0,ω,ω2),(1,1,0,0,1,1),(ω2,ω,1,0,0,1),(ω,ω2,1,0,1,0)}, (1e)

B6 = {(0,0,0,0,1,0),(0,1,ω,ω2,0,1),(1,0,ω2,ω,0,1),(ω,ω2,0,1,0,1),(ω2,ω,1,0,0,1),(1,1,1,1,0,0)}, (1f)

B7 = {(0,0,0,0,0,1),(0,1,ω2,ω,1,0),(1,0,ω,ω2,1,0),(ω2,ω,0,1,1,0),(ω,ω2,1,0,1,0),(1,1,1,1,0,0)}, (1g)

where ω = e2πi/3. For simplicity, normalization factors are
omitted.

The seven bases in Eq. (1) contain 21 different vectors.
Each vector belongs to two bases. The proof that the vectors in
Eq. (1) constitute a KS set is straightforward: to map one and
only one of the vectors in each basis to 1, only seven vectors
in Eq. (1) must be mapped to 1. However, since each vector
belongs to two bases, any mapping forces one to map to 1 an
even number of vectors. This makes the mapping impossible.

The new KS set is represented in Fig. 1. The seven bases are
represented by straight lines and each vector is represented as
a node. The pair of numbers ij , with i < j , denotes the vector
common to bases Bi and Bj .

This seven-context 21-vector KS set does not only improve
the current record of contexts in any d [29] and the current
record of vectors in d = 6 [35] but, more importantly, as
proven in the next section, constitutes the symmetric parity
proof of the KS theorem (defined later) requiring the smallest
number of contexts in any d.

III. PROOF THAT THE SEVEN-CONTEXT KS SET IS THE
SYMMETRIC PARITY PROOF WITH THE SMALLEST

NUMBER OF CONTEXTS

Any set of d-dimensional vectors can be associated to a
graph G in which vectors are represented by vertices such that
two vertices in G are adjacent if and only if the vectors that they
represent are orthogonal. Orthogonal bases then correspond to
cliques of size d in G (i.e., sets of d mutually adjacent vertices).
A set of d-dimensional vectors allows for a proof of the KS
theorem only if, in the corresponding G, the minimum number
of colors needed to color all vertices avoiding adjacent vertices

to have the same color [i.e., the chromatic number of G, χ (G)]
is strictly greater than d [11].

The KS set with the smallest number of bases previously
known, namely the one in Ref. [29], has two extra properties
which make it particularly appealing: (1) Its G is vertex
transitive, i.e., given any two vertices v1 and v2 of the vertex set
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FIG. 1. Orthogonality relations between the vectors of the seven-
context KS set. Vectors are represented by nodes, and contexts (bases)
are represented by straight lines. The pair of numbers ij , with i < j ,
denotes the vector common to bases Bi and Bj in Eq. (1).
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TABLE I. “FCVT” indicates the number of fully contextual
vertex-transitive connected graphs on n � 31 vertices. If a particular
n is not in the table, this means that there are no FCVT graphs with
n vertices. “PFCVT” gives the number of FCVT graphs with an odd
number of cliques of maximum size and every vertex belonging to
an even number of cliques of maximum size. The number of cliques
of maximum size is indicated in brackets. “KS sets” indicates the
number of symmetric parity KS sets. The dimension of the vectors
is in brackets. Numbers in boldface correspond to graphs analyzed
in detail. “?” indicates that we have not analyzed these graphs, since
they cannot produce simpler proofs of the KS theorem.

Vertices FCVT PFCVT (bases) KS sets (dim.)

10 1 1 (5) 0
16 2 0 0
18 3 1 (9) 1 (4)
20 24 5 (5) 0

1 (25) 0
21 4 3 (7) 1 (6)
24 113 0 0
25 5 0 0
26 11 7 (13) ? (4)
27 22 12 (9) ? (6)

1 (27) ? (6)
28 46 0 0
30 468 30 (15) ? (4)

3 (45) 0 (4)
1 (405) 0 (4)
14 (5) 0
1 (125) 0 (12)

of G, denoted as V , there is some automorphism f : V → V

such that f (v1) = v2; and (2) its G has an odd number of
cliques of size d, while each vertex belongs exactly to an even
number of them. Any proof of the KS theorem having property
2 is called a parity proof, since the proof immediately follows
from a simple parity argument. Any proof of the KS theorem
having properties 1 and 2 is called a symmetric parity proof.
Any KS set having properties 1 and 2 is called a symmetric
parity KS set.

The first parity KS set was found by Kernaghan [36] and the
first symmetric parity KS set is the one in Ref. [29]. Parity KS
sets for systems of two, three, and four qubits have received
special attention [37–41].

Our purpose is to prove that the KS set presented in the
previous section is the symmetric parity proof of the KS
theorem with the smallest number of contexts.

The proof is as follows. For any parity KS set, the graph G in
which adjacent vertices represent orthogonal vectors is a fully
contextual graph [42], namely, α(G) < ϑ(G) = α∗(G), where
α(G), ϑ(G), and α∗(G) are the independence number, Lovász
number, and fractional packing number of G, respectively (for
definitions, see Appendix A and Refs. [43,44]). We generate
all connected graphs with at most 31 vertices that are both fully
contextual and vertex transitive (see Appendix B for details).
The number of graphs that are both fully contextual and vertex
transitive are in column “FCVT” in Table I.

If we add the restriction that the number of cliques of
maximum size is odd and that every vertex belongs to an

even number of them, then the number of graphs reduces
substantially (see column “PFCVT” in Table I). Only a few of
them have nine or less bases.

The first interesting graph, in boldface in Table I, is a
ten-vertex graph called the Johnson J (5,2) graph. It does not
correspond to a KS set, since the maximum size of the cliques
is 4, while the graph does not admit a representation with
vectors of d = 4, but requires vectors of dimension 6 [45] (see
Appendix C for a proof). This graph also cannot be used for a
proof of the KS theorem without KS sets, since its chromatic
number is 5.

The second interesting graph, in boldface in Table I,
corresponds to the nine-basis 18-vector KS set in Ref. [29].

Then we have five graphs corresponding to five-basis 20-
vector sets. None of them corresponds to a parity KS set, since
all of them contain a graph that does not admit a representation
in d = 8. In addition, none of them can be used for a parity
proof without KS sets, since the chromatic number of the
common graph is 10, while there is no representation of it in
d = 9 (see Appendix C for a proof).

The fourth interesting entry in Table I are the three graphs
corresponding to seven-basis 21-vector sets. All these graphs
have the graph corresponding to the seven-basis 21-vector KS
set introduced in this article as a subgraph.

For graphs with a higher number of vertices, we have
focused on those graphs that have exactly five cliques of
maximum size in column “PFCVT” in Table I. There are 14
of them. All of them correspond to five-basis 30-vertex sets.
However, none of them is a parity KS set, since all of them
contain a subgraph that does not admit a representation in
d = 12. In addition, none of them can be used for a parity proof
without KS sets, since the common subgraph has chromatic
number 15, while there is no representation in d = 14 (see
Appendix C for a proof).

Our exploration is exhaustive up to graphs on 31 vertices.
Moreover, for symmetric fully contextual graphs with more

vertices, the only PFCVT graphs with exactly five cliques
of maximum size are 10k-vertex graphs with five cliques of
maximum size 4k containing an orthogonality structure that
can be represented by a Johnson J (5,2) graph, assuming that
each vertex of the Johnson represents a clique of size k. The
only other vertex-transitive graphs with exactly five cliques
of maximum size are the 5k-vertex graphs with five cliques
of maximum size 2k that can be represented by a pentagon,
assuming that each vertex in the pentagon represents a clique
of size k. However, these graphs are not fully contextual.

The 10k-vertex J (5,2) graphs have already appeared in
Table I for k = 1,2,3. None of these graphs can be a KS set,
since they do not admit a representation in dimension 4k (see
Appendix C for a proof). Moreover, none of them can be a
proof of the KS theorem without KS sets, since these graphs
have chromatic number 5k but do not admit a representation
in dimension 5k − 1 (see Appendix C for a proof).

Clearly, no symmetric parity proof exists with exactly three
cliques: Corollary 7.5.2 in Ref. [46] implies that for a n-vertex
vertex-transitive graph G we have α(G)ω(G) � n. As always,
α(G) denotes the size of the largest independent set in G

(the independence number of G) and ω(G) denotes the clique
number of G, i.e., the size of the largest clique in G. Since KS
graphs are not complete, we have α(G) � 2, and ω(G) � n/2
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follows. Assuming that each vertex is in two or more cliques
leads to 2n � 3ω(G) � 3n/2, which is impossible.

From this, we can conclude that the KS set presented in this
article is the symmetric parity KS set and the symmetric parity
proof of the KS theorem having the smallest number of bases.

IV. QUANTUM STATE INDEPENDENT
NONCONTEXTUALITY INEQUALITY

Here we obtain a quantum state independent NC inequality
starting from the KS set introduced before. There is a
general method for producing a quantum state independent
NC inequality from any KS set [16]. However, here we exploit
the extra symmetries of the seven-context KS set to end up
with a very compact inequality.

Consider 21 observables Aij , with i,j = 1, . . . ,7 and i < j ,
each with possible results −1 and +1. For any theory satisfying
outcome noncontextuality, the following NC inequality is
satisfied:

S = −〈A12A13A14A15A16A17〉 − 〈A12A23A24A25A26A27〉
−〈A13A23A34A35A36A37〉 − 〈A14A24A34A45A46A47〉
−〈A15A25A35A45A56A57〉 − 〈A16A26A36A46A56A67〉

−〈A17A27A37A47A57A67〉
NCHV
� 5, (2)

where 〈. . .〉 denotes the mean value of the product of the
outcomes.

By choosing the following quantum observables,

Aij = 2|vij 〉〈vij | − 1, (3)

with the normalized version of the vectors |vij 〉 in Eq. (1), we
obtain that, in quantum theory, for any quantum state in d = 6,

S
Q= 7. (4)

The quantum violation of inequality Eq. (2) can be tested with
four sequential measurements on a six-dimensional quantum
system. A simpler experiment to test this KS set consists of
implementing the corresponding game with state independent
quantum advantage [19].

The 21-vertex graph in Fig. 1 contains 21 Johnson J (5,2)
graphs induced. This can be seen by removing from the graph
in Fig. 1 all the nodes in any two straight lines (i.e., all the
vectors of any pair of orthogonal bases). Therefore, inequality
Eq. (2) can be considered a state independent version of
the twin inequality introduced in Ref. [45]. From a different
perspective, the ten-question set in [45] can be considered a
five-context state dependent KS set (as defined in Ref. [47])
that is a subset of the seven-context state independent KS
set introduced here. The 21-vertex graph in Fig. 1 was also
considered in Ref. [48] without noticing that it can represent
a KS set.

V. CONCLUSIONS

Arguably, the best measure of simplicity of a KS set is
the number of contexts. In this article we have presented a
KS set with the smallest number of contexts known: seven.
In addition, we have proven that our KS set is not only the
simplest KS set that admits a symmetric parity proof but also

the simplest symmetric set of yes-no tests that can be used to
prove the KS theorem. Finally, we have used our KS set to
derive a compact NC inequality violated by any quantum state
in dimension 6.

We think that the KS set introduced in this article is
important for foundations of quantum theory and may have
applications in quantum information processing. It is surpris-
ing that it has remained undiscovered for so long.
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APPENDIX A: PARITY KS SETS REPRESENTED BY
FULLY CONTEXTUAL GRAPHS

The independence number of a graph G, denoted as α(G),
is the maximum number of nonadjacent vertices in G.

The Lovász number of a graph G with vertex set V , denoted
as ϑ(G), is defined as ϑ(G) := max

∑
i∈V |〈ψ |vi〉|2, where the

maximum is taken over all sets of unit vectors |vi〉 ∈ Rd such
that 〈vi |vj 〉 = 0 for all pairs i,j of adjacent vertices in V , all
unit vectors |ψ〉 ∈ Rd , and all d.

The fractional packing number of a graph G, denoted
as α∗(G), is defined as α∗(G) := max

∑
i∈V pi , where the

maximum is taken over all pi � 0 and for all cliques C of
G, under the restriction

∑
i∈C pi � 1.

A graph G is fully contextual if α(G) < ϑ(G) =
α∗(G) [42].

Lemma. The orthogonality graph G of a symmetric parity
KS set is fully contextual.

Proof. If G corresponds to an n-vector KS set in di-
mension d, then ϑ(G) = n/d. This follows from the fact
that ϑ(G) equals the quantum maximum of the sum S =∑

i∈V Pρ(|ui〉〈ui | = 1) of probabilities of obtaining outcome 1
when rank-one projectors |ui〉〈ui |, with unit vectors |ui〉 ∈ Cd

such that 〈ui |uj 〉 = 0 for all pairs i,j of adjacent vertices in V ,
are measured on a physical system prepared in a quantum state
ρ. For a KS set, the value of S is the same for any quantum
state ρ. S is n/d for a maximally mixed state ρ = 1/d, where
1 is the d × d identity matrix.

If G corresponds to a KS set, then α(G) < ϑ(G). α(G)
is the maximum number of vectors in the KS set that can be
mapped to 1 so that no two orthogonal vectors are both mapped
to 1. For a KS set, this number must be strictly smaller than S.

If G is vertex transitive, then α∗(G) = n/d. �

APPENDIX B: HOW WE MADE TABLE I

For making Table I we used a previously existing database
of vertex-transitive graphs [49]. All the results in this database
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have been checked by independent authors, except for the
graphs with 27, 28, and 30 vertices. On these graphs, we
calculated α(G), ϑ(G), α∗(G), and χ (G). For calculating ϑ(G)
we used DSDP [50]. For calculating α∗(G) we used the fact that,
for a vertex-transitive graph on n vertices, α∗(G) = n/ω(G),
where ω(G) is the clique number of G; for calculating ω(G),
α(G), and χ (G) we used NAUTY [51] and VERY_NAUTY [52].
Finally, we used MATHEMATICA [53] for counting the cliques
in the graphs of Table I.

APPENDIX C: PROOFS THAT SOME GRAPHS IN TABLE I
CANNOT CORRESPOND TO PARITY KS PROOFS

The 20-vertex graph with five cliques of size 8 common
to the five graphs on 20 vertices (and the 30-vertex subgraph
with five cliques of size 12 common to the 14 graphs on 30
vertices) indicated in boldface in Table I can be represented
by the Johnson J (5,2) graph assuming that each vertex of the
Johnson actually represents a clique of size 2 (3). Similarly,
the 10k-vertex graphs with five cliques of size 4k, with k =
1,2,3,4, . . ., can be represented by the Johnson J (5,2) graph
assuming that each vertex of the Johnson actually represents a
clique of size k.

However, there is no set of five bases in dimension 4k

which allows for this structure of orthogonality. To prove it,
let us assign a 4k-dimensional basis Bj with j = 0, . . . ,4 to
each clique of size 4k. Let the columns of matrix Bj represent
the vectors of basis Bj and let B0 be the coordinate basis in
C4k . Then, matrix B0 can be chosen as the 4k × 4k identity.
With this fixed, the structure of the graph requires that the
remaining matrices have the following block structures:

B1 =

⎛
⎜⎜⎜⎜⎜⎝

1 0 0 0
0 0 C1 C2

0 A1 0 A2

0 B1 B2 0

⎞
⎟⎟⎟⎟⎟⎠

, B2 =

⎛
⎜⎜⎜⎜⎝

0 0 D1 D2

0 1 0 0
A1 0 0 A3

B1 0 B3 0

⎞
⎟⎟⎟⎟⎠

,

B3 =

⎛
⎜⎜⎜⎜⎜⎝

0 D1 0 D3

C1 0 0 C3

0 0 1 0
B2 B3 0 0

⎞
⎟⎟⎟⎟⎟⎠

, B4 =

⎛
⎜⎜⎜⎜⎝

0 D2 D3 0
C2 0 C3 0
A2 A3 0 0
0 0 0 1

⎞
⎟⎟⎟⎟⎠

.

(C1)

The entries represent k × k matrices, and 1 is the k × k identity.
Due to orthogonality of the columns in each of the matrices, the
nonzero columns in the k × k blocks denoted by the same letter
must be orthogonal. Three blocks contain together 3k columns,
but the columns in each of the blocks must be orthogonal to the
columns in the other two blocks. Thus the number of linearly
independent columns in the three blocks cannot exceed the
number of rows in the blocks, k, i.e.,

d1(D1) + d1(D2) + d1(D3) � k, (C2a)

d2(C1) + d2(C2) + d2(D3) � k, (C2b)

d3(A1) + d3(C2) + d3(D2) � k, (C2c)

d4(A1) + d4(C1) + d4(D1) � k, (C2d)

where di(Xj ) denotes the column rank corresponding to block
row i and the top nonzero block entry Xj . By summing up
inequalities (C2) and rearranging the terms one obtains

d1(D1) + d4(D1) + d1(D2) + d3(D2) + d1(D3)

+ d2(D3) + d2(C1) + d4(C1) + d2(C2) + d3(C2)

+ d3(A1) + d4(A1) � 4k. (C3)

On the other hand, the number of independent columns
in each column block, d(Xj ), is equal to k. This number is
upper bounded by the number of independent subcolumns
corresponding to this block. Thus d(D1) � d1(D1) + d4(D1),
and the same is true for the other columns. The left-hand side
of inequality (C3) is therefore not less than 6k, which leads to
6k � 4k, a contradiction for all k � 1.

To prove that there is no set of five bases in dimension
5k − 1 that allows for this structure of orthogonality, notice
that if the structure is embedded in a larger Hilbert space than
C4k , say C4k+p, then one needs to augment matrix B0 with
p rows of zeros and the remaining matrices Bj with p rows
according to the following block structure:

B1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0
0 0 C1 C2

0 A1 0 A2

0 B1 B2 0
0 X Y Z

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, B2 =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 D1 D2

0 1 0 0
A1 0 0 A3

B1 0 B3 0
X 0 T S

⎞
⎟⎟⎟⎟⎟⎟⎠

,

B3 =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 D1 0 D3

C1 0 0 C3

0 0 1 0
B2 B3 0 0
Y T 0 U

⎞
⎟⎟⎟⎟⎟⎟⎠

, B4 =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 D2 D3 0
C2 0 C3 0
A2 A3 0 0
0 0 0 1

Z S U 0

⎞
⎟⎟⎟⎟⎟⎟⎠

.

(C4)

The additional blocks contain p rows and k columns. Due to
the new rows, inequalities (C2) now read

d15(D1) + d15(D2) + d15(D3) � k + p, (C5a)

d25(C1) + d25(C2) + d25(D3) � k + p, (C5b)

d35(A1) + d35(C2) + d35(D2) � k + p, (C5c)

d45(A1) + d45(C1) + d45(D1) � k + p, (C5d)

with dij (X) denoting the number of independent columns
in block rows i and j of block column X. When summing
both sides of inequalities (C5) one should notice that the
contribution from the additional rows appears twice in each
block column. With this observation and the same reasoning
as before, one now gets 6k � 4k + 2p, which for positive k

implies p � k.
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[33] K. Schütte, reported in J. Bub, Interpreting the Quantum World
(Cambridge University Press, Cambridge, 1997), p. 82.

[34] X. Zhang, M. Um, J. Zhang, S. An, Y. Wang, D.-L. Deng, C.
Shen, L.-M. Duan, and K. Kim, Phys. Rev. Lett. 110, 070401
(2013).

[35] A. Cabello, J. M. Estebaranz, and G. Garcı́a-Alcaine, Phys. Lett.
A 339, 425 (2005).

[36] M. Kernaghan, J. Phys. A 27, L829 (1994).
[37] M. Waegell and P. K. Aravind, J. Phys. A 43, 105304 (2010).
[38] M. Waegell, P. K. Aravind, N. D. Megill, and M. Pavičić, Found.
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