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Monte Carlo simulations of the unitary Bose gas
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2IOM, CNR, Democritos, 265 Via Bonomea, 34136 Trieste, Italy

(Received 7 February 2014; published 16 April 2014)

We investigate the zero-temperature properties of a diluted homogeneous Bose gas made of N particles
interacting via a two-body square-well potential by performing Monte Carlo simulations. We tune the interaction
strength to achieve arbitrary positive values of the scattering length and compute by Monte Carlo quadrature
the energy per particle E/N and the condensate fraction N0/N of this system by using a Jastrow ansatz for
the many-body wave function, which avoids the formation of the self-bound ground state and describes instead
a (metastable) gaseous state with uniform density. In the unitarity limit, where the scattering length diverges
while the range of the interatomic potential is much smaller than the average distance between atoms, we find a
finite energy per particle [E/N = 0.70 �

2(6π 2n)2/3/2m, with n the number density] and a quite large condensate
fraction (N0/N = 0.83).
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One of the most intriguing topics in modern quantum
physics is the characterization of the universal properties of
an ultracold and dilute atomic gas in the so-called unitary
regime [1], i.e., when the two-body scattering length a is
tuned to very large values by using the Feshbach resonance
technique [2] and the range R of the interatomic potential is
much smaller than the average distance r0 between atoms [3].
It is now understood that the unitary regime is characterized
by remarkably simple universal laws, arising from scale
invariance, and has connections with fields as diverse as
nuclear physics and string theory [4]. In recent years the unitary
Fermi gas has been largely investigated both experimentally
and theoretically [5], while its bosonic counterpart has been
only marginally addressed theoretically [6–11] because it is
generally considered to be experimentally inaccessible [12].

Contrary to the case of Fermi gases, a Bose gas with
attractive interactions is mechanically unstable at low T and
thus most of the studies have been focused only on repulsive
Bose gases. However, in the strongly repulsive regime there
is a huge increase of the three-body recombination rates
close to a Feshbach resonance [9,13], which makes it very
difficult to reach an equilibrium state. Very recent experimental
observations [14–17], however, provided a foundation for
future investigations even for the degenerate Bose gas, showing
that the three-body dynamics that spoils the unitary regime is
slow enough with respect to the two-body one so that the
degenerate Bose gas evolves dynamically on time scales fast
compared to losses, thus allowing a unitary Bose gas to be
experimentally created and probed dynamically. In spite of
these promising results, however, the behavior of a Bose gas
in this metastable regime is still not well understood and in the
recent literature on the subject quite different predictions on
its bulk properties have been reported [6,8–11].

The bosonic unitary regime is a formidable challenge for
many-body theories. Due to the strong interaction, the standard
mean-field theories are inadequate and the metastability of the
system also rules out all those (ab initio or not) microscopic
theories that are explicitly devised to search for the ground
state. In particular, no attempt has been made yet to derive
the equation of state of bosons at unitarity using microscopic
quantum Monte Carlo approaches as done for fermion gases

[18,19]. The reason is that a positive scattering length a

is associated with the presence of two-body bound states
of energy eb = −�

2/2ma2 in the interaction potential. This
makes the gaslike state unstable and drives the system towards
a self-bound ground state (cluster formation).

In this Rapid Communication we address the problem of
the metastable unitary Bose gas by using quantum Monte
Carlo method where the many-body wave function is based
on a Jastrow ansatz that explicitly avoids the formation of the
self-bound ground state. We compute the energy per particle
E/N and the condensate fraction N0/N of the metastable
Bose gas by numerically simulating a large number of bosons
interacting via a square-well two-body potential of radius R

in a periodically repeated cubic cell. We study the metastable
state by tuning the value of the s-wave scattering length a

via the two-body potential parameters, keeping the system
in the dilute regime R/r0 � 1 [where r0 = (3/4πn)1/3 is the
average distance among particles and n the number density]. In
the weak-coupling regime (a/r0 � 1) we recover the familiar
results for the weakly interacting Bose gas [20]. In the strong-
coupling regime (a/r0 � 1) we reach the unitarity limit,
finding a finite and positive energy per particle E/N = 0.70εB

[εB = �
2

2m
(6π2n)2/3 is the characteristic energy emerging at

unitarity for a Bose gas] and a large condensate fraction
N0/N = 0.83.

Before giving the details of our calculations, we briefly
review the approximate theoretical methods used so far to
approach the problem of a Bose unitary gas and quote their
main results for the energy and condensate fraction. One
of the simplest methods that provides better insight than
the mean-field approach without suffering the limitation of
full microscopic techniques is the lowest-order constrained
variational (LOCV) method [21]. The LOCV recipe is based
on a Jastrow wave function where the pair function f (r)
for small distances is the exact solution f2(r) of the two-
body Schrödinger equation, while it is set to 1 beyond a
certain healing length. In the unitary limit, the LOCV method
predicts, for a condensed Bose gas, a finite value for the
energy per particle E/N = ξεB [6], with ξ = 1.75. Other
viable strategies that have been used to study this system
are renormalization-group (RG) [9,11] and hypernetted-chain
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(HNC) approximations [10], both of which have a long history
in the study of strongly correlated systems. The RG approach
provides the values ξ = 0.39 [9] and ξ = 0.85 [11], while an
extrapolation from intermediate to very large scattering lengths
of results from an HNC approach gives ξ � 0.67 [10]. The
value ξ = 0.48 has also been proposed, based on a variational
approach on the momentum distribution [8]. The results for the
condensate fraction N0/N are even more scattered: The LOCV
method gives a null condensate fraction [6] and variational
and RG arguments lead to N0/N � 0.5 [8,11], while the HNC
approach provides the value N0/N = 0.75 [10]. The fact that
the theoretical predictions are so scattered is a signature of the
absence of a standard procedure to deal with the metastable
nature of the Bose gas at unitarity.

In our Monte Carlo calculations we treat N = 500 atomic
bosons in a cubic simulation box with periodic boundary
conditions. The system is governed by the Hamiltonian

Ĥ =
N∑

i=1

− �
2

2m
∇2

i +
N∑

i<j=1

v(|�ri − �rj |), (1)

with the two-body potential v(|�ri − �rj |) given by

v(r) =
{−U0 for 0 < r < R

0 for r > R,
(2)

where R is the range of the potential and −U0 = −�
2k2

0/m is
the well depth. The corresponding scattering length reads a =
R[1 − tan(k0R)/k0R] and the effective range is re = R(1 −
R2/3a2 − 1/k2

0aR) [22]. We have chosen k0 in such a way
that there is a single bound state in the potential well and the
scattering length is positive. When computing the properties
of the system in the unitary limit, which is the main goal of the
present work, the inequality re � r0 � a must be satisfied. In
order to verify it we have considered R/r0 values smaller than
0.01 and a/r0 as large as 10 000. Notice that as a diverges re

becomes equal to R.
To construct the many-body wave function we rely on a

standard Jastrow-Feenberg ansatz, keeping explicit only the
two body-correlations:

ψJ (�r1,�r2, . . . ,�rN ) =
∏
i<j

f (|�ri − �rj |). (3)

Since the temperature is zero in our simulations and the Bose
gas is dilute, its physical properties are governed by two-body
interactions (at least in the metastable unitary regime) and
the low-energy scattering of two particles can be safely
approximated with the solution of the two-body problem
[6,10]. We thus construct the pair function f (r) in Eq. (3)
starting from the exact solution of the two-body Schrödinger
equation [

−�
2

m

d2

dr2
+ v(r)

]
rf2(r) = εrf2(r), (4)

where ε = �
2k2/m is the smallest positive energy compatible

with the imposed periodic boundary conditions. For the
potential (2), the solution of (4) reads

rf2(r) =
{
A sin(κr) for 0 < r < R

B sin(kr + δ) for r > R,
(5)

where κ2 = k2 + k2
0 and the parameters A, B, and δ

are fixed by the matching conditions at r = R and by
normalization [23].

In the limit where the range R of the two-body potential
goes to zero the interparticle interaction in Eq. (4) can be
replaced by the Bethe-Peierls boundary conditions [6,24] on
the pair function

lim
r→0

[rf2(r)]′

rf2(r)
= −1

a
. (6)

In this case f2(r) is given by

rf2(r) = A sin(kr + δ), (7)

where the parameter δ is now fixed by Eq. (6) and A by the
normalization [25].

In order to account for many-body effects, which typically
become relevant when r is of the same order of r0, f (r)
is smoothly joined with a constant at a certain distance Rm

[6]. This is required also in order to account for the periodic
boundary conditions imposed on the simulation box. With such
a wave function, however, when the scattering length diverges,
the equilibrium configuration is not a uniform gas, as desired,
but rather it is a compact cluster of atoms in equilibrium with
the vacuum, whose radius is about 10 times the effective
range of the potential and 0.001 times the average distance
r0 in the uniform system. This is due to a maximum in the
probability density provided by r2f 2

2 (r) at short distances
(order of R), which favors configurations where the atoms
are close to one another (dimers, trimers, etc.). In order to
keep the system in a uniform phase (metastable state) we
should correct f (r) at small distances to prevent particles from
dwelling into this regions. The underlying idea originates from
Feynman’s comments on the construction of the ground-state
wave function for liquid 4He [26].

There are different ways to implement such a correction,
ranging from imposing the three-body repulsive condition
in quantum Monte Carlo methods [27] to enforcing the
equivalent hard-sphere condition in the hyperradius formalism
[28]. These methods need an explicit way to include higher-
order correlations, which are not known, thus requiring extra
approximations. In our approach we simply set to zero the
value of the pair function up to the outermost node Rn of
f2(r). This is indeed reasonable because, due to the extreme
diluteness of the gas, in the metastable unitary regime the
particle pairs should experience only the tails of the wave
function. Our choice also has the advantage of keeping all
the formalism in the two-body sector.

The pair function then reads

f (r) =
⎧⎨
⎩

0 for 0 < r < Rn

f2(r) for Rn < r < Rm

1 for r > Rm.

(8)

The continuity and boundary conditions on f (r), plus the
requirement that f ′(Rm) = 0, fix all the free parameters in
f (r) except for Rm. As already pointed out in Ref. [6], one
cannot simply treat Rm as a variational parameter since this
procedure would lead to the undesired minimizing value Rm =
0. We thus choose to fix Rm through a normalization condi-
tion 4πn

∫ Rm

0 r2f2(r)dr = 1 as in the LOCV approach [6].
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FIG. 1. (Color online) Energy per particle E/N (in units of εB )
and condensate fraction N0/N (inset) as a function of the scaled
scattering length a/r0 for two values of the two-body potential range
R/r0: 0.01 (open squares) and 0 (closed circles). The dashed line is
the mean-field prediction of Bogoliubov with the LHY correction[29]
and the dot-dashed line is the fit of Ref. [30] to quantum Monte Carlo
results for the unitary Fermi gas [18]. The solid line is the fit of our

Monte Carlo data as described in the text.

There are other possible choices for Rm, such as Rm = L/2 as
used in quantum Monte Carlo (MC) studies of unitary Fermi
gases [18,19], but such a choice could lead in the present case
to the unwanted condition r0 < Rn for large values of a.

Summarizing, we proposed a many-body wave function of
the Jastrow-Feenberg form (3) with the two-body correlation
function obeying three basic requirements, i.e., (i) it provides
long-range correlations as dictated by an attractive short-range
potential with the actual scattering length a, (ii) it keeps the
density uniform by preventing the formation of clusters, and
(iii) it is normalized while keeping the position of the last node
of the actual two-body scattering wave function.

In Fig. 1 we report the calculated energy per particle

ε = E

N
= 1

N

〈ψJ |Ĥ |ψJ 〉
〈ψJ |ψJ 〉 (9)

as a function of the scaled scattering length a/r0 for two
different values of the scaled two-body potential range R/r0.
The MC simulations used to compute ε never count less than
2 × 106 sampled configurations and both the sparse and the
block averaging techniques [31] have been adopted to prevent
correlations among the sampled configurations.

The open squares are the results obtained at R/r0 = 0.01
with f2(r) given by Eq. (5), while the closed circles are
obtained with R/r0 = 0, i.e., with f2(r) given by Eq. (7). The
two sets of data are very close, showing that with R/r0 = 0.01
the system is indeed dilute and displays (universal) properties
that depend only on the s-wave scattering length a [3,5].

We have also considered an alternative form for f (r),
which instead of being strictly zero in the range 0 < r < Rn is
smoothly connected to a third-order polynomial in r = Rn and
fulfills the condition f (0) = 0. This leaves a free parameter
that can be variationally optimized. We found, however, that
the resulting energy is always larger than the one obtained with

(8). In particular, the variational optimization returns a wave
function as flat (and as small) as possible within the range
0 < r < Rn, thus confirming the quality of our ansatz (8).

In the weakly interacting regime (a/r0 � 1) our results,
as shown in Fig. 1, agree with the well known universal
Bogoliubov prediction [32] with the Lee-Huang-Yang (LHY)
correction [29]:

εLHY(x) = εB

(
4

3π2

)1/3

x

[
1 + 128

15
√

π

√
3

4π
x3/2

]

where x = a/r0. In the strong-coupling regime (a/r0 � 1)
our data reach a plateau in a way that is qualitatively similar
to the behavior found for a unitary Fermi gas on the Bose-
Einstein condensation (BEC) side of BCS-BEC crossover
(also shown for comparison in Fig. 1), but the convergence is
to a lower value, namely, ε/εB = 0.70. This value is well below
the LOCV prediction of 1.75 based on the LOCV method [6]
and is slightly larger than the average value of RG approaches
[9,11], the HNC result [10], and the variational estimate of [8].

The obtained MC data are well interpolated by the function

ε(x)/εB =
⎧⎨
⎩

εLHY(x)/εB + ax3 for x < 0.3
c3x

3 + c2x
2 + c1x + c0 for 0.3 < x < 0.5

b0 + b1 tanh(b2/x − 1) for x > 0.5

(10)

and a fit procedure provides the values a = 0.21, b0 = 0.45,
b1 = −0.33, and b2 = 0.54, while the parameters c3 = −6.64,
c2 = 7.16, c1 = −1.46, and c0 = 0.19 are fixed by smoothness
and continuity constraints in r = 0.3 and 0.5. The function ε(x)
is shown with a solid line in Fig. 1.

The parametrization (10) of the equation of state allows
us to obtain other useful quantities via standard thermo-
dynamical relations, for example, the chemical potential
μ = ∂n(nε), the pressure P = n2∂nε, the sound velocity,
c2
s = n/m ∂nμ, and also Tan’s two-body contact density [33]

C2 = (8πnma2/�
2)dε/da, which describes the 1/k4 tail of

the momentum distribution ρ(k) at large momenta. Our results
are shown in Fig. 2. Note that at unitarity C2 = αn4/3, with
α = 9.02. This value compares acceptably well with previous
theoretical estimates α = 10.3 [10], 32 [11], and 12 [34] and
is a factor of 2 smaller than the value extrapolated from
experimental results on a trapped gas in the local-density
approximation α = 22 [33].

The many-body wave function (3) gives direct access also to
the one-body density matrix ρ1(|�r − �r ′|) whose limiting value
at large distances provides the condensate fraction N0/N [22].
In the inset of Fig. 1 we plot the behavior of N0/N as a
function of a/r0 for two values of R/r0. Our data follow the
Bogoliubov prediction N0

N
= 1 − 8

3
√

π
( 3

4π
x3)1/2 (dashed line in

Fig. 1) up to about a/r0 = 0.01, while in the unitary limit our
data converge to a constant value N0/N = 0.83. The LOCV
method predicts in the same limit N0/N = 0 [6], while the
HNC value N0/N = 0.78 [10] is compatible with our result.
For completeness, we recall that the RG method developed
in Ref. [11] and the variational approach in Ref. [8] suggest
instead N0/N ∼ 0.5.

In conclusion, we have studied the zero-temperature unitary
Bose gas via a Jastrow ansatz on the many-body wave function
that avoids the formation of the self-bound ground state and
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FIG. 2. (Color online) Chemical potential μ (in units of εB ),
pressure P (in units of nεB ), sound velocity cs (in units of vB =√

2εB/m), and two-body contact density C2 (in units of n4/3) as a
function of the scaled scattering length a/r0 as obtained from the
parametrization (10) of the equation of state. Arrows indicate the axis
with the corresponding scale.

then computed the energy per particle and the condensate
fraction by Monte Carlo quadrature. In the unitary limit we
have found a finite value both for the energy per particle
and for the condensate fraction. This is a clear signature of
a universal behavior in which the properties of the system
depend only on the average distance between the particles
encoded in their density. The fact that the universal value
of the energy per particle for the unitary gas is lower for
bosons than for fermions is not completely unexpected since
the antisymmetry of the fermionic wave function results in
an effective excluded-volume effect that increases the energy
[35]. From the Monte Carlo data of the energy per particle
we have also derived the chemical potential, the pressure,
the sound velocity, and the contact density as a function of
the s-wave scattering length. We believe our predictions can
be tested with the ongoing experiments [15–17] on ultracold
vapors of bosonic alkali-metal atoms.
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