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Momentum relaxation of a mobile impurity in a one-dimensional quantum gas
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We investigate the time evolution of the momentum of an impurity atom injected into a degenerate Tonks-
Girardeau gas. We establish that given an initial momentum p0 the impurity relaxes to a steady state with a
nonvanishing momentum p∞. The nature of the steady state is found to depend drastically on whether the masses
of the impurity and the host are equal. This is due to multiple coherent scattering processes leading to a resonant
interaction between the impurity and the host in the case of equal masses. The dependence of p∞ on p0 remains
nontrivial even in the limit of vanishing interaction between the impurity and host particles. In this limit p∞(p0)
is found explicitly.
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Introduction. Laws governing the motion of a mobile par-
ticle through a fluid provide a powerful insight into the fluid’s
dynamical properties. For this reason impurities immersed in
quantum fluids such as superfluid 4He and Fermi liquid 3He
have been a continued subject of study since late 1950s [1].
A remarkable class of quantum fluids, which are neither
superfluids nor Fermi liquids, is found in one spatial dimension
(1D) [2]. Interest in impurities moving through such fluids
started with works on the Fermi edge singularity in inorganic
quantum wires [3–5] and the mobility of a heavy particle in a
Luttinger liquid [6]. Several distinctive features of the motion
of an impurity in 1D have been predicted theoretically such as
weak violation of superfluidity [7], non-Markovian relaxation
patterns rooted in power-law singularities of the fluid’s
spectral function [8], logarithmic subdiffusion [9], quantum
flutter [10,11], and quasi-Bloch momentum oscillations [12].

Early studies, both theoretical and experimental, were
mainly concerned with equilibrium spectral characteristics and
linear response properties of an impurity. At present, however,
the focus is shifting towards the analysis of dynamic, far-from-
equilibrium phenomena [13]. This is fuelled by tremendous
experimental progress achieved over the past decade in the area
of ultracold atomic gases. First elongated traps containing
interacting 1D Bose gases were demonstrated 10 years
ago [14–16]. By 2009 sufficient control over the system
became available to conduct experiments with an ensemble
of impurity atoms under a constant drag force [17] and
out-of-equilibrium impurity clouds injected into the host [18].
Furthermore, development of single-atom-resolved con-
trol [19] and imaging techniques [20,21] opens unprecedented
experimental opportunities such as a direct observation of the
motion of an individual impurity atom in a one-dimensional
gas [22].

On the theory side, several complementary approaches are
being developed. For bosonic hosts in the Bogoliubov limit
remarkable results have been obtained by methods of quantum
hydrodynamics [12,23,24]. In particular, it was predicted that
the momentum of an impurity driven by a constant force may
exhibit oscillations resembling the Bloch oscillations in an
ideal crystal [12] (however, this prediction was criticized in
Ref. [25]).

A Bethe-ansatz solvable model of an impurity injected in a
Tonks-Girardeau (TG) host has been considered in Ref. [10].
Using numerical summation of form-factor series for a
finite-size system Ref. [10] investigated an impurity’s momen-
tum relaxation at intermediate time scales. The momentum
of the impurity as a function of time was found to follow
a counterintuitive pattern resembling underdamped periodic
oscillations around some nonzero average. This phenomenon
was dubbed the “quantum flutter” [10]. Subsequent numerical
simulations based on matrix product states extended the results
of Ref. [10] to a nonintegrable case [11]. The results of
Refs. [10,11] suggest, in particular, the possibility of a nonvan-
ishing steady-state momentum of the impurity. Considering the
absence of superfluidity in one dimension [7], such incomplete
momentum relaxation contradicts equipartition of energy and
signals the failure of thermalization in the system. The purpose
of the present Rapid Communication is to explain the physical
mechanism responsible for this phenomenon and to develop a
complete analytical theory of the formation of the steady state
in a certain perturbative limit.

To this end, we investigate the relaxation of the momentum
of an impurity weakly interacting with a degenerate (T = 0)
Tonks-Girardeau gas [26], focusing on the infinite time steady
state of the system. Within the Boltzmann kinetic theory we
find the dependence of the infinite-time momentum of the
impurity p∞ on the initial momentum p0 and explain the mech-
anism by which p∞ is nonzero. We find that when the masses
of the impurity and the host particle are equal, the Boltzmann
theory breaks down. In this case, we resort to an alternative
approach based on the Bethe ansatz solution for a pointlike
interaction. We first develop a method of dealing with form
factor expansions numerically. Using the insight from numeri-
cal simulations, we perform a controllable asymptotic analysis
of the problem to obtain a closed-form expression for p∞(p0).

Problem formulation. We consider a single mobile impurity
of mass mi immersed in the TG gas of particles of mass mh.

In the following we exploit the exact spectral equivalence
between the TG gas and a gas of noninteracting Fermi
particles [26] and refer to the host particles as “fermions”.
We assume a short-range repulsive interaction between the
impurity and the host fermions such that the total Hamiltonian
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is

Ĥ = Ĥ 0
h + Ĥ 0

i + γ
kF

πmh

∫
dxρ̂h(x)ρ̂i(x). (1)

Here Ĥ 0
h , Ĥ 0

i and ρ̂h(x), ρ̂i(x) are the Hamiltonians and density
operators of the host fermions and the impurity, respectively,
and γ is the dimensionless constant. Depending on the mass
ratio η ≡ mi/mh, we distinguish between the cases of “light
impurity”, η < 1, and “heavy impurity”, η > 1. We define
the Fermi momentum kF ≡ πρ, where ρ is the host particle
density.

We are interested in the time evolution of the system from
an initial state being a direct product of the ground state of
Ĥ 0

h (which is merely a Fermi sea of the host particles) and
a plane-wave state of the impurity with momentum p0 > 0.

Our main goal is to find the impurity momentum distribu-
tion function wp(t), investigate its t → ∞ limit, which we
denote by w∞

p0→p, and calculate the infinite-time momentum
p∞ = ∑

p p w∞
p0→p.

Kinematics. We begin our analysis from semiclassical
considerations. Kinematics of a two-particle scattering in 1D
is completely characterized by two momenta, e.g., the initial,
q, and final, k, momenta of the impurity. Given these, the
initial and final momenta of the host particle are completely
fixed by two conservation laws. In addition, the Pauli principle
restricts possible values of k and q to a certain region in
the (q,k) plane. This kinematically allowed region is shown
on Fig. 1. We see that the allowed region exists for all

FIG. 1. (Color online) Upper panels: Kinematically allowed re-
gions for a single pairwise scattering in the cases of the light (left)
and heavy (right) impurity. The final momentum of the impurity, k, is
shown vs the initial momentum of the impurity, q. Lower panels: The
impurity momentum at infinite time, p∞, as a function of the initial
momentum, p0, for the light (left) and heavy (right) impurity. Solid
blue line shows an iterative solution (two iterations) of Eq. (5). Shaded
area (green online) represents the maximum error: The exact solution
of Eq. (5) lies inside this area. Notice a much better convergence of
iterations in the case of light impurity.

|q| > q0, where q0 ≡ kF min{1,η}, and its boundaries are
piecewise linear functions of q. We denote these functions
by u(q) for the upper boundary and d(q) for the lower
one.

If the initial momentum of the impurity satisfies |p0| < q0,

Pauli blocking precludes any scattering, and the impurity’s
momentum is conserved. For |p0| > q0, scattering events
continue until the impurity momentum drops below q0, after
which scattering stops. There exists a momentum q1 > q0

such that, whenever q0 < |p0| < q1, the impurity momentum
drops below q0 in a single scattering event. Furthermore, there
exists an infinite ascending sequence {qn} such that |p0| < qn

implies that the impurity momentum drops below q0 in no more
than n collisions. The recursive definition for the sequence
reads qn−1 = max{|u(qn)|,|d(qn)|}; the sequence converges to
q∞ = kF max{1,η} with n → ∞. Note that the case of equal
masses (η = 1) is special: The whole sequence {qn} collapses
to a single point, qn = kF .

Now consider the classical evolution of the momentum
distribution function of an impurity. If |p0| < qn, no more
than n collisions bring the system to a steady state in which
the impurity’s momentum distribution function w∞

p0→p has a
finite support p ∈ [−q0,q0]. There are no symmetries of the
problem to prevent this function from having a nonvanishing
first moment. Therefore, in general, p∞ �= 0. This conclusion
is supported by a nonperturbative fully quantum treatment:
When p0 lies in a certain range, one can rigorously prove that
p∞ is nonzero [27].

Applicability of the Boltzmann equation. The above kine-
matical considerations are a good starting point for the
application of Boltzmann’s kinetic theory. The latter requires
the validity of Fermi golden rule, which is ensured by the
smallness of the dimensionless coupling constant, γ � 1,
and by a narrow impurity level spacing (as compared to the
collision rate) which implies γ 2N � 1 for a system of N

particles. Apart from these two constraints, the dimensionality
of the problem imposes extra conditions. Indeed, the validity
of Boltzmann’s equation relies on the Lorentzian shape of
particle’s spectral function such as in Fermi liquid theory [28].
Generally, in 1D systems, spectral functions of particles exhibit
essentially non-Lorentzian shapes in the vicinity of the mass
shell [2,8,29] (an exception from this rule was discussed in
Ref. [30]). The source of this peculiarity is virtual long-
wavelength modes which produce a logarithmically divergent
contribution to the self-energy, δ� ∼ γ 2 ln N. In order for
Boltzmann’s equation to work one needs to suppress the di-
vergence and impose γ 2 ln N � 1. Finally, another divergent
contribution to self-energy arises from the ladder diagrams
in the equal mass limit mi → mh. The physical meaning of
this divergence will be explained below. The requirement
that the ladder corrections can be neglected results in the
condition |η − 1| � γ.

Analysis of the Boltzmann equation. The kinetic equation
reads as follows [31]:

ẇk(t) = −�kwk(t) +
∑

q

�q→kwq(t), (2)

�q→k = γ 2

π2

k2
F

Lmh

θ (d(q) < k < u(q))
|q − k| . (3)

041601-2



RAPID COMMUNICATIONS

MOMENTUM RELAXATION OF A MOBILE IMPURITY IN A . . . PHYSICAL REVIEW A 89, 041601(R) (2014)

Here �q→k is the partial width and �k ≡ ∑
q �k→q is the

total width. Due to kinematical constraints reflected in step
functions in Eq. (3), the kinetic equation (2) leads to the
following integral equation on the asymptotic distribution:

w∞
p0→k = θ (q0 − |k|)

⎛⎝P (1)
p0→k +

∑
q∈R(p0)

P (1)
p0→qw

∞
q→k

⎞⎠, (4)

whereP (1)
p0→k = �p0→k/�p0 is the probability that the impurity

changes its momentum from p0 to k in a single scattering event,
and R(p0) ≡ [d(p0),u(p0)] \ [−q0,q0] is a kinematically de-
termined integration region. Calculating the first moment of
the distribution (4) (with respect to k) we find the integral
equation for the asymptotic momentum,

p∞(p0) = p(1)
∞ (p0) +

∑
q∈R(p0)

P (1)
p0→qp∞(q),

(5)

p(1)
∞ (p0) ≡

q0∑
k=−q0

kP (1)
p0→k.

For |p0| < q0 the momentum does not relax, p∞(p0) = p0.

The coupling strength γ cancels out from Eqs. (4) and (5), and
in Eq. (2) it can be absorbed in rescaling of time.

Equations (2), (4), and (5) can be solved by iterations.
In particular, the first iteration for asymptotic momentum
is p

(1)
∞ (p0). The n-th iteration takes into account classical

evolution paths which involve no more than n scattering events.
If qn−1 < |p0| < qn, then n iterations lead to an exact solution.
Fewer iterations give an approximate solution. If |p0| > q∞,

any finite number of iterations gives an approximate solution.
The convergence of iterations is well controlled. The error at
the n-th step of the iterative solution of Eq. (5) is bounded
from above by q0 times the probability to scatter below q0 in
more than n collisions. The solution of Eq. (5) is plotted in
Fig. 1. Note that since p∞ ∈ [−q0,q0], the asymptotic velocity
of an infinitely heavy impurity vanishes, which is consistent
with Refs. [7,32].

The solution p∞(p0) of Eq. (5) has nonanalyticities at p0 =
qn,n = 0,1, . . . ,∞. The most prominent one is a jump which
occurs at p0 = kF when mi > mh; see Fig. 1. In the vicinity
of kF we find

p∞(p0) =
{

p0, p0 < kF

−kF + m2
i +m2

h

m2
i −m2

h

(p0 − kF ), p0 > kF

, (6)

Other type of singularity is a kink at p0 = kF η, where the
velocity of the impurity equals the Fermi velocity, resulting
in a forward scattering anomaly. We expect these singularities
to be smoothed out by quantum corrections in higher orders
in γ . Note that taking the mi → mh limit is nontrivial and is
discussed below.

Equal masses. In this case, kinematics of a two-body
collision reduces to an exchange of momenta. Thus, the
very first scattering event brings the impurity to the state
with k ∈ [−kF ,kF ] and creates a hole with momentum −k.
From this moment on, the impurity and a hole move with
the same velocity. Further multiple coherent scatterings in
this two-body system allow the momentum of the impurity
to migrate unrestricted in the range [−kF ,kF ]. Thus one might

expect that p∞ = 0. Below we demonstrate that this intuitive
expectation fails.

The Boltzmann equation does not capture multiple co-
herent scattering processes. However, the contact interaction
Hamiltonian (1) with mi = mh is Bethe ansatz inte-
grable [5,33,34], which allows us to calculate p∞ explicitly
in the same limit, γ → 0, γ 2N → ∞, γ 2 ln N → 0, as for
Boltzmann’s theory above [35].

Bethe ansatz and form-factor expansion. For a finite
number of particles of the background gas, N , eigenstates
of the Hamiltonian (1), |ψλ〉, are labeled by ordered sets
λ = {n0,n1, . . . ,nN } of N + 1 distinct integers. The value
of the asymptotic momentum follows from the form-factor
expansion,

p∞ =
∑

λ

〈ψλ|P̂i |ψλ〉|〈ψλ|in〉|2 , (7)

where P̂i is the impurity momentum operator and |in〉 is
the initial state of the system, and the summation is over
the infinite complete set of eigenstates. Explicit determinant
representations for the matrix elements entering (7) have been
found in Ref. [10]. However, evaluation of the sum over
intermediate states remains a challenge. A general analytical
solution is unknown, and numerically the difficulty is to find
an efficient and controllable way of selecting most relevant
contributions to the Eq. (7). While rather sophisticated ways
of scanning the Hilbert space have been developed [10,36], the
task remains difficult. We have been able to both significantly
advance numerical technique and develop successful analytic
approach in the perturbative limit.

Bethe ansatz and numerics. We note that the structure of
Eq. (7) naturally lends itself to a stochastic sampling of the
Hilber space: Instead of evaluating the sum in Eq. (7) in a
predetermined order, we construct a random walk in the space
of ordered sets λ, based on the Metropolis algorithm [37] with
transition probabilities proportional to |〈ψλ|in〉|2. This way,
the algorithm automatically finds the most relevant regions of
the Hilbert space. In practice, we only use local updates of the
configurations (i.e., at each step of the Markov process we only
change one or two integers in the ordered set λ) and observe
a very quick convergence of the sum (7). Detailed description
of the algorithm will be given elsewhere [38].

We do numerics on systems with up to 405 + 1 particles,
which is an order of magnitude improvement compared to
earlier approaches [10,11]. We find a substantial dependence
of p∞ on N , which persists up to the largest available N ; see
Fig. 2. Thus, a thorough investigation of finite-size corrections
is essential for extracting the thermodynamic limit behavior.
We reserve such analysis for a separate publication [38].

Concentrating on the regime of moderate γ , we
find that Eq. (7) is dominated by the one-parameter
family of states s = {λ(̃n), ñ > N/2}, where λ(̃n) ≡
{−(N − 1)/2, − (N − 3)/2, . . . ,(N − 1)/2,̃n}; see Fig. 2 for
an illustrative example. In fact, in the limit γ → 0 the family
s can be investigated analytically.

Bethe ansatz and asymptotic analysis. In the limit
γ 2 ln N → 0 and γ 2N → ∞ we are able to obtain an explicit
asymptotic expressions for the form factors 〈ψλ|in〉 and
〈ψλ|P̂i |ψλ〉 for λ ∈ s. Furthermore, we prove that the states
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FIG. 2. (Color online) Overlaps |〈ψλ|in〉|2 versus energy E

(relative to the in-state energy Ein) for N = 135, L = 405, γ = 3,
and p0 = 1.2kF . Several families of states are clearly visible. The
diagram in the upper left corner shows schematically the structure
of sets λ for the top three families, including the dominant family s

(maroon). The dashed curve corresponds to the asymptotic expression
obtained in the limit γ 2 ln N → 0, γ 2N → ∞. Inset demonstrates
the finite-size dependence of p∞ at p0 = 1.6kF and γ = 3.

from s saturate the sum rule,
∑

λ∈s |〈ψλ|in〉|2 = 1. This way,
Eq. (7) yields [38]

p∞ = p0 − θ (|p0| − kF )
p2

0 − k2
F

2kF

ln
p0 + kF

p0 − kF

. (8)

Discussion and outlook. It is interesting now to compare
Eq. (8) with an exact solution of Eq. (5) in the case of equal
masses,

pB
∞ = p0 − 2kF θ (|p0| − kF )

(
ln

p0 + kF

p0 − kF

)−1

. (9)

We see that the Boltzmann theory fails to produce a correct
result at mi = mh, which is the consequence of the resonant
interaction discussed earlier. In the vicinity of the γ = 0, η = 1
point in the (γ,η) plane the validity of Eqs. (8) and (9) depends
on the |η − 1|/γ ratio. Equation (8) is valid for |η − 1|/γ � 1
and Eq. (9) for |η − 1|/γ � 1. From a mathematical point of
view this means that the limits η → 1 and γ → 0 do not
commute. At any finite γ there is no discontinuity of p∞(η) at
η = 1. This is consistent with findings [10,11].

It is interesting to discuss our results in the context of
thermalization [13]. When |p0| > q0 the impurity is kine-
matically allowed to exchange energy and momentum with
the bath (host). If such an exchange had led to a complete
thermalization, equipartition would have implied p∞ = 0. We
see, however, that this is not the case no matter whether
the model is integrable. This seems to be one of the rare
examples of the thermalization failure in a local, noninte-
grable model without disorder (see, e.g., the discussion in
Ref. [39]).

Finally, we outline directions for further development.
Equation (2) can be generalized to describe the motion
of the impurity under an external force and at nonzero
temperature. This way, one can investigate the asymptotical
momentum as a function of force and describe the impurity
dynamics in TG gas at an arbitrary ratio mi/mh �= 1 [40].
The case of equal masses, where the Boltzmann equation
fails, requires a special treatment. To this end, we devel-
oped Bethe ansatz-based tools, which can be extended for
studying an integrable system with applied force and/or finite
couplings.
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