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Reexamination of conservation of momentum and energy in partially
coherent electromagnetic waves
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We reviewed the conservation of momentum and energy in partially coherent electromagnetic wave fields in a
unified perspective. We find that there is interference between the radiation from polarization and magnetization
sources in the momentum flow unlike the result proposed in the previous study. The interference effect can be
probed in an example by observing the angular distribution.
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There has been significant progress in basic conservation
relations in partially coherent wave fields recently [1–4] after
first related studies [5–7]. The conservation laws of energy,
momentum, and angular momentum of the wave fields were
established and a few related examples were discussed in those
studies.

The Maxwell stress tensor [8] has been useful in expressing
energy, momentum, and angular momentum and also in
dealing with spectral densities of the electromagnetic waves [9]
in the studies. A careful review of the tensor corresponding to
spectral densities of the electromagnetic waves in the far zone
reveals clearer views for the energy, the momentum, and the
angular momentum of the waves.

There were a couple of discussions [2,3] on the waves
when there are both electric and magnetic sources. It is
interesting to see the interference effect in the radiated
fields from the sources. In this Brief Report, we review the
interference effect on the momentum of the partially coherent
electromagnetic waves previously studied in Ref. [2]. We will
follow the conventions used in Refs. [2,3] throughout this
Brief Report.

For the study of radiated electromagnetic fields, it
is often convenient to use the Hertz vectors [10] from
sources consisting of polarization and magnetization. For
simplicity, we will consider (quasi-)homogeneous sources.
The vectors are represented by the spatial integration of
the products of source densities and three-dimensional
Green’s functions for the corresponding Helmholtz
equations,

π e(r,ω) =
∫

V

P(r′,ω)G(r − r′)d3r ′, (1)

πm(r,ω) =
∫

V

M(r′,ω)G(r − r′)d3r ′, (2)

where e and m stand for polarization and magnetization,
respectively, and G(R) is the free-space Green’s function for
the Helmholtz equation,

G(R) = eikR

R
. (3)
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For further mathematical simplification, we introduce two
differential operators as in [2],

Mij ≡ ∂i∂j − ∂2δij , (4)

Nij ≡ ikεilj ∂l, (5)

where ∂i is the partial derivative with respect to the ith
Cartesian coordinate, ∂/∂xi . Here and throughout the re-
mainder of this Brief Report, we will use the Einstein
summation convention. By use of the differential operators,
we may write the electromagnetic fields in the following
forms:

Ei = Milπ
e
l + Nilπ

m
l , (6)

Bi = Milπ
m
l − Nilπ

e
l . (7)

In the far zone (the source size is negligible, r � r ′), we
may write the position vector as r = ru, where u is the unit
vector in the direction of observation. Thus the Green function,
G(R), can be expressed as

G(R) ≈ eikr

r
e−iku·r′

. (8)

The resulting Hertz vectors can be written as the products
of the outgoing waves and the Fourier transforms of the source
densities,

π e
i (r,ω) ≈ (2π )3 eikr

r
P̃i(ku,ω), (9)

πm
i (r,ω) ≈ (2π )3 eikr

r
M̃i(ku,ω), (10)

where P̃(ku,ω) and M̃(ku,ω) are the three-dimensional Fourier
transforms of the source polarization and the source magneti-
zation, respectively,

P̃(ku,ω) ≡ 1

(2π )3

∫
D

P(r,ω)e−iku·rd3r, (11)

M̃(ku,ω) ≡ 1

(2π )3

∫
D

M(r,ω)e−iku·rd3r. (12)

After the applications of the differential operators Mij and
Nij on the Hertz vectors and their conjugates, we have the
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following relations:

Mijπj (r,ω) = k2(δij − uiuj )πj (r,ω), (13)

M∗
ijπ

∗
j (r,ω) = k2(δij − uiuj )π∗

j (r,ω), (14)

Nijπj (r,ω) = −k2εilj ulπj (r,ω), (15)

N ∗
ijπ

∗
j (r,ω) = −k2εilj ulπ

∗
j (r,ω), (16)

where the last equation is corrected from Eq. (33) of the
previously published result [2] as was corrected in [11]. We
will see that this correction gives rise to the interference
effect between the radiated fields from the polarization and
magnetization sources.

From the above relations, we can see that the differential
operators are always perpendicular to the vector u in the far
zone from the sources,

uiM(∗)
ij → k2(uiδij − u2uj ) → 0, (17)

uiN (∗)
ij → −k2εilj uiul → 0. (18)

In other words, the electromagnetic fields in the far zone are
always transverse to the propagating wave vector, k.

We now consider the partially coherent electromagnetic
fields. In the space-frequency representation, the cross-spectral
density tensors of the electric and the magnetic fields are given
by

WEE
ij (r1,r2,ω) = 〈E∗

i (r1,ω)Ej (r2,ω)〉ω, (19)

WBB
ij (r1,r2,ω) = 〈B∗

i (r1,ω)Bj (r2,ω)〉ω, (20)

where the bracket 〈·〉ω represents averaging over the ensemble
of space-frequency realization and we will simply write it as
〈·〉 throughout this Brief Report. By using the cross-spectral
density tensors of the Hertz vectors, the cross-spectral density
tensors of the electric and the magnetic fields can be written
as

WEE
ij (r1,r2,ω) = M(1)∗

il M(2)
jmWee

lm(r1,r2,ω)

+M(1)∗
il N (2)

jmWem
lm (r1,r2,ω)

+N (1)∗
il M(2)

jmWme
lm (r1,r2,ω)

+N (1)∗
il N (2)

jmWmm
lm (r1,r2,ω), (21)

WBB
ij (r1,r2,ω) = M(1)∗

il M(2)
jmWmm

lm (r1,r2,ω)

−M(1)∗
il N (2)

jmWme
lm (r1,r2,ω)

−N (1)∗
il M(2)

jmWem
lm (r1,r2,ω)

+N (1)∗
il N (2)

jmWee
lm(r1,r2,ω), (22)

where the superscript indices of M(q)
ij and N (q)

ij indicate the
operators acting only on the corresponding variables, rq , of

the cross-spectral densities W . Also, Wab
lm is defined by

Wab
lm (r1,r2,ω) ≡ 〈

πa∗
l (r1,ω)πb

m(r2,ω)
〉

(23)

for all possible combinations of a = e,m and b = e,m.
For monochromatic fields, after taking r1 = r2 = r, the

Maxwell stress tensor can be written as

Tij (r,ω) = 1

4π

{
E∗

i (r,ω)Ej (r,ω) + B∗
i (r,ω)Bj (r,ω)

−1

2
δij [E∗

l (r,ω)El(r,ω) + B∗
l (r,ω)Bl(r,ω)]

}
.

(24)

Trace of the stress tensor yields the negative total energy
density U (r,ω),

Tii(r,ω) = − 1

8π
[E∗

i (r,ω)Ei(r,ω) + B∗
i (r,ω)Bi(r,ω)]

= −U (r,ω). (25)

Therefore, for partially coherent fields, the ensemble average
of the stress tensor becomes

〈Tij 〉 = 1

4π

{
WEE

ij (r,ω) + WBB
ij (r,ω)

−1

2
δij

[
WEE

kk (r,ω) + WBB
kk (r,ω)

]}

= 1

4π

[
WEE

ij (r,ω) + WBB
ij (r,ω) − 1

2
δij 〈U (r,ω)〉

]
,

(26)

where 〈U (r,ω)〉 is the ensemble average of the energy density.
Now we apply the far-field approximation to 〈U (r,ω)〉. In the
far zone from the sources, after the differential operations on
the Hertz vectors, we have

M(1)∗
kl M(2)

km → k4(δkl − ukul)(δkm − ukum)

= k4(δlm − ulum), (27)

M(1)∗
kl N (2)

km → −k4(δkl − ukul)εknmun

= −k4εlnmun, (28)

N (1)∗
kl M(2)

km → −k4εknlun(δkm − ukum)

= −k4εmnlun, (29)

N (1)∗
kl N (2)

km → k4εknlunεkpmup

= k4(δlm − ulum), (30)

where we set r1 = r2 = r during the calculations. By using
the evaluations of the operators, 〈U (r,ω)〉 can be simplified as

〈U (r,ω)〉 = k4

4π

{
(δij − uiuj )

[
Wee

ij (r,ω) + Wmm
ij (r,ω)

]
+ εjniunW

em
ij (r,ω) + εinjunW

me
ij (r,ω)

}
.

(31)

As discussed in Ref. [1], momentum flow may be written
as a normal component of a unit vector, u, on a sphere whose
radius is much larger than the size of a localized source at the
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center. The momentum flow becomes

ui〈Tij (r,ω)〉 = 1

4π
ui

[
WEE

ij (r,ω) + WBB
ij (r,ω)

]

− 1

8π
uj 〈U (r,ω)〉. (32)

Since the electromagnetic field produced by the polarization
and the magnetization is always transverse on the sphere
in the far zone, the normal components of the cross-
spectral density tensors of the fields always vanish in the
far zone. As a result of this, the momentum flow can be
reduced to

ui〈Tij (r,ω)〉 = −uj 〈U (r,ω)〉, (33)

which means that the momentum flow is simply the energy
density transfer to the normal direction in the far zone. It
is straightforward to show that the momentum flow in the
far zone has the following form by using the spectral energy
density:

ui〈Tij (r,ω)〉 = − (2π )6k4

4πr2

{
uj (δlm − ulum)

× [
W̃PP

lm (−ku,ku) + W̃MM
lm (−ku,ku)

]
+ujεlmnum

[
W̃PM

nl (−ku,ku)

+ W̃MP
ln (−ku,ku)

]}
, (34)

where W̃XY
ij is the sixfold Fourier transform of a cross-

spectral density of a combination of the polarization and the
magnetization,

W̃XY
ij (k1,k2) = 1

(2π )6

∫
d3r1d

3r2e
i(k1·r1+k2·r2)

× 〈X∗(r1,ω)Y (r2,ω)〉, (35)

where X and Y can be P or M . This result is exactly the same
as that of the result in Ref. [3]. The first term in this formula
is exactly the same as the result in Eq. (26) in Ref. [1], which
represents the momentum flow only from the polarization
source, while the second term is only from the magnetization
source. The last two terms are produced from the interference
of the polarization and the magnetization sources. In general,
the last term does not vanish unlike the result in Ref. [2].
Therefore, this result corrects the previously published re-
sult in Ref. [2], while the result in Ref. [3] still remains
valid.

To elucidate the result, we consider a simple exam-
ple. We assume that a polarization P = P ẑδ(r − rP ) and
a magnetization M = Mx̂δ(r − rM ) are located at rP =
(0,0,a/2) and rM = (a/2,0,0), respectively. There is no
special reason for this choice as an example. The purpose
is only to show the interference between the polarization and
magnetization.

For this example, it is useful to use the Fourier transforms
of the cross spectral densities,

W̃PP
ij (−k,k) = P ∗

i Pj = P 2δi3δj3, (36)

W̃MM
ij (−k,k) = M∗

i Mj = M2δi1δj1, (37)

W̃PM
ij (−k,k) = μP ∗

i Mje
−iku·(rP −rM )

= PMeika(sin θ cos φ−cos φ)/2δi3δj1, (38)

W̃MP
ji (−k,k) = W̃PM∗

ij (−k,k), (39)

for real P , M , and μ. The momentum flow in Eq. (34) can be
expressed as a product of the angular part and the nonangular
part;

ui〈Tij (r,ω)〉 = −uj

(2π )6k4

4πr2
H (u), (40)

where the angular function H (u) can be written as

H (u) = P 2 sin2 θ + M2(1 − sin2 θ cos2 φ)

+ 2μPM cos[ka(cos θ − sin θ cos φ)/2]

× sin θ sin φ. (41)

The angular distribution of the momentum flow depends not
only on the strengths of polarization and magnetization, P and
M , but also on the degree of coherence between them, μ.

The magnitude of the radiation from magnetization is
relatively small compared to that from polarization in most
physical radiation sources. We take M = 0.1P to reflect this.
Then the contribution from the second term in Eq. (41) is much
smaller than that from the first term. However, the third term
gives non-negligible interference effects since the magnitude
is about 20% of the radiation from polarization. Specifically,
the interference effect produces an azimuthal dependency to
the angular distribution in this example. The resulting angular
distribution of the momentum flow at θ = π/2 is seen in
Fig. 1 for various values of μ with ka = 2π . The interference
effect can be most notable for the non-negligible fluctuation
in azimuthal direction as shown in the figure.

The momentum flow from the polarization, which is the first
term in Eq. (41), has no azimuthal variation. When we take
a small magnetization (M = 0.1P ), the magnetization effect
[the second terms in Eq. (41)] makes almost no azimuthal
variation to the momentum flow by the polarization. As
seen in Fig. 1, the momentum flow of completely incoherent

FIG. 1. (Color online) The angular distribution of momentum
flow for the source with both polarization and magnetization as a
function of φ for P = 1, ka = 2π , and θ = π/2.
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polarization and magnetization sources (μ = 0) has almost no
azimuthal variation. Therefore, the presence of the azimuthal
variation of the momentum flow indicates the interference
between both sources [the third term in Eq. (41)]. We can
also use this example to determine the degree of coherence
between the polarization and the magnetization.

We investigated the momentum flow and the energy density
of the partially coherent electromagnetic fields produced by
(quasi-)monochromatic electric and magnetic sources. The
electromagnetic fields from a localized source with both
polarization and magnetization in the far zone are always
transverse to the outgoing normal vector. The momentum flow

is the energy density transfer to the outgoing normal directions.
We found the interference effect in the radiations from the
electric and the magnetic sources in disagreement with what
was found in the previous study [2]. This effect can be probed
in a special example most notably by observing the presence
of an azimuthal dependence.
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was supported in part by Basic Science Research Program
through the NRF of Korea funded by MEST (Grant No.
2011-0014308) and in part by Yonsei University Research
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