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Parabolic-symmetry vector optical fields and their tightly focusing properties
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We present theoretically and generate experimentally a vector optical field with parabolic symmetry of linear
polarization. We extend the study to the modified parabolic-symmetry vector fields. We explore their tightly
focusing behaviors, in particular, a modified parabolic-symmetry vector field can be tightly focused into a
high-performance subwavelength sharp line.
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Polarization is one of the most salient features of light, even
more important than its coherence property. Polarization, as a
degree of controlling freedom, is certainly of great importance
for engineering the optical field and controlling the interaction
of light with matter. Vector optical fields have attracted
extensive interest due to many unique features with respect
to the scalar fields, such as the far-field focal spot beyond the
diffraction limit [1–4], the light needle of a longitudinally
polarized field [5], the optical cage [6,7], and the optical
chain [8]. In particular, the vector fields have many important
applications, such as particle acceleration [9], single molecule
imaging [10], near-field optics [11], nonlinear optics [12], and
optical trapping and manipulation of particles [13,14].

Most previous reports focused mainly on cylindrical-
symmetry vector fields [1–13,15–20]. An elliptical-symmetry
vector field has also been investigated [21], for which the local
linear polarizations are always along the tangential direction
of concentric ellipses. Very recently, we reported other two
kinds of vector fields: with linear polarization distributions
modeling to field lines [22] and with bipolar symmetry of
linear polarization [23].

Here we present and generate vector fields with a parabolic
symmetry rather than the cylindrical, elliptical, or bipolar
symmetries for spatial distribution of linear polarization.
The geometric configurations of linear polarizations as an
additional degree of freedom assists in controlling the field
symmetry and distribution at the focus. In particular, a mod-
ified parabolic-symmetry vector field can be tightly focused
into a sharp line with a dimension of 0.57λ × 1.56λ (full width
at half-maximum, FWHM), which has a figure of merit being
0.65.

To generate the parabolic-symmetry vector fields, a flexible
configuration with the aid of a 4f system [18] is still
practicable. The schematic shown in Fig. 1 is very similar to
those used in Refs. [14,18,19,23]. This approach includes four
key steps: (i) an input linearly polarized laser field is divided
into two equiamplitude parts, which are easily achieved by use
of a sine-cosine grating displayed on a spatial light modulator
(SLM) in the input plane of the 4f system; (ii) the two parts
must carry the space-variant phase δ(x,y); (iii) the two parts
must pass through different optical paths, making the two
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parts become orthogonally right- and left-handed circularly
polarized by a pair of 1/4-wave plates behind a spatial filter
(SF) in the Fourier plane of the 4f system; and (iv) the two
parts are combined by the Ronchi phase grating (G) in the
output plane of the 4f system. Thus the generated vector
fields can be represented as follows [18,19,23]:

E(x,y) = A0[cos δ(x,y)êx + sin δ(x,y)êy], (1)

where êx and êy are the unit vectors in the x and y

directions, A0 is the space-invariant amplitude, and δ(x,y)
is the two-dimensional (2D) space-variant phase carried by
the grating displayed on a SLM. The vector field described by
Eq. (1) is locally linearly polarized because its two orthogonal
components are always in phase.

To generate the parabolic-symmetry local linearly polarized
vector fields, we should first give a brief introduction to
the parabolic coordinate system (u,v), as shown in Fig. 2.
This coordinate system has many applications, such as
for treating the Stark effect and the potential theory of the
edges. The parabolic coordinates (u,v) are defined by the
Cartesian coordinates (x,y) as follows:

x = uv, y = (v2 − u2)/2. (2)

The above expressions can be rewritten as

2y = x2/u2 − u2, 2y = v2 − x2/v2. (3)

The parabolic coordinate system is also a 2D orthogonal
coordinate system in which the constant-u curves form a set of
confocal parabolas that open upwards, whereas the constant-
v curves form another set of confocal parabolas that open
downwards. The common focus of the two sets of parabolas is
located at the origin O.

To generate the parabolic-symmetry vector fields, we
should give explicit expressions of u and v as

u2 =
√

x2 + y2 − y, v2 =
√

x2 + y2 + y. (4)

Similarly to the generation of the cylindrical vector fields
[14,18,19], in particular, of the bipolar vector fields [23], we
set the space-variant phase δ as

δ = mπu + nπv

= mπ

√√
x2 + y2 − y + nπ

√√
x2 + y2 + y, (5)
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FIG. 1. (Color online) Schematic for generating the vector fields.
A SLM is located at the input plane of the 4f system composed
of a pair of lenses (L1 and L2). Two 1/4-wave plates behind a
SF are placed in the Fourier plane of the 4f system. A Ronchi
grating (G) is placed in the output plane of the 4f system. A linear
polarizer may be inserted between G and CCD to acquire the intensity
patterns by CCD.

where the signs of u and v are included into m and n, because
m and n can be positive or negative. m and n are the topological
charges in the u and v dimensions in the parabolic coordinate
system, respectively. The polarization distribution of the vector
field when δ has the form in Eq. (5) exhibits a parabolic
symmetry.

We now will explore the situations when δ depends only
on u (m �= 0 and n ≡ 0). As shown in Fig. 3, the generated
parabolic-symmetry vector fields have no polarization singu-
larity, which are similar to the vector fields with the radially
variant polarization distributions [15] but which differ from the
cylindrical vector fields with one singularity [1–13,15–20],
elliptical-symmetry vector fields with one singularity [21],
bipolar vector fields with two singularities [23], and field-
line-like vector fields with two or more singularities [22].
Total intensity pattern exhibits the uniform distribution. The
simulated results are in good agreement with the measured
ones for the x-component intensity patterns, which are

FIG. 2. (Color online) Parabolic coordinate system (u,v). A set
of solid (dashed) curves show the constant-u (-v) parabolas. All these
parabolic curves have the same focus located at the origin O. (x,y) is
the Cartesian coordinate system.

FIG. 3. (Color online) Generated parabolic-symmetry vector
fields with the polarization distribution dependent only on u for
different m when n ≡ 0.

composed of a set of open-upward parabolas. The extinction or
light-passing parabolas have a common focus and their amount
increases as m increases. The polarization distributions of the
generated vector fields indeed depend only on u (the locations
with the same polarization form a constant-u parabola). We
should emphasize that we will not show the total intensity
patterns of all the generated parabolic-symmetry vector fields
below, because they are the same as those shown in the first
row of Fig. 3.

Figure 4 shows the generated vector fields with the
polarization distributions dependent only on v (m ≡ 0 and
n �= 0) for different n. As shown in the first and second rows,
the measured x-component patterns are in good agreement
with the simulated results. Any pattern is composed of a set
of open-downward parabolas, implying that the polarization
distributions depend only on v (locations with the same
polarization lie in a constant-v open-downward parabola). The
x-component patterns for m ≡ 0 and n �= 0 exhibit the mirror
symmetry about the y axis, like the cases for m �= 0 and n ≡ 0
in Fig. 3.

We now explore the cases when δ depends on both u and v

(m �= 0 and n �= 0). Figure 5 shows the generated vector fields
with the polarization distributions dependent on both u and v

FIG. 4. (Color online) Generated parabolic-symmetry vector
fields with the polarization distribution dependent only on v for
different n when m ≡ 0.
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FIG. 5. (Color online) Generated parabolic-symmetry vector
fields with the polarization distribution dependent on both u and
v for different combination of m and n when m = n.

when m = n. The x-component intensity patterns exhibit an
eyelidlike shape. The amount of “eyelid” equals to 2m (or 2n).

Figure 6 shows another kind of vector fields when δ is
dependent on both u and v for m ≡ 4. When n is changed
from 0 to 4, the x-component intensity patterns change from
the open-upward parabolas to an eyelidlike shape. In particular,
the symmetry changes from the mirror symmetry about the y

axis only to the higher symmetry (the mirror symmetry about
both the x and y axes). In the two cases of (m,n) = (4,1)
and (4,2), the x-component patterns look like the flame of the
candle.

Below we will explore a kind of modified parabolic-
symmetry vector fields, where the space-variant phase δ is
taken as a quadratic function of u and v as follows:

δ = mπu2 + nπv2. (6)

With Eq. (4), the above expression can be rewritten as

δ = (m + n)π
√

x2 + y2 − (m − n)πy

= pπ
√

x2 + y2 − qπy, (7)

where we have defined two new “topological charges” as p =
m + n and q = m − n. Figure 7 shows the generated vector
fields for different p (=0,1,2,3,4) when q ≡ 4. As shown
in the first column of Fig. 7, when p = 0 the polarization
distribution is a function of y only, because δ in Eq. (7) depends
only on y when p = 0 and q �= 0. As p increases when q ≡ 4,
as shown from the second column to the fifth column in Fig. 7,
the patterns of the trajectories with same polarization are very
similar to a phenomenon that when a small rounded triangle is

FIG. 6. (Color online) Generated parabolic-symmetry vector
fields with the polarization distribution dependent on both u and
v for different n when m ≡ 4.

FIG. 7. (Color online) Modified parabolic-symmetry vector
fields for different p when q ≡ 4.

placed on the layered plasticine, the deformation of the layered
plasticine becomes large as the pressure increases.

Figure 8 shows the generated vector fields for different
q (=0,1,2,3,4) when p ≡ 4. When q = 0, as shown in the
first column, the x-component intensity pattern exhibits a
concentric annulus structure, which indicates the polarization
to be radially variant only, because δ in Eq. (7) is a function of
radial coordinate r =

√
x2 + y2 only when p �= 0 and q = 0.

As q increases, as shown from the second column to the fifth
column in Fig. 8, the x-component intensity patterns exhibit
a series of ellipses with one same focus as the origin (when
p �= q) to a series of confocal parabolas (when p = q). When
(p,q) = (4,3), the pattern is similar to the peacock’s fine tail
feather.

In the above, we focus on the generation of various
parabolic-symmetry vector fields. It is very interesting to
explore the tight focusing behaviors of this kind of vector
fields. The so-called tight focusing is that a lens with a high
numerical aperture (NA) is used, which is usually 0.8 or larger
[1,2,24]. As mentioned above, the polarization distributions
of the parabolic-symmetry vector fields are neither vertically
nor horizontally symmetric (despite that the intensity patterns
exhibit the vertical and/or horizontal symmetry), which result
in the tight focusing patterns lacking the vertical and/or
horizontal symmetry. We now will explore the tight focusing
behavior of a modified parabolic-symmetry vector field with
the sign of its x component in the x < 0 region being changed.
Referencing Eq. (1), this modified vector field with δ obeying
Eq. (5) can be written as

E(x,y) = A0[sgn(x) cos δ(x,y)êx + sin δ(x,y)êy], (8)

where sgn(x) is the well-known sign function. By the Richards-
Wolf integrals [24,25], we simulate the tightly focused field of

FIG. 8. (Color online) Modified parabolic-symmetry vector
fields for different q when p ≡ 4.
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FIG. 9. (Color online) Simulated tightly focused field for the
modified parabolic-symmetry vector field with (m,n) = (0.45,0.8)
by use of a lens with NA = 0.9. Any picture has a dimension of
4λ × 4λ.

the modified parabolic-symmetry vector field with (m,n) =
(0.45,0.8) by a lens with NA = 0.9, as shown in Fig. 9.
Total intensity pattern exhibits a flattop sharp line with a
subwavelength size of ∼0.57λ in the y direction and a size
of ∼1.56λ in the x direction, which is larger than the reported
sharp lines [23,24]. We appraise its figure of merit (which is
defined as the full width at 95% of the maximum divided by
FWHM) to be 0.65 being superior to 0.56 in Refs. [23,24].

At last, we emphasize that all the generated parabolic-
symmetry vector fields have the same dimensions of ∼5 ×
5 mm2 and the uniform intensity distribution. The parabolic-
symmetry vector fields are not the eigensolutions of the
paraxial wave equation. However, these vector fields can be
decomposed into a series of eigenmodes. As the well-known
limited plane wave, it is also not the eigensolution of the

paraxial wave equation but is also the superposition of a
series of eigenmodes. We conformed experimentally that the
generated vector field could propagate steadily because when
it is imaged by a lens, the imaged one holds all the properties
of the original vector field.

In summary, we designed theoretically and generated
experimentally a kind of local linearly polarized vector
fields with the parabolic symmetry of linear polarization,
which breaks the cylindrical, elliptical, and bipolar symmetry.
In addition, we also extended our study to the modified
parabolic-symmetry vector fields. The engineerable geometric
configuration of polarization provides a powerful way in
controlling the tight focusing field at the focus to some
specific applications. We should also point out that this kind
of vector field has no polarization singularity. In particular,
by designing the polarization configuration of a modified
parabolic-symmetry vector field, under the tight focusing
condition, a high-performance subwavelength sharp line could
be achieved, which has a figure of merit as high as 0.65 and the
important applications such as lithography and optical storage.
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